Title
Asymptotics of Green functions and Martin boundaries for elliptic operators with periodic coefficients: joint work with Minoru Murata (Potential Theory and its related Fields)

Author(s)
Tsuchida, Tetsuo

Citation
数理解析研究所講究録 (2009), 1669: 157-162

Issue Date
2009-11

URL
http://hdl.handle.net/2433/141122

Type
Departmental Bulletin Paper

Textversion
publisher

Kyoto University
Asymptotics of Green functions and Martin boundaries for elliptic operators with periodic coefficients

(joint work with Minoru Murata)

Tetsuo Tsuchida (Meijo University)

1 Results

The main purpose of this paper is to establish asymptotics at infinity of Green functions for elliptic equations with periodic coefficients on \mathbb{R}^d and to determine the Martin boundary for the elliptic operators.

Let

$$L = -\sum_{j,k=1}^{d} \frac{\partial}{\partial x_k} (a_{jk}(x) \frac{\partial}{\partial x_j}) - \sum_{j=1}^{d} b_j(x) \frac{\partial}{\partial x_j} + c(x)$$

be a second-order elliptic operator on \mathbb{R}^d with periodic coefficients, where $d \geq 2$, $\nabla = (\partial/\partial x_1, \cdots, \partial/\partial x_d)$, $a(x) = (a_{jk}(x))_{j,k=1}^{d}$, and $b(x) = (b_j(x))_{j=1}^{d}$. We assume that the coefficients are \mathbb{Z}^d-periodic, real-valued smooth functions on \mathbb{R}^d. We assume that a is a symmetric matrix-valued function satisfying for some $\alpha > 0$

$$\alpha|\xi|^2 \leq \sum_{j,k=1}^{d} a_{jk}(x) \xi_j \xi_k \leq \alpha^{-1}|\xi|^2, \quad x, \xi \in \mathbb{R}^d.$$

For $\zeta \in \mathbb{C}^d$, define an operator $L(\zeta)$ on the d-dimensional torus by

$$L(\zeta) = e^{-i\zeta \cdot x} L e^{i\zeta \cdot x}$$

$$= -(\nabla + i\zeta) \cdot a(x)(\nabla + i\zeta) - b(x) \cdot (\nabla + i\zeta) + c(x).$$

We regard $L(\zeta)$ as a closed operator in $L^2(T^d)$ with domain $H^2(T^d)$.

By the Krein-Rutman theorem, for each $\beta \in \mathbb{R}^d$, $L(i\beta) = e^{\beta \cdot x} L e^{-\beta \cdot x}$ has the principal eigenvalue $E(\beta)$, i.e., $L(i\beta)$ has an eigenvalue $E(\beta) \in \mathbb{R}$ of multiplicity one such that the corresponding eigenspace is generated by a positive function $u_\beta \in H^2(T^d)$; $E(\beta)$ is also an eigenvalue of $L(i\beta)^*$ of multiplicity one such that the eigenspace is generated by a positive function $v_\beta \in H^2(T^d)$.

Put

$$C_L = \{ u \in H^1_{loc}(\mathbb{R}^d); Lu = 0 \text{ and } u > 0 \}. $$

When a positive Green function for L on \mathbb{R}^d exists, L is called subcritical; in this case $C_L \neq \emptyset$. When a positive Green function for L on \mathbb{R}^d dose not exist but $C_L \neq \emptyset$, L is called critical. Let λ_c be the generalized principal eigenvalue of L on \mathbb{R}^d.

$$\lambda_c := \sup \{ \lambda \in \mathbb{R}; L - \lambda \text{ is subcritical} \}. $$

Then it is known that $-\infty < \lambda_c < \infty$, $L - \lambda$ is subcritical for $\lambda < \lambda_c$, and $L - \lambda_c$ is subcritical or critical. The formal adjoint operator L^* of L is subcritical (or critical) if and only if L is subcritical (or critical), and the generalized principal eigenvalue of L and L^* coincide.

For $\lambda \in \mathbb{R}$, put

$$\Gamma_\lambda := \{ \beta \in \mathbb{R}^d; \exists \psi(x) = e^{-\beta \cdot x} u(x) \in C_L-\lambda \text{ where } u \text{ is periodic} \}$$

$$K_\lambda := \{ \beta \in \mathbb{R}^d; \exists \psi = e^{-\beta \cdot x} u(x) > 0 \text{ s.t. } (L-\lambda)\psi \geq 0 \text{ and } u \text{ is periodic} \}. $$
Define K^{*}_{λ} and Γ^{*}_{λ} for $L^{*} - \lambda$ analogously to K_{λ} and Γ_{λ} for $L - \lambda$. Agmon, Pinsky and Kuchment-Pinchover proved the following theorem.

Theorem AP ([A], [P], [KP])

(i) If $\lambda < \lambda_{c}$, then K_{λ} is a d-dimensional strictly convex compact set with smooth boundary $\Gamma_{\lambda} = \partial K_{\lambda}$.

(ii) If $\lambda = \lambda_{c}$, then $\Gamma_{\lambda} = K_{\lambda} = \{\beta_{0}\}$ for some $\beta_{0} \in \mathbb{R}^{d}$.

(iii) If $\lambda > \lambda_{c}$, then $\Gamma_{\lambda} = K_{\lambda} = \emptyset$.

(iv) $K^{*}_{\lambda} = -K_{\lambda}$, and $\beta_{0} = 0$ if $L^{*} = L$

(v) $E(\beta)$ is an algebraically simple eigenvalue and it is a real analytic. $\text{Hess } E(\beta)$ is neg. def. for $\beta \in \mathbb{R}^{d}$. The equality $\lambda_{c} = \sup_{\beta \in \mathbb{R}^{d}} E(\beta)$ holds, and the sup is attained uniquely at β_{0} in (ii). $\nabla E(\beta) = 0$ if and only if $\beta = \beta_{0}$.

(vi) $\Gamma_{\lambda} = \{\beta \in \mathbb{R}^{d}; E(\beta) = \lambda\}$ and $K_{\lambda} = \{\beta \in \mathbb{R}^{d}; E(\beta) \geq \lambda\}$.

Let $B_{R} = \{|x| < R\}$. Let L_{R} be the Dirichlet realization of L in $L^{2}(B_{R})$: $D(L_{R}) = H_{0}^{1}(B_{R}) \cap H^{2}(B_{R})$. If L is subcritical, then there is a unique solution U_{R}^{1}, and its integral kernel (the Green function) $G_{R}(x, y) > 0$, and the limit $G(x, y) = \lim_{R \to \infty} G_{R}(x, y)$ which is called the minimal Green function of L on \mathbb{R}^{d}.

First, suppose that $\lambda_{c} > 0$. Then L is subcritical, and for any $\tau \in S^{d-1}$, take $\beta_{s} \in \Gamma_{0}$ s.t. $\sup_{\beta \in \Gamma_{0}} \beta \cdot s = \beta_{s} \cdot s$.

Theorem 1 Suppose that $\lambda_{c} > 0$. Then the minimal Green function G of L admits the following asymptotics as $|x - y| \to \infty$:

$$G(x, y) = \frac{1}{|\nabla E(\beta_{s})| \sqrt{C(\beta_{s})}} \frac{e^{-(x-y) \beta_{s}} u_{\beta_{s}}(x)v_{\beta_{s}}(y)}{(u_{\beta_{s}}, v_{\beta_{s}})_{L^{2}(T^{d})}} \times (1 + O(|x-y|^{-1})), $$

where $s = (x-y)/(x-y)$, and $C(\beta_{s})$ is the Gauss-Kronecker curvature of Γ_{0} at β_{s}.

Schroeder [S] gave a lower and upper bounds.

Let us determine explicitly the Martin compactification of \mathbb{R}^{d} with respect to L in the case $\lambda_{c} > 0$. Fix a reference point x_{0} in \mathbb{R}^{d}. Then the following proposition is a consequence of Theorem 1.

Proposition 2 Suppose that $\lambda_{c} > 0$. Then for any sequence $\{y_{n}\}$ in \mathbb{R}^{d} such that $|y_{n}| \to \infty$ and $y_{n}/|y_{n}| \to \nu$ as $n \to \infty$,

$$\lim_{n \to \infty} G(x, y_{n}) = e^{-(x-x_{0}) \beta_{\nu}} \frac{u_{\beta_{\nu}}(x)}{u_{\beta_{\nu}}(x_{0})} =: K(x, \nu).$$

$\psi \in C_{L}$ is minimal (If $\varphi \in C_{L}$ satisfies $\varphi(x) \leq \psi(x)$, then $\varphi(x) = c\psi(x)$) if and only if $\psi = e^{\beta_{\nu}u(x)} \in C_{L}$ where u is periodic (see [A]). Thus $\Gamma_{0} \simeq$ the minimal Martin boundary. On the other hand $K(x, \nu) \in C_{L}$, $K(x_{0}, \nu) = 1$, $K(x, \nu) \neq K(x, \nu')$ if $\nu \neq \nu'$. $K(x, \nu)$ is minimal. Hence we can determine the Martin boundary and Martin compactification of \mathbb{R}^{d} for L as follows.
Theorem 3 Suppose that $\lambda_c > 0$. Then the Martin boundary and the minimal Martin boundary of \mathbb{R}^d for L are both equal to the sphere S^{d-1} at infinity which is homeomorphic to Γ_0; the Martin kernel at $\nu \in S^{d-1}$ is equal to $K(\cdot, \nu)$; and the Martin compactification of \mathbb{R}^d for L is equal to

$$\{x \in \mathbb{R}^d; |x| < 1\} \cup [1, \infty] \times S^{d-1}$$

equipped with the standard topology.

Next, suppose that $\lambda_c = E(\beta_0) = 0$. Then Pinsky [P] proved that L is critical if $d \leq 2$, and subcritical if $d \geq 3$.

Theorem 4 Let $d \geq 3$. Suppose $\lambda_c = 0$. Put $H = -\text{Hess } E(\beta_0)$. Then the minimal Green function G of L admits the following asymptotics as $|x - y| \to \infty$:

$$G(x, y) = \frac{\Gamma(d-2)}{2\pi^{d/2}(\det H)^{1/2}} \frac{e^{-(x-y)\beta_0}}{|H^{-1/2}(x-y)|^{d-2}} \frac{u_{\beta_0}(x)v_{\beta_0}(y)}{(u_{\beta_0}, v_{\beta_0})} \times (1 + O(|x - y|^{-1})).$$

We determine directly from Theorem 4 the Martin boundary. These results, however, are also simple consequences of the known result that C_L is one dimensional in this case.

Theorem 5 Let $d \geq 3$. Suppose that $\lambda_c = E(\beta_0) = 0$. Then for any sequence $\{y_n\}$ in \mathbb{R}^d with $|y_n| \to \infty$ as $n \to \infty$,

$$\lim_{n \to \infty} \frac{G(x, y_n)}{G(x_0, y_n)} = e^{-(x-x_0)\beta_0} \frac{u_{\beta_0}(x)}{u_{\beta_0}(x_0)}, \quad x \in \mathbb{R}^d.$$

The Martin boundary and the minimal Martin boundary are both equal to one point ∞ at infinity; the Martin kernel at ∞ is equal to the right hand side; and the Martin compactification of \mathbb{R}^d for L is equal to the one point compactification $\mathbb{R}^d \cup \{\infty\}$ of \mathbb{R}^d.

2 Proof of Theorem 1

Assume $\lambda_c = E(\beta_0) > 0$. Put $L_0 = e^{\beta_0 x}Le^{-\beta_0 x}$. Then the principal eigenvalue $E_0(0)$ of $\beta = 0$ of L_0 is positive, and the minimal Green function $G_0(x, y)$ of L_0 satisfies $G_0(x, y) = e^{\beta_0 x}G(x, y)e^{-\beta_0 y}$. Regard L as a closed operator in $L^2(\mathbb{R}^d)$ with domain $H^2(\mathbb{R}^d)$. We have only to show the following.

Theorem 6 Assume $E(0) > 0$. Then there exists the resolvent L^{-1}; and the integral kernel of L^{-1} equals the minimal Green function and admits the same asymptotics as in Theorem 1.

Let

$$\mathcal{H} = L^2((-\pi, \pi)^d, (2\pi)^{-d} d\zeta; L^2(\mathbb{T}^d)).$$

Define an operator $\mathcal{F} : L^2(\mathbb{R}^d) \to \mathcal{H}$ by

$$(\mathcal{F}f)(\zeta, x) = \sum_{l \in \mathbb{Z}^d} f(x-l)e^{-i(x-l)\zeta}, \quad \zeta \in (-\pi, \pi)^d, \quad x \in \mathbb{T}^d$$

(Bloch transformation). Then \mathcal{F} is a unitary operator, and an isometric isomorphism from $H^1(\mathbb{R}^d)$ to $L^2((-\pi, \pi)^d, (2\pi)^{-d} d\zeta; H^1(\mathbb{T}^d))$. The adjoint $\mathcal{F}^* \mathcal{F}$ is given by, for $g \in \mathcal{H}$,

$$(\mathcal{F}^*g)(x-l) = (2\pi)^{-d} \int_{(-\pi, \pi)^d} e^{i(x-l)\zeta} g(\zeta, x) d\zeta, \quad x \in \mathbb{T}^d, \quad l \in \mathbb{Z}^d.$$
We have
\[\mathcal{F}(\nabla f) = (\nabla_x + i(\mathcal{F}f \right) \Rightarrow \mathcal{F}L = L(\xi)\mathcal{F}. \]

Proposition 7 Let \(E(0) > 0 \). Then there exists the resolvent \(L^{-1}(\xi) \), \(\xi \in \mathbb{R}^d \); and \(L^{-1} = \mathcal{F}^*L(\xi)^{-1}\mathcal{F} \), i.e., for \(x \in \mathbb{T}^d \), \(l \in \mathbb{Z}^d \), and \(f \in L^2(\mathbb{R}^d) \),
\[L^{-1}f(x-l) = (2\pi)^{-d}\int_{(-\pi,\pi)^d} F(\xi)d\xi, \]
where
\[F(\xi) = e^{i(x_l-\xi)l}L(\xi)^{-1}\left(\sum_{m \in \mathbb{Z}^d} f(\cdot-m)e^{-i(\cdot-m)\xi} \right). \]

Moreover, \(F(\xi) \) is \(2\pi \mathbb{Z}^d \)-periodic.

\(\{L(\xi)\}_{\xi \in \mathbb{C}^d} \) is an analytic family of type (B). By the analytic perturbation theory, \(E(\beta) \) has an analytic continuation \(\Lambda(\xi) \), \(\xi = \alpha + i\beta \), near \(\xi = i\beta_s \); note that \(E(\beta) = \Lambda(i\beta) \). Moreover \(\Lambda(\xi) \) is also an algebraically simple eigenvalue of \(L(\xi) \) with eigenfunction \(u_\xi: \)
\[(L(\xi) - \Lambda(\xi))u_\xi = 0. \]

Put \(\eta_s := \beta_s/|\beta_s| \), and let \(\{e_{s,1}, \ldots, e_{s,d-1}, s\} \) be an orthonormal basis of \(\mathbb{R}^d \). Put \(e_s := (e_{s,1}, \ldots, e_{s,d-1}) \). We introduce new coordinates \((w, z)\) near \(i\beta_s \) such that \(\zeta = w\eta_s + z \cdot e_s = w\eta_s + \sum_{j=1}^{d-1} z_j e_{s,j}, w \in \mathbb{C}, \ z = (z_1, \ldots, z_{d-1}) \in \mathbb{R}^{d-1} \).

Proposition 8 For \(z \in \mathbb{R}^{d-1} \) with \(|z| \ll 1 \), the resolvent \(L(w\eta_s + z \cdot e_s)^{-1} \) has a simple pole \(w_s(z) \) as a function of \(w \), and has the following asymptotics at the pole
\[L(w\eta_s + z \cdot e_s)^{-1} = \frac{A_{s,z}}{w - w_s(z)} + O(1). \]
Here \(A_{s,z} \) is a rank one operator-valued function with
\[A_{s,z} = \frac{1}{\eta_s \cdot \nabla \Lambda(\zeta(z))} \left(\frac{1}{(u_{\zeta(z)}, v_{\zeta(z)})} \right), \quad \zeta(z) = w_s(z)\eta_s + z \cdot e_s \]
and \(w_s(z) \) satisfies \(w_s(0) = i|\beta_s|, \) for \(1 \leq j, k \leq d-1 \),
\[\frac{\partial w_s}{\partial z_j}(0) = 0, \quad \frac{\partial^2 w_s}{\partial z_j \partial z_k}(0) = \frac{i e_{s,j} \cdot \text{Hess} E(\beta_s)e_{s,k}}{\eta_s \cdot \nabla E(\beta_s)}, \]
\[\text{Hess Im } w_s(0) = \left(\frac{\partial^2 \text{Im } w_s}{\partial z_j \partial z_k}(0) \right)_{1 \leq j, k \leq d-1} : \text{ positive definite.} \]
Here the function \(\zeta(z) = w_s(z)\eta_s + z \cdot e_s \) is the zeros of \(\Lambda(\zeta) \).

Proof. \(\Lambda(\xi) \) is an algebraically simple eigenvalue, so
\[(L(\xi) - \lambda)^{-1} = \frac{P(\xi)}{\Lambda(\xi) - \lambda} + O(1), \quad P(\xi) = \left(\frac{1}{(u_{\zeta}, v_{\zeta})} \right). \]
Putting $\lambda = 0$, we have
\[L(\zeta)^{-1} = \frac{P(\zeta)}{\Lambda(\zeta)} + O(1). \]
Noting that
\[\Lambda(\zeta) = \Lambda(w\eta_s + z \cdot e_s) \]
\[= (w - w_s(z))\eta_s \cdot \nabla \Lambda(w_s(z)\eta_s + z \cdot e_s) + O((w - w_s(z))^2), \]
we have the proposition. \square

Let $P : t\eta_s + z \cdot e_s \rightarrow z$ be a projection, and $Q = P(-\pi, \pi)^d$. We have $(-\pi, \pi)^d = \{t\eta_s + z \cdot e_s; z \in Q, \exists t_1(z) < t < \exists t_2(z)\}$. We change the integral variables from ζ to $(t, z) \in \mathbb{R} \times \mathbb{R}^{d-1}$ such that $\zeta = t\eta_s + z \cdot e_s$ to obtain that
\[(L^{-1}f)(x-l) = (2\pi)^{-d} \int_{(-\pi,\pi)^d} F(\zeta) d\zeta \]
\[= \frac{|D_s|}{(2\pi)^d} \int_Q dz \int_{t_1(z)}^{t_2(z)} dt F(t\eta_s + z \cdot e_s), \]
where $D_s = \det(\eta_s, e_{s,1}, \cdots, e_{s,d-1})$, and
\[F(\zeta) = e^{i(x-l) \cdot \zeta} L(\zeta)^{-1} \left(\sum_{m \in \mathbb{Z}^d} f(\cdot - m) e^{-i(\cdot - m) \cdot \zeta} \right)(x). \]
For $0 < \delta \ll 1$, put
\[U_\delta = \{z \in \mathbb{R}^{d-1}; \text{Im } w_s(z) < |\beta_s| + \delta\}. \]
For $z \in Q$ let $C(z) = C_1(z) \cup C_2(z)$ be a closed contour in \mathbb{C}:
\[C_1(z) = \{t : t_1(z) \rightarrow t_2(z)\}, \]
\[C_2(z) = \{t_2(z) + it; t : 0 \rightarrow |\beta_s| + h\} \]
\[\cup \{t + i(|\beta_s| + h); t : t_2(z) \rightarrow t_1(z)\} \]
\[\cup \{t_1(z) + it; t : |\beta_s| + h \rightarrow 0\} \]
where $h = 2\delta$ if $z \in U_\delta$, $h = \delta/2$ if $z \in Q \setminus U_\delta$. For $z \in U_\delta$ the integrand has only a simple pole $w_s(z)$ near and inside $C(z)$, and for $z \in Q \setminus U_\delta$ the integrand is holomorphic near and inside $C(z)$. Hence by the residue theorem we have
\[(L^{-1}f)(x-l) = I_1 f(x-l) + I_2 f(x-l) \]
with $\zeta(z) = w_s(z)\eta_s + z \cdot e_s$, where
\[I_1 f(x-l) = \frac{2\pi i |D_s|}{(2\pi)^d} \int_{U_\delta} dz \exp[i(x-l) \cdot \zeta(z)] \]
\[\times \left(\sum_m f(\cdot - m) \exp[-i(\cdot - m) \cdot \zeta(z)], v_{\zeta(z)} \right) u_{\zeta(z)}(x) \]
\[\eta_s \cdot \nabla \Lambda(\zeta(z))(u_{\zeta(z)}, v_{\zeta(z)}) \]
\[I_2 f(x-l) = -\frac{|D_s|}{(2\pi)^d} \int_Q dz \int_{C_2(z)} dw F(w\eta_s + z \cdot e_s). \]
The integral kernel $I_1(x, y)$, $x, y \in \mathbb{R}^d$, of I_1 is equal to

$$I_1(x, y) = \frac{|D_s|}{(2\pi)^{d-1}} \int_{U_z} dz \exp[i(x - y) \cdot (w_s(z)\eta_s + z \cdot e_s)]a(z; x, y),$$

$$a(z; x, y) := \frac{1}{\eta_s \cdot \nabla \Lambda(z)} \frac{u_{\zeta(z)}(x), \overline{v_{\zeta(z)}(y)}}{(u_{\zeta(z)}, v_{\zeta(z)})}.$$

Take $s = (x - y)/|x - y|$. We regard $(x - y) \cdot \eta_s \gg 1$ as a large parameter, and note that $(x - y) \cdot (z \cdot e_s) = 0$. We have shown that the critical point of $w_s(z)$ is $z = 0$. By the saddle point method

$$I_1(x, y) = \frac{-|D_s|}{(2\pi)^{d-1}} \left(\frac{2\pi}{(x - y) \cdot \eta_s} \right)^{(d-1)/2} e^{-(x-y) \cdot \beta_s} \left(\frac{1}{\eta_s \cdot \nabla E(\beta_s)} \frac{u_{\beta_s}(x), \overline{v_{\beta_s}(y)}}{(u_{\beta_s}, v_{\beta_s})_{L^2(T^d)}} + O(|x - y|^{-1}) \right).$$

This leads to the main term of the asymptotics.

We can show that the integral kernel of I_2 satisfies

$$|I_2(x, y)| \leq Ce^{-(x-y) \cdot \beta_s} e^{-c|x-y|},$$

using the $2\pi \mathbb{Z}^d$-periodicity of $F(\zeta)$. These are an outline of the proof of Theorem 1. \(\square \)

Remark. We can get the following asymptotic expansion. Assume that $\lambda_c > 0$. There exist bounded functions $g_j(x, y)$, $j = 1, 2, \ldots$, s.t. for any natural number n

$$G(x, y) = \frac{1}{|\nabla E(\beta_s)|} \left(\frac{2\pi}{(x - y) \cdot \eta_s} \right)^{(d-1)/2} \frac{e^{-(x-y) \cdot \beta_s} u_{\beta_s}(x), \overline{v_{\beta_s}(y)}}{(u_{\beta_s}, v_{\beta_s})_{L^2(T^d)}} \times \left(1 + \sum_{j=1}^{n} \frac{g_j(x, y)}{|x - y|^j} + O(|x - y|^{-n-1}) \right).$$

References

