非対称に単項式のノルムを保存する関数環上の写像について (MAPS BETWEEN UNIFORM ALGEBRAS WHICH PRESERVE THE NORMS OF MONOMIALS NON-SYMMETRICALLY)

新潟大学大学院・自然科学研究科 新藤瑠美 (Rumi Shindo) Graduate School of Science and Technology, Niigata University

1. Introduction

Let C(X) be the set of all complex-valued continuous functions on a compact Hausdorff space X and $\|f\|_{\infty} = \sup_{x \in X} |f(x)|$ the supremum norm on X for $f \in C(X)$. Then C(X) is a Banach algebra with pointwise multiplication and the supremum norm. The subset A of C(X) is said to be a uniform algebra on X if A is a closed subalgebra of C(X) which separates the points of X and contains the constant functions. Let A and B be uniform algebras on compact Hausdorff spaces X and Y respectively. For $f \in A$, let $\sigma(f)$ be the spectrum of f. Recall that f(X) is a subset of $\sigma(f)$ and $\|f\|_{\infty}$ equals the spectral radius of f.

Molnár [10] showed the following:

Theorem 1. (Molnár [10]) If X is first-countable and T is a surjection from C(X) onto itself with $\sigma(T(f)T(g)) = \sigma(fg)$ for all $f, g \in C(X)$, then T/T(1) is an algebra isomorphism.

Rao and Roy [11] extended this result (see also [2, 3, 6, 7]). Most recently, Hatori, Hino, Miura and Oka [4] generalized their results. In particular, they showed the following:

Theorem 2. (Hatori, Hino, Miura and Oka [4, Theorem 1.1]) Let $\sigma_{\pi}(f) = \{f(x) : x \in X, |f(x)| = \|f\|_{\infty}\}$ for $f \in A$. If a surjection $T : A \to B$ satisfies $\sigma_{\pi}(T(f)^mT(g)^n) \subset \sigma_{\pi}(f^mg^n)$ for some fixed positive integers m, n and all $f, g \in A$, then there exists a real-algebra isomorphism \widetilde{T} such that $\widetilde{T}(f)^d = (T(f)/T(1))^d$ for every $f \in A$, where d is the greatest common divisor of m and n.

Hatori, Miura and Takagi [3, Corollary 7.5], and Luttman and Lambert [8] independently showed the following:

Theorem 3. (Hatori, Miura and Takagi [3, Corollary 7.5], and Luttman and Lambert [8]) If a surjection $T: A \to B$ satisfies $||T(f)T(g) - \alpha||_{\infty} = ||fg - \alpha||_{\infty}$ for some fixed non-zero complex number α and all $f, g \in A$, then T/T(1) is a real-algebra isomorphism.

Note that, for some fixed complex number α and $f, g \in A$, $\sigma(f) = \sigma(g)$ if and only if $\sigma(f - \alpha) = \sigma(g - \alpha)$, which implies $||f - \alpha||_{\infty} = ||g - \alpha||_{\infty}$. Hence their result is a generalization of Theorem 1 (see also [5, 6, 9]). We denote by A^{-1} the set of invertible

²⁰⁰⁰ Mathematics Subject Classification. Primary 46J10, 47B48; Secondary 46H40, 46J20. Key words and phrases. uniform algebras, norm-preserving, algebra isomorphism.

elements of A. Let \hat{f} be the Gelfand transform of $f \in A$, M_A the maximal ideal space of A and \bar{f} the complex conjugate. Our main result is the following:

Theorem 4. [12, Theorem 1.2] Let m, n be positive integers and α a non-zero complex number. Suppose that S_A, S_B are subsets of A, B that contain A^{-1}, B^{-1} respectively. If $T: S_A \to S_B$ is a surjection such that

(1)
$$||T(f)^m T(g)^n - \alpha||_{\infty} = ||f^m g^n - \alpha||_{\infty}$$

for all $f, g \in S_A$, then there exist a real-algebra isomorphism $\widetilde{T} : A \to B$, a clopen subset K of M_B and a homeomorphism $\Phi : M_B \to M_A$ such that

$$\widehat{\widetilde{T}(f)} = \begin{cases} \widehat{\widehat{f}} \circ \Phi & \textit{on } \mathcal{K} \\ \widehat{\widehat{f}} \circ \Phi & \textit{on } M_B \setminus \mathcal{K} \end{cases}$$

for every $f \in A$ and $\widetilde{T}(f)^d = (T(f)/T(1))^d$ for every $f \in S_A$, where d is the greatest common divisor of m and n.

2. A PROOF OF MAIN RESULT

We denote by $\exp A$ the range of the exponential map on A. Let $\sigma_{\pi}(f) = \{f(x) : x \in X, |f(x)| = \|f\|_{\infty}\}$ for $f \in A$ and $P_{\exp A}(x) = \{u \in \exp A : \sigma_{\pi}(u) = \{1\}, u(x) = 1\}$ for $x \in X$. If $\sigma_{\pi}(p) = 1$ for $p \in A$, then p is called a peaking function of A. For a peaking function p, the set of points on which p takes the value 1 is called the peak set of p. A point $x \in X$ is called a weak peak point of A if the set $\{x\}$ equals the intersection of a family of peak sets of A. The set Ch(A) of all weak peak points of A coincides with the Choquet boundary of A. It is known that Ch(A) is a boundary for A. In order to prove the main theorem, we will need Lemma 5, 6 and Proposition 7.

Lemma 5. (cf. [4, Proposition 2.2]. See also [1, 2, 3, 5, 6, 8, 9, 11].) Let $v \in A^{-1}$ and $x_0 \in Ch(A)$. If F is a closed subset in X with $x_0 \notin F$, there exists a $u \in P_{\exp A}(x_0)$ such that $\sigma_{\pi}(uv) = \{v(x_0)\}$ and $|uv| < |v(x_0)|$ on F.

Lemma 6. (cf. [8, Lemma 2.1].) Let $f_1, f_2 \in A$. If $||f_1g - 1||_{\infty} = ||f_2g - 1||_{\infty}$ for all $g \in \exp A$, then $f_1 = f_2$.

Proposition 7. [12, Proposition 2.6 and 3.2] Suppose that A_0 , B_0 are subgroups of A^{-1} , B^{-1} that contain $\exp A$, $\exp B$ respectively. If $S: A_0 \to B_0$ is a surjection such that S(1) = 1 and

(2)
$$||S(f)S(g)^{-1} - 1||_{\infty} = ||fg^{-1} - 1||_{\infty}$$

for all $f, g \in A_0$, then there exist a real-algebra isomorphism $\widetilde{T}: A \to B$, a clopen subset K of M_B and a homeomorphism $\Phi: M_B \to M_A$ such that

$$\widehat{\widetilde{T}(f)} = \begin{cases} \widehat{\widehat{f}} \circ \Phi & on \ \mathcal{K} \\ \widehat{\widehat{f}} \circ \Phi & on \ M_B \setminus \mathcal{K} \end{cases}$$

for every $f \in A$ and $\widetilde{T}(f) = S(f)$ for every $f \in A_0$.

Proof. We begin by showing that there exists a homeomorphism ϕ from Ch(B) onto Ch(A) such that

$$|S(f)(y)| = |f(\phi(y))|$$

for every $f \in A_0$ and $y \in Ch(B)$ (cf. [3, 4, 5, 9]). For $y \in Ch(B)$, let

$$W_y = \{ f \in B_0 : |f(t)| = 1 = ||f||_{\infty} \}.$$

Then, $P_{\exp B}(y)$ is a subset of W_y . For every $y \in \operatorname{Ch}(B)$, the set $\bigcap_{f \in S^{-1}(W_y)} |f|^{-1}(\{1\})$ is a singleton that belongs to $\operatorname{Ch}(A)$. If $\phi(y)$ is the single element, i.e.

$$\{\phi(y)\} = \bigcap_{f \in S^{-1}(W_y)} |f|^{-1}(\{1\}),$$

we can define the mapping $\phi: y \mapsto \phi(y)$ from Ch(B) into Ch(A). Then $\phi: Ch(B) \to Ch(A)$ is bijective and satisfies (3). This implies the continuities of ϕ and ϕ^{-1} .

Let $y \in Ch(B)$ and $S^1 = \{z; \text{a complex number with } |z| = 1\}$. We will show that

(4)
$$S(f) = \begin{cases} f \circ \phi & \text{if } y \in K \\ \overline{f \circ \phi} & \text{if } y \in \text{Ch}(B) \setminus K \end{cases}$$

for every $f \in A_0$ (cf. [3, 5, 8, 9]). For every $\beta \in S^1$ and $\mathfrak{u} \in P_{\exp B}(y)$, there exists a $u \in A_0$ such that $S(u) = S(\beta)\mathfrak{u}$. By (3), we have $|u(\phi(y))| = 1$. We also have $|S(\beta)\mathfrak{u}/S(-u(\phi(y)))|_{\infty} = 1$. Equation (2) shows that

$$\left\| \frac{S(\beta)\mathfrak{u}}{S(-u(\phi(y)))} - 1 \right\|_{\infty} = \left\| -\frac{u}{u(\phi(y))} - 1 \right\|_{\infty} = 2,$$

which implies that there exists a $y' \in Ch(B)$ with $S(-u(\phi(y)))(y') = -S(\beta)(y')\mathfrak{u}(y')$. Since $|\mathfrak{u}(y')| = 1$ and $\mathfrak{u} \in P_{\exp B}(y)$, we obtain $\mathfrak{u}(y') = 1$, so by (3),

$$2 = \left| \frac{S(-u(\phi(y)))(y')}{S(\beta)(y')} - 1 \right| \le \left\| \frac{S(-u(\phi(y)))}{S(\beta)} - 1 \right\|_{\infty} \le \left\| \frac{S(-u(\phi(y)))}{S(\beta)} \right\|_{\infty} + 1 = 2.$$

Thus, by (2), $|-u(\phi(y))\beta^{-1} - 1| = 2$, which shows that

$$(5) u(\phi(y)) = \beta.$$

Since, by (2) and (3), $||S(\beta)\mathfrak{u}S(-\beta)^{-1}-1||_{\infty}=||S(\beta)\mathfrak{u}S(-\beta)^{-1}||_{\infty}+1=2$, there exists a $y_{\beta}\in \operatorname{Ch}(B)$ such that $S(-\beta)(y_{\beta})=-S(\beta)(y_{\beta})\mathfrak{u}(y_{\beta})$. Notice that $|\mathfrak{u}(y_{\beta})|=1$ and $\mathfrak{u}\in P_{\exp B}(y)$, which implies that

(6)
$$\mathfrak{u}(y_{\beta}) = 1 \text{ and } S(-\beta)(y_{\beta}) = -S(\beta)(y_{\beta}).$$

Applying Lemma 5 for $S(1)^{-1} \in B^{-1}$ and equation (6) for $\beta = 1$, we obtain S(-1)(y) = -1 for every $y \in \operatorname{Ch}(A)$. Thus, by (2), we have $||S(\beta) - 1||_{\infty} = |\beta - 1|$ and $||S(\beta) + 1||_{\infty} = |\beta + 1|$ for every $\beta \in S^1$. Since $|S(\beta)| = 1$ on $\operatorname{Ch}(B)$, we obtain $S(\beta)(\operatorname{Ch}(B)) = \{\beta, \overline{\beta}\}$ for every $\beta \in S^1$. Define

$$K = \{ y \in \operatorname{Ch}(B) : S(i)(y) = i \}.$$

Then K is a clopen subset of Ch(B) and the closures in Y of K and $Ch(B) \setminus K$ are disjoint. Let F_0 be the closure in Y of K or $Ch(B) \setminus K$ with $y \notin F_0$. Applying Lemma 5 for $S(i)^{-1} \in B^{-1}$, $F_0 \subset Y$ and equation (6) for $\beta = i$, we obtain S(-i)(y) = -S(i)(y) for every $y \in Ch(B)$. Together with equations (2) and (3), this shows that $||S(\beta) - S(i)||_{\infty} = |\beta - i|$ and $||S(\beta) + S(i)||_{\infty} = |\beta + i|$. Hence,

(7)
$$S(\beta)(y) = \begin{cases} \beta & \text{if } y \in K \\ \overline{\beta} & \text{if } y \in \text{Ch}(B) \setminus K \end{cases}$$

for every $\beta \in S^1$. Given $f \in A_0$, set $\beta_0 = -f(\phi(y))|S(f)(y)|^{-1}$. Then $\beta_0 \in S^1$. By Lemma 5, there exists a $\mathfrak{u}_0 \in P_{\exp B}(y)$ such that

$$\sigma_{\pi}(\mathfrak{u}_0 S(f)^{-1}) = \{S(f)(y)^{-1}\}\ \text{and}\ |\mathfrak{u}_0 S(f)^{-1}| < |S(f)(y)|^{-1}\ \text{on } \mathrm{Ch}(B) \setminus F_0.$$

Applying (5) for $\beta = \beta_0$, there exists a $u_0 \in A_0$ such that $S(u_0) = S(\beta)u_0$ and $u_0(\phi(y)) = \beta_0$. This shows that, by (2),

$$\left\| \frac{S(\beta_0)\mathfrak{u}_0}{S(f)} - 1 \right\|_{\infty} = \left\| \frac{u_0}{f} - 1 \right\|_{\infty} \ge \left| \frac{\beta_0}{f(\phi(y))} - 1 \right| = |S(f)(y)|^{-1} + 1.$$

By (3), we have $||S(\beta_0)\mathfrak{u}_0S(f)^{-1}||_{\infty} = |S(f)(y)|^{-1}$, that is

$$||S(\beta_0)\mathfrak{u}_0S(f)^{-1}-1||_{\infty}=|S(f)(y)|^{-1}+1.$$

Hence there exists a $y_0 \in Ch(B)$ such that

$$(S(\beta_0)\mathfrak{u}S(f)^{-1})(y_0) = -|S(f)(y)|^{-1}.$$

The hypotheses of u_0 and equation (7) imply that

$$(u_0 S(f)^{-1})(y_0) = S(f)(y)^{-1}$$
 and $S(\beta_0)(y_0) = S(\beta_0)(y)$,

which shows (4).

We will show that there exists a real-algebra isomorphism $\widetilde{T}: A \to B$ (cf. [3, 4, 9]). For each $f \in A$, there exist a complex number λ_0 and an $f_0 \in A_0$ such that the imaginary part of λ_0 is not zero, the real part of f_0 is positive and $f = f_0 + \lambda_0$. Notice that $f_0 \in \exp A$. Thus $f_0, \lambda_0 \in A_0$. Define a map \widetilde{T} on A by

$$\widetilde{T}(f) = S(f_0) + S(\lambda_0).$$

Then, by (4), \widetilde{T} is a real-algebra isomorphism such that

(8)
$$\widetilde{T}(f) = \begin{cases} f \circ \phi & \text{on } K \\ \overline{f} \circ \phi & \text{on } Ch(B) \setminus K \end{cases}$$

for every $f \in A$ and $\widetilde{T} = S$ on A_0 .

Finally, we will construct a homeomorphism Φ from M_B onto M_A (cf. [8, The proof of Theorem 2.1]). By (8), we obtain $\widehat{\widetilde{T}(i)}(M_B) \subset \{i, -i\}$. Define a subset \mathcal{K} of M_B by

$$\mathcal{K} = \{ y \in M_B : \widehat{\widetilde{T}(i)}(y) = i \}.$$

Then K is a clopen subset of M_B with $Ch(B) \cap K = K$. Let $e = (\widetilde{T}(i) + i)/(2i)$, then e is an idempotent such that

(9)
$$\hat{e} = \begin{cases} 1 & \text{on } \mathcal{K} \\ 0 & \text{on } M_B \setminus \mathcal{K} \end{cases}$$

For $y \in M_B$, let $\Phi(y)$ be defined as

$$\Phi(y)(f) = \widehat{\widetilde{T}(f)}(y)\widehat{e}(y) + \overline{\widehat{\widetilde{T}(f)}}(y)(1-\widehat{e})(y)$$

for every $f \in A$. Then, by (8) and (9), the mapping $\Phi : y \mapsto \Phi(y)$ is a homeomorphism from M_B onto M_A . By the definition of Φ and equation (9), we obtain the conclusion. \square

Here we prove Theorem 4, stated in the first section. Below we make use of subsets of A^{-1} defined as follows: Let k, l be positive integers and \mathcal{X} a subset of a uniform algebra A. Define a subset $(\mathcal{X})_{l}^{k}$ of A by

$$(\mathcal{X})_l^k = \{ f \in \mathcal{X} : \text{there exists an } f' \in \mathcal{X} \text{ with } f^k(f')^l = 1 \}.$$

Then $(\mathcal{X})_l^k$ is a subset of $(A^{-1})_l^k$.

Proof of Theorem 4. Recall that S_A, S_B are subsets of A, B that contain A^{-1}, B^{-1} respectively and $T: S_A \to S_B$ is a surjection such that

(1)
$$||T(f)^m T(g)^n - \alpha||_{\infty} = ||f^m g^n - \alpha||_{\infty}$$

for all $f, g \in S_A$. By a simple calculation, we obtain $(S_A)_n^m = (A^{-1})_n^m$ and $(S_B)_n^m = (B^{-1})_n^m$, since S_A, S_B contain A^{-1}, B^{-1} respectively. We will show that $T((A^{-1})_n^m) = (B^{-1})_n^m$. Suppose that ν_{α} is a complex number with $(\nu_{\alpha})^n = \alpha$. For every $g \in (A^{-1})_n^m$, let $g' \in A^{-1}$ with $g^m(g')^n = 1$. Since, by (1),

$$||T(g)^m T(\nu_{\alpha} g')^n - \alpha||_{\infty} = ||g^m (\nu_{\alpha} g')^n - \alpha||_{\infty} = ||g^m \alpha (g')^n - \alpha||_{\infty} = 0,$$

we obtain

$$T(g)^m T(\nu_{\alpha} g')^n = \alpha.$$

This shows that $T(g)^m(\nu_{\alpha}^{-1}T(\nu_{\alpha}g'))^n=1$, that is $T(g)\in (B^{-1})_n^m$. Together with the surjectivity of \widetilde{T} , similar arguments show the opposite inclusion. Consequently, $T((A^{-1})_n^m)=(B^{-1})_n^m$. Furthermore, we have

(10)
$$\left\| \frac{T(f)^m}{T(g)^m} - 1 \right\|_{\infty} = \frac{1}{|\alpha|} \|T(f)^m T(\nu_{\alpha} g')^n - \alpha\|_{\infty}$$

$$= \frac{1}{|\alpha|} \|f^m (\nu_{\alpha} g')^n - \alpha\|_{\infty} = \left\| \frac{f^m}{g^m} - 1 \right\|_{\infty}$$

for every $f \in S_A$ and $g \in (A^{-1})_n^m$. Define a map T_m on $((A^{-1})_n^m)^m = \{f^m; f \in (A^{-1})_n^m\}$ by $T_m(f^m) = T(f)^m/T(1)^m$

for $f^m \in ((A^{-1})_n^m)^m$. Then, by (10), T_m is well-defined in the sense that $T(f)^m = T(g)^m$ for every $f, g \in (A^{-1})_n^m$ with $f^m = g^m$, and $T_m(1) = 1$. Since $T((A^{-1})_n^m) = (B^{-1})_n^m$, we have $T_m(((A^{-1})_n^m)^m) = ((B^{-1})_n^m)^m$. By (10), we also have

$$||T_m(f^m)T_m(g^m)^{-1}-1||_{\infty}=||f^m(g^m)^{-1}-1||_{\infty}$$

for all $f^m, g^m \in ((A^{-1})_n^m)^m$. Notice that $((A^{-1})_n^m)^m, ((B^{-1})_n^m)^m$ are subgroups that contain $\exp A, \exp B$ respectively. Proposition 7 shows that there exists a real-algebra isomorphism $\widetilde{T}: A \to B$, a clopen subset \mathcal{K} of M_B and a homeomorphism $\Phi: M_B \to M_A$ such that

(11)
$$\widehat{\widetilde{T}(f)} = \begin{cases} \widehat{f} \circ \Phi & \text{on } \mathcal{K} \\ \widehat{\widehat{f}} \circ \Phi & \text{on } M_B \setminus \mathcal{K} \end{cases}$$

for every $f \in A$ and $\widetilde{T}(f^m) = T_m(f^m)$ for every $f^m \in ((A^{-1})_n^m)^m$. By the definition of T_m and equation (11), we have $\widetilde{T}(f)^m = (T(f)/T(1))^m$ for every $f \in (A^{-1})_n^m$. By (10) and (11), we also have

$$\left\| \frac{(T(f)/T(1))^m}{(T(g)/T(1))^m} - 1 \right\|_{\infty} = \left\| \frac{T(f)^m}{T(g)^m} - 1 \right\|_{\infty} = \left\| \frac{f^m}{g^m} - 1 \right\|_{\infty} = \left\| \frac{\widetilde{T}(f)^m}{\widetilde{T}(g)^m} - 1 \right\|_{\infty}$$

for every $f \in S_A$ and $g \in (A^{-1})_n^m$. Since $(B^{-1})_n^m$ contains $\exp B$, we obtain

$$||(T(f)/T(1))^m \mathfrak{g} - 1||_{\infty} = ||\widetilde{T}(f)^m \mathfrak{g} - 1||_{\infty}$$

for every $f \in S_A$ and all $\mathfrak{g} \in \exp B$. By Lemma 6, we obtain

(12)
$$\widetilde{T}(f)^m = (T(f)/T(1))^m$$

for every $f \in S_A$.

Finally, we will show that $\widetilde{T}(f)^d = (T(f)/T(1))^d$ for every $f \in S_A$, where d is the greatest common divisor of m and n. By raising both sides of equation (12) to the n-th power, we have $\widetilde{T}(f)^{mn} = (T(f)/T(1))^{mn}$ for every $f \in S_A$. By (11), we also have

(13)
$$\|\widetilde{T}(f)(T(g)/T(1))^{-mn} - 1\|_{\infty} = \|fg^{-mn} - 1\|_{\infty}$$

for every $f \in A$ and $g \in T^{-1}((B^{-1})_n^m)$. If we consider the map T_n on $((A^{-1})_m^n)^n = \{f^n : f \in (A^{-1})_m^n\}$ defined as $T_n(f^n) = T(f)^n/T(1)^n$ for $f^n \in ((A^{-1})_m^n)^n$, similar arguments show that there exists a real-algebra isomorphism $\widetilde{T}': A \to B$ such that $\widetilde{T}'(f)^n = (T(f)/T(1))^n$ for every $f \in S_A$ and

$$\|\widetilde{T}'(f)(T(g)/T(1))^{-mn} - 1\|_{\infty} = \|fg^{-mn} - 1\|_{\infty}$$

for every $f \in A$ and $g \in T^{-1}((B^{-1})_m^n)$. Together with (13), this shows that

$$\|\widetilde{T}(f)(T(g)/T(1))^{-mn} - 1\|_{\infty} = \|\widetilde{T}'(f)(T(g)/T(1))^{-mn} - 1\|_{\infty}$$

for every $f \in A$ and $g \in T^{-1}((B^{-1})_n^m \cap (B^{-1})_m^n)$. Since $(B^{-1})_n^m$ and $(B^{-1})_m^n$ contain $\exp B$, we obtain

$$\|\widetilde{T}(f)\mathfrak{g} - 1\|_{\infty} = \|\widetilde{T}'(f)\mathfrak{g} - 1\|_{\infty}$$

for every $f \in A$ and all $\mathfrak{g} \in \exp B$. It follows from Lemma 6 that $\widetilde{T} = \widetilde{T}'$ on A. Consequently, $\widetilde{T}(f)^n = (T(f)/T(1))^n$ for every $f \in S_A$, which implies that $\widetilde{T}(f)^d = (T(f)/T(1))^d$ for every $f \in S_A$.

REFERENCES

- [1] A. Browder, Introduction to function algebras, W.A. Benjamin, 1969.
- [2] O. Hatori, T. Miura and H. Takagi, Characterizations of isometric isomorphisms between uniform algebras via nonlinear range-preserving property, Proc. Amer. Math. Soc., 134 (2006), 2923–2930.
- [3] O. Hatori, T. Miura and H. Takagi, Multiplicatively spectrum-preserving and norm-preserving maps between invertible groups of commutative Banach algebras, (2006), preprint.
- [4] O. Hatori, K. Hino, T. Miura and H. Oka, Peripherally monomial-preserving maps between uniform algebras, Mediterr. J. Math., 6 (2009), 47-59.
- [5] D. Honma, Norm-preserving surjections on algebras of continuous functions, to appear in Rocky Mountain J. Math.
- [6] S. Lambert, A. Luttman and T. Tonev, Weakly peripherally-multiplicative mappings between uniform algebras, Contemp. Math., 435 (2007), 265-281.
- [7] A. Luttman and T. Tonev, *Uniform algebra isomorphisms and peripheral multiplicativity*, Proc. Amer. Math. Soc., **135** (2007), no.11, 3589–3598.
- [8] A. Luttman and S. Lambert, Norm conditions for uniform algebra isomorphisms, Cent. Eur. J. Math., 6(2) (2008), 272-280.
- [9] T. Miura, D. Honma and R. Shindo, Divisibly norm-preserving maps between commutative Banach algebras, Rocky Mountain J. Math., to appear.
- [10] L. Molnár, Some characterizations of the automorphisms of B(H) and C(X), Proc. Amer. Math. Soc., 130 (2001), 111–120.
- [11] N. V. Rao and A. K. Roy, Multiplicatively spectrum-preserving maps of function algebras, Proc. Amer. Math. Soc., 133 (2005), 1135-1142.
- [12] R. Shindo, Maps between uniform algebras preserving norms of rational functions, (2009), submitted.