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On arithmetic properties of g-series

Keijo Vadnanen
University of Oulu, Finland

1 Introduction

In this paper we shall give a survey on recent results on arithmetic properties of g-
series. These are values of solutions of g-difference equations, the analogues of differential
equations, where the derivative is replaced by the g-difference operator A, defined by

o g #1).

A f (2)
For example the differential equation f'(z) = f(z) becomes

A f(z) = f(2) or f(qz) = (1+(q—1)2)f(2).

If |g| < 1, then the solution satisfying f(0) =1 is

[ ]

[Ja+d@-1)2)"

7=0

After replacing (¢ — 1)z by z we obtain the function
exp,(z) = H(l +¢72)7! (z#—-¢77, 7=0,1,...).
s
A similar consideration of Agf(z) = f(2) with |Q| > 1 gives the function
b z
Eq(2) = H (1 + @7) :
=1

which is connected to exp,(z) by the relation

Ey/4(2) expy(g2) = 1.
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In the following we shall assume that 0 < |¢| < 1 and denote Q = ¢~ !. As a g-analogue
of the exponential function we choose the entire function

s =M1 (145) = L2

k=1

satisfying Eg(Qz) = (1 + z)Eq(2). By using g we have

o0 [ o] n k
eq(2) = H(l +¢'2) = Z (H 3 3q’°) 2" = Eg(z).

n=0 \k=1

This function is a special case M(z) = gz, N(z) = 1 — gz of more general series

fo2) =3 (I:[ R(qk)) 2", R(z) = %((%) (1)

n=0 \k=0

where M(z) and N(z) are polynomials with N(0) = 1. This function satisfies a ¢-
difference equation

{N(J/q)—zM(J)}f(2) = N(g7'), Jf(2) = f(g2),

and it has also many other interesting special cases, for example the g-hypergeometric
o0
) _ Z (al)n ce (ar)n q(s+l—r)('2')zn’

series
Al,...,0r
@, z
(bly ceeabs ne0 (01)n -+ (bs)n(@)n

where (a)o =1, (@)n=(1-a)---(1—ag"!), n>1

In this survey we are mainly interested in g-series obtained as values of different f,(z).
Our aim is to concentrate mainly to recent results since there are already two excellent
survey papers by Bundschuh [B1], [B2] on earlier results of this topic.

We shall denote by @ the field of rational numbers, by K an algebraic number field
and by Ok the ring of integers of K. In particular, if K is an imaginary quadratic field
it will be denoted by I.

2 Tschakaloff function

Historically the first g-series studied arithmetically are the values of Tschakaloff function

To(2) = i AERE

n=0
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which is closely related to Jacobi’s theta series

o0
n?_n
0(g,2) = > q" 2"

n=-—oo

Clearly T,(z) is the special case M(z) = gz, N(z) =1 of (1). Already in 1921 Tschakaloff
[Ts] proved using Hermite’s method the linear independence (over I) of the numbers

1, Ty(ey), j=1,...,m,

if Q € O; (or more generally is "nearly an integer" meaning that in absolute values the
denominator is small in comparision to the nominator) and «; € I* satisfy

gt if i#j | (a)

In 1949 Skolem [Sk] did the same, by using more arithmetic Hilbert’s method, for the

numbers .
I,Tq(‘)(aj), j=1...,m;+1=0,1,...,

when [ is replaced by Q.
By a quantitative form of linear independence we mean a linear independence measure
of linearly independent numbers 1, 8, . .., Om, which is a lower bound of the form

lho + hifBr+ -+ + hnfOr| > H™*

for all A € Z™*! with H = max |h;| large enough, say H > Hp. By Dirichlet’s box
principle we know that u > m for real numbers §;. If we consider linear independence
over K, then h € K™t! and H is replaced by the absolute height of h defined on p. 5.

A quantitative form of Tschakaloff’s result was given in [BS] , and of Skolem’s result
in [Kal] and [VW1], see also [VW2] for p-adic case and [KSV] for more general K. In
these results the measures are rather sharp and p is about twice the best possible value.
We note that in all these results Q is assumed to be nearly an integer, but one naturally
conjectures that this assumption should not be needed.

The transcendence of T,(c) is an interesting open problem. In the special case a = q*,
k € Z, the transcendence follows from the famous results of Nesterenko [Ne2] for all
algebraic ¢, 0 < |g| < 1, by using the connection of Ty(z) and theta series, for further
applications of [Ne2] see [DNNS]. For general a the only result in this direction is by
Bézivin [Béz2], who proved that for a nearly integer Q € Q* both of the numbers a # 0
and T,(a) cannot belong to a quadratic number field, see also [Cho].

The first approach to the linear independence of T, («) with different integers ¢; is
given in [AV4]. This is essentially improved recently in [VZ3], where following result is
proved by using a new scaling argument.
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Theorem 1 ([VZ3]). Assume that Q € Z\ {0,£1} and let ty,...,t4 be positive integers
such that all the numbers \/t;/t; for i # j are irrational. If [(h,...,0q are nonzero
rationals, then the numbers

1, Tq‘l (ﬁ1)7 ce ’Tq‘d (ﬁd)

are linearly independent over Q.

The case d = 2 is considered in [VZ2]. If some of the numbers /t;/t;, i # j, are
rationals, then we need extra assumptions on multiplicative independence of §; and g.
For example the numbers 1, T,(3), T,2(8) and T4 (B) are linearly independent if § € Q*
and ¢ are multiplicatively independent.

These results imply also linear independence of the values of theta series.

Theorem 2 ([VZ3]). Let B € Q* and g be multiplicatively independent, and let t, ..., 14
be distinct. Then the numbers

1,6(¢", B),...,0(¢",B)

are linearly independent over Q.

3 Results by using ideas of Siegel’s method
Let us first note a useful connection between some functions f,(z) in (1) and the function

R 8(";") sn
0(2) = 9(z,0) = 3 g o™

n=0

(2)

where a(z) is a polynomial satisfying a(0) = 1. This function g(z) is defined for all 2
satisfying a(¢*z) #0, k= 1,2,..., and it satisfies a Poincaré type functional equation

a(gz)’g(qz) = alqz)f(z) — a(gz).

Clearly we have a connection

| 9(1,0) = f(a), (3)
where f(z) = fo(z) with M(z) = (gz)* and N(z) = a(gz), more precisely
o 1)
N3 "'
16 =2 e “

This suggests to study the solutions of a system of functional equations

7(g2) = A(2)i(2) + B(2), (5)
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where the elements of the matrix A(z) and the components of the vector B(z) are rational
functions.

The arithmetic properties of E- and G-function solutions of the system of differential
equations corresponding to (5) are successfully studied by Siegel’s method (see e.g. [Sh]),
and therefore it is natural to try to apply the ideas of this method also to the consideration
of (5). The key result in the analytic part of this method is Shidlovskii’s lemma, and in
[AMV] an analogue of this result is given for the system (5) if A(z) is nonsingular,
and independently by Bertrand [Be], see also [AV1] for some special cases. To get the
arithmetic part to work we use in [AMV] Padé-type approximations of the second kind
constructed by Siegel’s lemma together with Chudnovsky’s [Ch] ideas for G- function
considerations, and restrict our studies to the special case of (5), namely to

27(qz) = a(2)Cy(2) + b(z), (6)

where s is a positive integer, C is a nonsingular constant matrix with elements from K,
a(z) and the components b;(z) of b(z) belong to K[z], a(0) =1, t =dega(z) < s and
deg bi(z) < s.

To state the main result of [AMV] we introduce some notations. Let d = [K : Q),
dy = [K. : Qu), and define the (absolute) height of @ € K* by

h(@) = ] ] max{1, |alg+/},

where the product is over all places of K and the valuations | - |w are normalized in the
usual way. Furthermore, for nonzero [ = (Iy,...,ln) € K™,

h(l) = [ ] max{1, [7|3+*}, |l = max{|ilu}.

We now fix a place v of K and assume that ¢ € K* satisfies |¢|, < 1. Then (6) has
a unique analytic solution f(z) converging in some nelghbourhood of the origin and by
using (6) this can be continued to any z € K, satisfying a(zg¢*) # 0, k = 0,1,.... By

defining

dlog h(q) _
doioglal (-1, =-2xvQ))

we can state the following result for the components f;(z) of f(z).

Theorem 3 ([AMV]). Assume that the functions 1, fi(2),..., fm(2) are linearly inde-
pendent over K(2), and let a € K* satisfy a(agf) # 0, k =0,1,.... There ezists an
effective constant A > 1 such that the numbers 1, fi(a),..., fm(a) (€ K,) are linearly
independent over K, if —A < A < —1. Moreover, for a given € > 0, there ezists a
positive constant Hy = Hy((6),€, ) such that

|lo + llfl(a) +ee lmfm(a)lv > H™#¢
for all [ € K™+, [ #0, where H = max{h(l), Ho} and p= d.,(A+,\)

A= Av,q) =
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Remarks. 1) The constant Hy above is not effective in general.
2) In many important cases A = —1 (see [AMV]), and in this case

d 8m
<_.
P> 8m—1

v

(8sm?* + (s + 4)m + -;— +2) = O(m?).

3) Generally the condition —A < A < —1 corresponds the condition "@ is nearly an
integer" of the rational case. It restricts the possible values of ¢ and an improvement
removing this would be important.

The irrationality of the values of g(z) satisfying a Poincaré type functional equation
2°g(qz) = a(z)g(z) + b(z) with polynomials a and b was proved in [D1] and a quantitative
measure with applications using (3) in [AKV1], [AKV?2] and [AKV3]. The special case
of (6) with diagonal matrix C was considered in [V1] and a measure 4 = O(m®) was
obtained, and this was improved in certain cases to 4 = O(m?) in [VZ1].

We now give an application of (3) and Theorem 3, for the details see [AMV]. Let
o1, ...,0, € K* and define

o0 ’(n-}-l) sn
Z gtz
f. Z) -_— ny qua. n,
le( o a(qz)._‘a(qnz) ( .7)
j=1,....,myp=01,...,s —1; v =0,1,...,l. These functions satisfy a system of

functional equations of type (6) and are together with 1 linearly independent over K(z)
if the condition (o) is satisfied and in the case dega(z) = s also ;g™ # a, for all ¢ and
n=s,s+1,..., where a, is the leading coefficient of a(z). Thus Theorem 3 can be applied
and with (3) we get the following result on the values of

o qs(n:l)n”

Su(2) =D W(Q"z)",

n=0
p=0,1,...,s—Lv=01,....
Theorem 4 ([AMV]). Let ay,...,am satisfy the above conditions and assume that
a(g®) # 0, k =1,2,.... Then there erists a A > 1 such that the numbers 1, ¢ (a;)

(eKy), j=1,....,m; p=0,1,...,s—1; v=0,1,...,1, are linearly independent over
K, if —A < X £ —1. Further, the measure of Theorem 3 holds true for these numbers
with m replaced by M = ms(l + 1).

In particular Theorem 4 applies to the Tschakaloff function T,(z), g-exponential func-
tion e4(z) and a g-analogue of the Bessel function by using the choices s = 1, a(z) = 1,
1, a(z) = 1—z; s = 2, a(2) = (1 — 2)?, respectively. For the numbers 1, e (a;),
1,...,m;v=0,1,...,1 it gives a measure O(M?) with M = m(l + 1). In the case

s
J

(1]
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| = 0 (no derivatives) this is very recently improved to O(m) in [M2] by using explicit
Padé approximation construction and (3).

In the special case t = dega(2) < s, a(z) = (1 — byz)--- (1 — bz), b; € K*, Stihl
[St] proved Theorem 4 in the archimedean case without the derivatives, if K = Q or /,
Katsurada [Ka2] did the same with derivatives, and the case of general K and v is studied
in [SV]. All these works use explicit Padé approximations of the second kind and in the
measure u = O(M) obtained there is better than p = O(M?) in Theorem 4.

In the general case t < s, a(z) € K|z] Theorem 4 with [ = 0 and without powers ¢*
is proved in [V1] with g = O(m3). The qualitative part without powers ¢* in the case
K = Q or I follows already from the paper of Bézivin [Bézl|, where a completely different
method is used.

4 Results by Bézivin’s method

In 1988 Bézivin [Bézl] studied the function
6(2) =)

=V
k=0 )

zﬂ

where {A(n)} is a linear recurrence sequence of the form
An) =M07+--+ M0, n=0,1,...,

61, ...,0, are nonzero algebraic integers and A;,...,\, are nonzero algebraic numbers.
Assuming that A(n) € I*, [6)] > |02/ > --->|0h| > 1, and 1 =60 < |0h_1| if |0n] =1,
Bézivin proved the following result, where G' denotes the multiplicative group generated
by 01,...,0h.

Theorem 5 ([Bézl]). The numbers
1,6M(e;), j=1,...,mv=0,1,...,1,

are linearly independent over I, if aj € I* satisfy ai/o; € G for ¢ # j, and in the case
9;, =1 )\haj‘l ¢ G.

On noting that

[o%) s("'{l) 00 n
q n_ z
; alg) - alg) Z p(@Q) - p(Q7)’

where p(z) = z®a(1), we get linear independence of 1, ¢, (c;) in Theorem 4, if @ is an
integer in I such that |Q| > 1.
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Let us now introduce a generalized linear independence. Assume that ¢,(z2),..., ¢ (2)
are functions defined at a € K with ¢;(a) € K, for all w € M, a finite set of places of
K. We say that ¢;(a), ..., ¢nm(a) are linearly independent over K with respect to M, if

a1¢1(a)++a’m¢m(a)zo1 dz(a‘la""am)el{ma

in K, for all w € M implies @ = 0. Clearly we have usual linear independence over K,
if M is a set of one place.

Bézivin [Bézl] proved in fact linear independence of the numbers 1,¢*)(e;) over K
with respect to the set of all infinite places of K. In 2000 André [An] proved this kind of
result for Ty(a;) and eq(;), when M = {w||qlw < 1}. The methods used in these proofs
are based on rationality criterion of Borel and Dwork type, see [Am]. Recently in a joint
work with Amou [AV 3] we generalized Theorem 5 for algebraic 6; (not necessarily integers),
again by using Borel-Dwork rationality criterion. As a corollary we obtain the linear
independence over K of the numbers in Theorem 4 with respect to M = {w||qls < 1}.
In particular, if @ is a Pisot number, then these numbers are linearly independent over
K. We also have analogous results for more general series

=1+ m ,
glj T, QF)

where p € K|z;,...,z,] and @, ..., Q, are multiplicatively independent elements of K™.
To give a brief sketch of the main idea of these proofs we define for formal power series

9(2) = chz € K{[2]]

the operation

g'(z) = Y B(n)eaz”, B(n) =[] A(k)
k=0

n=0

Then for any a € K*
h
(z9(e2))* =2z Y _ Mibig*(ab;2),
=1

and

¢*(az) =

1—az
Assuming now
m
ao+Zaj¢(aj) =0, EEK”H'I, (—1756,

j=1
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in K, forall we M = {wlmax{ 10;}w > 1}} we define

F(z)

z—1

F(z) = ag + Zaj ¢(a,z), G(z)=

The Borel-Dwork rationality criterion can be applied to show that G*(z) is a rational
function, say G*(z) = C(z)/D(z). By using the above properties of x-operation we now
have .
C’(0,-z) C(Z)
*(2) = Aib; - :
F(z) z; 6 D(6;z) D(z)

Then a careful consideration of the poles gives a contradiction.

5 Other functions f,(z)

The above results belong essentially to the case M(z) = z%, degN(z) < s of (1).
Some other cases are considered for example in [AM], [BoZ], [CZ], [Chi], [M1] and [MV2].
Often these results say that at least a certain amount of the given numbers are linearly
independent. One of the most general results of this type is a recent work of Bundschuh
[B3], where he considers linear independence of certain values of the infinite product

Fo(z) = J] M(2q™)
j=0

and the series -
o0 )

Fu(z) = _ "™ [ M(2¢™),
3=0 =0

where Q € Oy, |¢| <1, M € I|z] with M(0) =1 is of exact degree [, and m,h € N.
Clearly this is essentially the case N(z) =1 of (1). Very recently the results of [B3] were
slightly generalized and improved in [BV4], where we proved the following result.

Theorem 6 (|[BV4]). Assume that ¢ is as above and G is an entire transcendental
solution of

G(Q™z) = Ro(2)G(2) + Ri(2)

with Ry, Ry € I[z] such that G(0) =1 if R;(0) =0, and Ry(0) € ¢¥ if R;(0) #0.
Let o € I* satisfy the condition Ro(agq*) # 0 for every k > m. Then, for every real
number 6 € [0,1] satisfying

(m+1)2> (1 -68)2l(m+ 1)+ 8%*m, | =degR,,



56

the dimension estimate

i (S 1)? + l(m —2(1 =9d)l(m
dlm,{1+“z=%](;(aqu)}2(m+ ) +l((m12)+62§11n) J(m +1)

holds.

The proof of Theorem 6 uses explicit approximation constructions and Nesterenko’s
[Nel] dimension estimate. Note that the above Fj(z) are special cases, where Ry(2) =
g " M(q™z) and Ry(z) = 1 — 6ho (Ono is the Kronecker symbol). Theorem 6 gives a
nontrivial lower bound for the dimension if m > 2/ — 2. Asymptotically, for fixed { and
m — oo, the best value m/! is obtained with § = 0.

In the case [ = 1 [B3] gives nearly the best possible value m for the dimension. In
this case the results of [AMV] can be used to prove that the dimension is maximal m+1,
see [V2].

One further interesting class of functions under active studies recently are the functions
connected to the special case N(z) = M(gz) of fy(z) in (1). The ¢g-logarithmic function

N n_n o0 n
_ qz q
l(e) = logy(1 = 2) = 3= m === (el < @)
is the main example of such functions. Since
€e(z) _
q — —
eq(z) IQ( Z),

the irrationality of [,(a) with Q € Z\ {0,%1} and a € Q*, |af < |Q)|, follows already
from [Bézl]. After that there are several quantitative refinements of this result, see e.g.
[Boi], [BV1] and [MV1]. The best known bound is given in [MVZ].

Theorem 7 ([MVZ]). Let Q € Z\ {0,%1} and a € Q* be such that |a| < |Q|. Then
the irrationality ezponent of l,(a) satisfies

p(lg(e)) < 3,7633....
As usual the irrationality exponent of a real irrational number < is defined by
u(v) =inf{c € R| the inequality |y — %I <b°
has only finitely many solutions (a,b) € Z x N}.

Interesting special values of l,(z) are

© n
= 2; 1 f]_ o =((1) and [(-1)= Z = log, 2,
n=

l—q
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the g-analogs of the harmonic series {(1) and log2. In particular, these numbers and the
g-analogs of ((2) and =, namely

)n12n1

(1) = 2(1 -Cq(2) and 71'—1+4Z(1_q2ﬂ_1 ,

and some related numbers have been intensively studied recently, see [ATa], [Ass], [Bol],
[BV2], [BV3], [BZ1], [BZ2], [MVZ], [Tal], |Z1], [Z2], [Z3], [Z4]. Best estimates for irra-
tionality exponents are

p(log, 2) < 2,9383..., u(((1)) < 2,4649...,
p(,(2)) < 4,0786..., p(my) < 6,5037...

given in [MVZ], [23], [Z2] and [BZ2], respectively. Note that also m, is closely connected
to the special values of I,(z), namely the series in the definition of m, equals il;(—1) —
ily(i). In the proofs of these results there are different ways to construct the needed
approximation forms, but a common feature of all these proofs is a very careful and
delicate arithmetic consideration of denominators by using the properties of cyclotomic
polynomials. It is just at this point where one gets advantage in considering the points
a = %1 instead of general a.

We note that even the trancendence of (,(2) and =, follows from Nesterenko’s [Ne2]
results for all algebraic ¢, 0 < |g| < 1, but the transcendence of log,2 and (,(1) is still
an open question. Furthermore, we refer to [KrRZ] and [P] for studies on g-analogs of
more general (-values.

Concerning the question on linear independence of the values of [;(z) not much is
known. The first result in this direction is given by Tachiya [Ta], who proved for Q €
Z\ {0,£1} the linear independence over I of each of the following sets:

1, lg(1), lg(—1) (or 1,({,(1),log,2);

L, lq(l)a lq2(1)§

1’ IQ(]-): l;(l) ( or 11 CQ(]-)’CQ(Z))'
The quantitative refinement of this result is given in [BV2] and [Z4] with linear indepen-
dence measure i = 14, 8369..., and for general K in [BV3].

One of the most interesting and important problems in this field is certainly the
question on linear independence of

1, l«(;”)(aj)’ j=1...,m; v=0,1,...,1

with @ € Z\{0, %1} (or even more general @) and a; € Q* satisfying () and |a;| < Q.
Even some partial progress in this question would be of great interest.

Aknowledgement. The author is grateful to Masaaki Amou for careful reading of the
manuscript and useful comments improving it.
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