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1. INTRODUCTION

First, we state the notation which is used throughtout this paper. For a measurable
set £ C R™, we denote the Lebesgue measure of E by |E| and the characteristic function
of the set E by xg. Also, let for k € Z, By = {z € R™: |z| < 2%}, P, = Bi\Bs-; and
Xk = xp,- And let for k € N, P, = Py, Xx = Xp, and Py = By, %o = Xp,- Further, we
denote the open ball in R”, having center 0 and radius R > 0, by B(0, R).

Now, we define the homogeneous and non-homogeneous Herz spaces (see [LiY]).
Definition 1. Let a € R and 0 < p < oo.

(a) The homogeneous Herz space Kg,(R”) is defined by, for 0 <r < oo,

oo 1/r
K2, (R") = {f € L2 (R"\ {0)) : [Ifllxy, = ( ) 2’mukan;p) < oo};

k=-—o00

KR = {1 € LR\ 0)) £ llkg,, = 50p 2l el < oo

(b) The non-homogeneous Herz space K2, (R™) is defined by, for 0 < r < oo,

fore) 1/r .
K (R") = {f € L. (R") : Ifllxg, = (Z 2’°a’||f>~<knz,,) < oo} ;

k=0

K2 o(R™) =< fe b (R : || fllkg., = sup 2| fXxllr < o0 .
k>0

Here, throughout this talk, there are similar definitions and results for the non-
homogeneous case as those for the homogeneous case. But, for simplicity, we only state
the definitions and results for the homogeneous case.
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Next, we recall the definition of the Hardy-Littlewood maximal operator M: that is,
for any measurable function f on R",

l n
Mf@) =swp o [ )y (= e ).
z€B IB| B
where the supremum is taken over all open balls B C R™ containing z.
Moreover, we define the standard singular integral operator T'.

Definition 2. We say that T is a standard singular integral operator, if there exists a
function K which satisfies the following conditions:

Tf(z) = p.v. /Rn K(z —y)f(y)dy

exists almost everywhere, where f € L?(R");

C C
IK(m)Isﬁ; and |VK(z)|smTKH, z #0;

/ K(z)dr =0 forall 0 <e < N.
e<|z|<N

Then, the following strong-type estimates of the boundedness of the Hardy-Littlewood
maximal operator M and a standard singular integral operator T' on LP(R") are well-
known:

M : LP(R™) — LP(R"),
where 1 < p < o0;

T : LP(R") — LP(R"),
where 1 < p < o0.

Furthermore, let S be a sublinear operator satisfying for any integrable function f
with a compact support,

(*) sr@ise [ a2 goups,
R |1 — Yl
where ¢ > 0 is independent of f and z.

We remark that () is satisfied by several operators in harmonic analysis, including
the Hardy-Littlewood maximal operator M and a standard singular integral operator T

Then, the following theorem was shown.

Theorem 3 ([LiY]). Let 1 < p < 00, 0 < r < 00 and —n/p < a < n/p', where 1/p +
1/p' =1, and let T be a sublinear operator satisfying (x). If T is bounded on LP(R™), then

T:K2.(R") - K2 .(R").
Second, we define the weighted Herz spaces Kg,(wl,wg)(R") (see [K], [LuY] and
LYY]).

Now, for a nonnegative locally integrable function on R™, i.e. a weight (or a weight
function), w, we write w(E) = [pw(z)dz (£ C R") and define

1/p
L (w)(R™) = {f N ey = ( / n If(:v)l”w(x)dx) < oo}.
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Definition 4. For0 < a < oo, 1 <p < oo, 0 <r < oo and the weights wy and w,,

7 (w1, wa) (RY) = { f € L (wa) B\ {0)) ¢ 1 g, oy < 00

where
o0

1/r
1Nl g wnwn) = { > [wl(Bk)]ar/"ilkall?,p(wz)} :

k=—00
In particular, when wy, = we = w, we put
Ky, (w)(R*) = K (w, w)(R").
Also, the following theorem was proved.

Theorem 5 ([LiY]). Let 1 <p <00, 0<71 <00, 0< a<n/p, where 1/p+1/p' =1,

wi(z) =1, we(z) = |z|™® (0 < a < n), and let T be a sublinear operator satisfying (). If
T is bounded on LP(R™), then

T K,‘;T(wl,wz)(R”) — Kgr(wl,wz)(R").
In this talk, we will introduce some weighted Herz-type space, AP(wy, wy) (R™), which
is a weighted Herz space K7, (w;,wz)(R™) with the critical index o = n/p’, where 1/p +

1/p' = 1, and show the boundedness of the sublinear operator T satisfying (*) at the
critical index oo = n/p'.

2. THE BOUNDEDNESS ON SOME WEIGHTED HERZ-TYPE SPACES

First, we define the particular cases of the Herz spaces Kgr(R") and the weighted
Herz spaces K2, (w1, w2)(R") (see [CL], [FW], [G], [GH], [LS], [LS2] and [M]).
Definition 6. For1 < p < oo

AP(R™) = K7 (R™)

= {f € L (RN} : Iflan = D 2"l fxellp < OO}a

k=-—o00

where 1/p+1/p = 1.
Definition 7. Let w; and ws be the weights. For 1 <p < oo
AP (wn, wp)(R") = K17 (wn, w2) (R™)
— {1 € L5e® \{O}) : I lLap(un,m) < 0}
where 1/p+ 1/p' =1 and
1 Lirtanon = D (2B 1 zrcwny

k=—00
In particular, when w, = wys = w, we put
AP(w)(R™) = AP(w, w)(R™).
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‘Next, we define the central (a, p; w1, ws)-block, and observe the block decomposition
of K2, (w1, ws)(R™) (see [LS,], [LSy] and [LuY]).

Definition 8. Let 0 < a < o0 and 1 < p < o0, and let wy,wy be a weights. Then, we
state that a measurable function b(x) is a central (a, p; wy, wp)-block, if the support of b is
contained in a ball B = B(0, R) (R > 0), and so that

61| Loy < [wi(B)] 7™

Theorem 9. Let0 <a <00, 1<p<o0, and 0 <71 < 00, and let w; € A, and wy be a
weight. Then, the following are equivalent:

(i) f € K;r(wl’w2)(Rn)f
(i) f= Y. MXibx where the by’s are central (o, p; wy, ws)-blocks and > |A]” < 0.

k=—o00 k=-o00

Besides,

o 1/r
111k, zinf(z w) ,
k=—o00

where the infimum is taken over all such decompositions.

Then, using the block decomposition of AP(w)(R™), the boundedness of the sublinear
operator satisfying (*) on AP(w)(R™) was shown.

Theorem 10 ([LS,] and [LSy]). Let 1 < p < oo, w(z) = |z|™* (0 < a < n), and let T be
a sublinear operator satisfying (x). If T is bounded on LP(R™), then

T: K (w)(RY) — Ko7 (w)(R™),
where 1/p+1/p =1, i.e.
T : AP(w)(R™) — AP(w)(R™).
Now, we are in a position to show the result of our purpose, i.e. the boundedness of
the sublinear operator satisfying (*) on AP(w, wq)(R™), which extends the above results.

Theorem 11. Let 1 < p < oo, wi(x) = |z|™ such that 0 < a; <n (1 =1,2), and let T
be a sublinear operator satisfying (). If T is bounded on LP(R™), then

T : Kpi¥ (wi, wo) (R™) — K7 (wi, wo)(R™),
where 1/p+1/p' =1, i.e.
T : AP(wy, w)(R™) — AP(wy, wa)(R™).
Proof. The proof of this theorem is similar to that of Theorem 2 of [LS,].
By Theorem 9, it suffices to show that for any central (n/p’, p; w;, ws)-block b,
||Tb“/in(w1,w2) <C,
where C' is independent of b.
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Now, let B = B(0, R) be the supporting ball of b. Then, since we can choose a j € N
such that 2772 < R < 297!, Therefore,

Tl dp a2y = <Z+Z> [w1(Bi)Y? (T5) Xk || Lo w2

k<j k>j

= 51 + 53, say.

First, we estimate S;. By the assumption, it follows that T maps LP(ws)(R™) into
L?(w7)(R™) (see [SW]). Consequently,

1/p
1(T0)xkll Loy < C (/B lb(x)[”wz(z)dm)

< Clwy(By)]'7.
Thus,
S < CZ [M] " <C Z ok=i)(n—a1)/P' o
- wi(B;) I

Next, in order to estimate Sy, note that if z € Py, y € B and j < k, then |z —y| ~ |z|.
Hence, using the size condition of T, it follows that

b
1(T0) Xk gy < C ( hl—ff‘f;'?d@ wa()dz

= C/ |np (/B |b(y)|”dy> |BIP~ we(z)dz
1 i . |
< C/Pk 2|77 essinf,e 5 wa(y) (L b(y)] wz(y)dy) | B|P~ wq(z)dx.

'LU2(B)
1B

Since wy, € Ay,

< Cessinfyep w2 (y),

and therefore we have

1/p
(T8 x| rtumy < Cleon(B)]7 fua(B)] 7| B ( / #wm)dx) .

Thus, by the assumption,

1/p' 1/p
w1 (Bk) w2(Bk)] K
S, < C ] [ B|2—*n
’ 2 [ wo(B) 1Bl

< O3 gtk nan/pl glk-3)n=aa) oo -him

k>3
=C Z 9(i—k){a1/p'+az2/p)

k> 7
< 00.

k>3
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