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1. INTRODUCTION

Let C(X) be the set of all complex-valued continuous functions on a compact Hausdorff
space X and || f|l., = supzex |f(z)| the supremum norm on X for f € C(X). Then C(X)
is a Banach algebra with pointwise multiplication and the supremum norm. The subset A
of C(X) is said to be a uniform algebra on X if A is a closed subalgebra of C(X) which
separates the points of X and contains the constant functions. Let A and B be uniform
algebras on compact Hausdorff spaces X and Y respectively. For f € A, let o(f) be the
spectrum of f. Recall that f(X) is a subset of o(f) and || f||, equals the spectral radius
of f.

Molnér [10] showed the following:

Theorem 1. (Molndr [10)) If X is first-countable and T is a surjection from C(X) onto

itself with o(T(f)T(g)) = o(fg) for all f,g € C(X), then T/T(1) is an algebra isomor-
phism.

Rao and Roy [11] extended this result (see also [2, 3, 6, 7]). Most recently, Hatori, Hino,
Miura and Oka [4] generalized their results. In particular, they showed the following:

Theorem 2. (Hatori, Hino, Miura and Oka [4, Theorem 1.1]) Let o, (f) = {f(z) : = €
X f@)| = Ifll.} for f € A. If a surjection T : A — B satisfies o, (T(f)™T(9)") C
o (f™g™) for some fized positive integers m,n and all f,g € A, then there exists a real-
algebra isomorphism T such that T(f)% = (T(f)/T(1))* for every f € A, where d is the
greatest common divisor of m and n.

Hatori, Miura and Takagi [3, Corollary 7.5}, and Luttman and Lambert [8] independently
showed the following:

Theorem 3. (Hatori, Miura and Takagi [3, Corollary 7.5], and Luttman and Lambert [8])
If a surjection T : A — B satisfies |T(f)T(g) — allo, = I|f9 — ||, for some fized non-zero
complex number a and all f,g € A, then T/T(1) is a real-algebra isomorphism.

Note that, for some fixed complex number « and f,g € A, o(f) = o(g) if and only
if o(f — a) = o(g — a), which implies ||f — a|l, = |lg — all,, - Hence their result is a
generalization of Theorem 1 (see also [5, 6, 9]). We denote by A~! the set of invertible
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elements of A. Let f be the Gelfand transform of f € A, M, the maximal ideal space of A
and -~ the complex conjugate. Our main result is the following:

Theorem 4. [12, Theorem 1.2] Let m,n be positive integers and o a non-zero complex
number. Suppose that Sa,Sp are subsets of A, B that contain A~', B~ respectively. If
T :S54 — S is a surjection such that

(1) IT()"T(9)" = alle = /™9™ — ally

for all f,g € Sa, then there ezist a real-algebra isomorphism T:A— B, a clopen subset KC
of Mg and a homeomorphism ® : Mg — M4 such that

ﬁ?):{(oq) on K

fo® onMg\K

for every f € A and T(f)® = (T(f)/T(1))* for every f € Sa, where d is the greatest
common divisor of m and n.

2. A PROOF OF MAIN RESULT

We denote by exp A the range of the exponential map on A. Let o, (f) = {f(z) : z €
X, |f(@)| = ||fllo} for f € Aand Pupa(z) = {u € expA : 0, (u) = {1},u(z) = 1} for
r € X. If o,(p) =1for p € A, then p is called a peaking function of A. For a peaking
function p, the set of points on which p takes the value 1 is called the peak set of p. A point
z € X is called a weak peak point of A if the set {z} equals the intersection of a family
of peak sets of A. The set Ch(A) of all weak peak points of A coincides with the Choquet
boundary of A. It is known that Ch(A) is a boundary for A. In order to prove the main
theorem, we will need Lemma 5, 6 and Proposition 7.

Lemma 5. (cf [4, Proposition 2.2]. See also [1, 2, 3, 5, 6, 8, 9, 11].) Let v € A™! and
zo € Ch(A). If F is a closed subset in X with xg ¢ F, there exists a u € Pexpa(®o) such
that o, (uwv) = {v(zo)} and |uv| < |v(zg)| on F.

Lemma 6. (cf [8, Lemma 2.1].) Let fi,fs € A. If ||fig— 1|l = |lfeg — 1|, for all
g € expA, then fi = fs.

Proposition 7. [12, Proposition 2.6 and 3.2] Suppose that Ao, By are subgroups of A~', B~}

that contain exp A, exp B respectively. If S : Ag — Bp is a surjection such that S(1) =1
and

2) 1S(HS) =1l =[Ifg7" — 1|

for all f,g € Ag, then there exist a real-algebra tsomorphism T:A— B, a clopen subset K
of Mg and a homeomorphism ® : Mg — M4 such that

~

= fod onk
T(f)_{foq) on Mg\ K

for every f € A and f(f) = S(f) for every f € Ap.

Proof. We begin by showing that there exists a homeomorphism ¢ from Ch(B) onto Ch(A)
such that

(3) IS(H W) = 1f (@)l



for every f € Ap and y € Ch(B) (cf. [3, 4, 5, 9]). For y € Ch(B), let

={fe€Bo: /)] =1=||fll}-

Then, P, p(y) is a subset of W For every y € Ch(B), the set Ngeg-1w|fI7 ({1}) is a
singleton that belongs to Ch(A). If ¢(y) is the single element, i.e.

{6(v)} = Npes—r1wyl FI7 ({1}),

we can define the mapping ¢ : y — ¢(y) from Ch(B) into Ch(A). Then ¢ : Ch(B) — Ch(A)
is bijective and satisfies (3). This implies the continuities of ¢ and ¢ 1.
Let y € Ch(B) and S* = {z;a complex number with |z| = 1}. We will show that

_Jfog ifye K
) SU) = {m if y € Ch(B)\ K

for every f € Ag (cf. [3, 5, 8, 9]). For every 8 € S* and u € Pu,p(y), there exists
a u € Ap such that S(u) = S(B)u. By (3), we have |u(é(y))] = 1. We also have

1S(B)u/S(—u(d(y))llo = 1 Fquatlon (2) shows that
Eerconill el e Rk It
which implies that there exists a ¥’ € Ch(B) with S(«u( dWNY) = =S(B)(y")u(y'). Since
[u(y’)] =1 and u € Peyp g(y), we obtain u(y’) = 1, so by (3),
_|S(=ule@) W) S(—u(é(y) S(—u(é(y))) _
= [Pt 2 | < P L < [P e
Thus, by (2), |—u(¢(y))8~! — 1| = 2, which shows that
(5) u(¢(y)) = 4.
Since, by (2) and (3), [|S(B)uS(=8)7" = 1|, = [S(B)uS(=F) "'l + 1 = 2, there exists
a ys € Ch(B) such that S(=8)(ys) = —S(8)(ys)u(ys). Notice that |u(ys)| = 1 and
u € Pexpp(y), which implies that
(6) u(yg) = 1 and S(—P)(yp) = —S(B)(ys)-

Applying Lemma 5 for S(1)~! € B~! and equation (6) for 8 = 1, we obtain S(—1)(y) = —1
for every y € Ch(A). Thus, by (2), we have ||S(8) — 1|, = |8—1] and ||S(B) + 1|| , = |B+1]
for every 3 € S!. Since |S(8)] = 1 on Ch(B), we obtain S(3)(Ch(B)) = {8, 5} for every

B € S'. Define

K ={y € Ch(B) : S(i)(y) = t}.
Then K is a clopen subset of Ch(B) and the closures in Y of K and Ch(B)\ K are disjoint.
Let Fy be the closure in Y of K or Ch(B) \ K with y ¢ Fp. Applying Lemma 5 for
S(i)~' € B7!, Fy C Y and equation (6) for 8 = i, we obtain S(—i)(y) = —S5(2)(y) for every
y € Ch(B). Together with equations (2) and (3), this shows that ||S(8) — S(9)||., = |8 — 1|
and ||S(B8) + S(i)||l., = |8 + ¢|. Hence,

@ S(6)(w) = {g S ohB)\ K

for every 8 € S'. Given f € Ao, set Bo = —f(d()|S(f)(y)|”*. Then By € S'. By
Lemma 5, there exists a ug € Pexpp(y) such that

ox(uoS(f)™") = {S(f) ()"} and |uoS(f) 7' < |S(f)(y)|™" on Ch(B)\ Fo.



Applying (5) for 3 = [y, there exists a ug € Ag such that S(ug) = S(8)up and ue(d(y)) = Lo
This shows that, by (2),

S(Bo)uo

_ ||¥o _ o | »
’ S(f)y 1”00 T f ” F(6) 1, IS(A (W] + 1.
By (3), we have ||S(8o)uoS(f)~ I, = |S(f)(¥)|7}, that is
1SBo)uoS ()™ = 1, = IS(NWI™* + 1.

Hence there exists a yp € Ch(B) such that

(S(Bo)uS(f)~") (o) = —IS(H)(y)I™".
The hypotheses of uy and equation (7) imply that

(uoS(f) ") (wo) = S(f)(y)~! and S(Bo)(vo) = S(Bo)(v),
which shows (4).

We will show that there exists a real-algebra isomorphism T : A — B (cf. [3, 4, 9]). For
each f € A, there exist a complex number )y and an fy € Ap such that the imaginary part
of Ag is not zero, the real part of fo is positive and f = fo + Ao. Notice that fo € exp A.
Thus fo, A\g € Ag. Define a map 7 on A by

T(f) = S(fo) + S(ho).
Then, by (4), T is a real-algebra isomorphism such that

fop onK
(8) T(f) {f o¢p onCh(B)\ K

for every f € A and T = S on Ao.
Finally, we will construct a homeomorphism ® from Mp onto M4 (cf. [8, The proof of
Theorem 2.1]). By (8), we obtain T(G)(Mp) C {i, —i}. Define a subset K of Mg by

—

K ={ye Mg: T3y =i}

Then K is a clopen subset of Mg with Ch(B) N K = K. Let e = (T(i) 4+ 1)/(2i), then e is
an idempotent such that

9) 5 1 onk .
0 onMp\K
For y € Mg, let ®(y) be defined as

3()(f) = TN @)éw) + T W) — &)(y)

for every f € A. Then, by (8) and (9), the mapping ® : y — ®(y) is a homeomorphism
from Mp onto M,4. By the definition of ® and equation (9), we obtain the conclusion. [J

Here we prove Theorem 4, stated in the first section. Below we make use of subsets of
A~! defined as follows: Let k,l be positive integers and X a subset of a uniform algebra A.
Define a subset (X)F of A by

(X)F = {f € X : there exists an f' € X with f*(f)! = 1}.
Then (X)¥ is a subset of (A™!)F.



Proof of Theorem 4. Recall that S4, Sp are subsets of A, B that contain A™!, B~!
respectively and T : S4 — Sp is a surjection such that

(1) IT(H™T(9)" — all = IF"g" — all,
for all f, g € Sa. By a simple calculation, we obtain (S4)7 = (A™')™ and (Sg)™ = (B~1)7,
since S4, Sp contain A~!, B! respectively. We will show that T((A~!)™) = (B~!)™. Sup-
pose that v, is a complex number with (v,)" = a. For every g € (A™1)™, let ¢ € A~ with
g™(g')" = 1. Since, by (1),

IT(@"T (vag)" — alloe = l97 (vag)" — all, = llg7"a(g")" — all, =0,
we obtain

T(9)"T (vag )" = a.

This shows that T(9)™(va T (Vag'))™ = 1, that is T'(g) € (B~1)™. Together with the sur-
jectivity of T, similar arguments show the opposite inclusion. Consequently, T((A™1)™) =
(B~1)™. Furthermore, we have

riHm 1
IR 1] = T Teag) — el
0 o . T
— 7w ~ ol “—— -1
for every f € Sy and g € (A™!)™. Define a map T,, on ((A~! ={f™fe (A1)} by

T (f™) =T()™/T(1)™
for f™ e ((A- )m)m. Then, by (10), 7, is well-defined in the sense that T'(f)™ = T(g)™
for every f, g€ (A~H)m with f™ = g™, and T,,(1) = 1. Since T((A™H)™) = (B™H)™, we

n n?

have T,,(((A~H)™)™) = ((B~1)™)™. By (10), we also have

1T (™) Tn(g™) 7 = 1 = /7™ = 1,

for all f™, g™ € ((A™1)™)™. Notice that ((A~1)™)™, ((B~!)™)™ are subgroups that contain
exp A, exp B respectively. Proposition 7 shows that there exists a real-algebra isomorphism
T : A — B, aclopen subset K of Mg and a homeomorphism ® : Mg — M4 such that

= fo® onk
(11) T(f) = =

fo® on Mg\K
for every f € A and T(f™) = T (f™) for every f™ € ((A~1)™)™. By the definition of

n

T,, and equation (11), we have T(f)™ = (T(f)/T(1))™ for every f € (A~})™. By (10)
and (11), we also have

B I e I L I

i’ﬁ_l“ _
g oo

(T(g) /T T(g)™ T(Q)m

for every f € S and g € (A™)™. Since (B™!)™ contains exp B, we obtain

T()/TW))™g — 1o = IT(f)™8 — 1|0

for every f € S4 and all g € exp B. By Lemma 6, we obtain

(12) T(f)™ = (T(f)/TQ)™

for every f € S4.



Finally, we will show that T(f)d = (T(f)/T(1))% for every f € Sa, where d is the greatest
common divisor of m and n. By raising both sides of equation (12) to the n-th power, we

have T(f)™ = (T(f)/T(1))™" for every f € Sa. By (11), we also have

(13) IT(N)(T(9)/T(1)™ = Ulew = [[fg™™ = 1],

for every f € A and g € T7'((B~1)™). If we consider the map T, on ((A™")7)" = {f™:
f e (A2} defined as T, () = T(f)*/T(1)" for f™ € ((A~1)7)", similar arguments show
that there exists a real-algebra isomorphism 7" : A — B such that T'(f)* = (T(f)/TQ)"
for every f € S4 and

1T (£)(T(9)/T(1))™ = oo = | fg™™ ~ 1],
for every f € A and g € T~ ((B~1)7). Together with (13), this shows that

IT()(T(9)/T(1)™™ = 1o = I T (H(T(9)/T(1))™ = oo
for every f € Aand g € T-'((B~1)™ N (B~1)%). Since (B~!)7 and (B~')7, contain exp B,

we obtain _ _
IT(f)8 — oo = [1T"(f)g — llloo
for every f € A and all g € exp B. It follows from Lemma 6 that 7 = T" on A. Conse-

quently, T(f)* = (T'(f)/T(1))" for every f € S4, which implies that T(f)¢ = (T(f)/T(1))?
for every f € Sa. O
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