Asymptotics of Green functions and Martin boundaries for elliptic operators with periodic coefficients

(joint work with Minoru Murata)

Tetsuo Tsuchida (Meijo University)

1 Results

The main purpose of this paper is to establish asymptotics at infinity of Green functions for elliptic equations with periodic coefficients on \mathbf{R}^d and to determin the Martin boundary for the elliptic operators.

Let

$$L = -\sum_{j,k=1}^{d} \frac{\partial}{\partial x_k} (a_{jk}(x) \frac{\partial}{\partial x_j}) - \sum_{j=1}^{d} b_j(x) \frac{\partial}{\partial x_j} + c(x)$$
$$= -\nabla \cdot a(x) \nabla - b(x) \cdot \nabla + c(x),$$

be a second-order elliptic operator on \mathbf{R}^d with periodic coefficients, where $d \geq 2$, $\nabla = (\partial/\partial x_1, \dots, \partial/\partial x_d)$, $a(x) = (a_{jk}(x))_{j,k=1}^d$, and $b(x) = (b_j(x))_{j=1}^d$. We assume that the coefficients are \mathbf{Z}^d -periodic, real-valued smooth functions on \mathbf{R}^d . We assume that a is a symmetric matrix-valued function satisfying for some $\alpha > 0$

$$\alpha |\xi|^2 \le \sum_{j,k=1}^d a_{jk}(x)\xi_j\xi_k \le \alpha^{-1}|\xi|^2, \quad x, \xi \in \mathbf{R}^d.$$

For $\zeta \in \mathbb{C}^d$, define an operator $L(\zeta)$ on the d-dimensional torus by

$$L(\zeta) = e^{-i\zeta \cdot x} L e^{i\zeta \cdot x}$$

= $-(\nabla + i\zeta) \cdot a(x)(\nabla + i\zeta) - b(x) \cdot (\nabla + i\zeta) + c(x).$

We regard $L(\zeta)$ as a closed operator in $L^2(\mathbf{T}^d)$ with domain $H^2(\mathbf{T}^d)$.

By the Krein-Rutman theorem, for each $\beta \in \mathbf{R}^d$, $L(i\beta) = e^{\beta \cdot x} L e^{-\beta \cdot x}$ has the principal eigenvalue $E(\beta)$, i.e. $L(i\beta)$ has an eigenvalue $E(\beta) \in \mathbf{R}$ of multiplicity one such that the corresponding eigenspace is generated by a positive function $u_{\beta} \in H^2(\mathbf{T}^d)$; $E(\beta)$ is also an eigenvalue of $L(i\beta)^*$ of multiplicity one such that the eigenspace is generated by a positive function $v_{\beta} \in H^2(\mathbf{T}^d)$.

Put

$$C_L = \{ u \in H^1_{loc}(\mathbf{R}^d); Lu = 0 \text{ and } u > 0 \}.$$

When a positive Green function for L on \mathbf{R}^d exists, L is called subcritical; in this case $C_L \neq \emptyset$. When a positive Green function for L on \mathbf{R}^d dose not exist but $C_L \neq \emptyset$, L is called critical. Let λ_c be the generalized principal eigenvalue of L on \mathbf{R}^d :

$$\lambda_c := \sup \{ \lambda \in \mathbf{R}; L - \lambda \text{ is subcritical} \}.$$

Then it is known that $-\infty < \lambda_c < \infty$, $L - \lambda$ is subcritical for $\lambda < \lambda_c$, and $L - \lambda_c$ is subcritical or critical. The formal adjoint operator L^* of L is subcritical (or critical) if and only if L is subcritical (or critical), and the generalized principal eigenvalue of L and L^* coincide.

For $\lambda \in \mathbf{R}$, put

$$\Gamma_{\lambda} := \{ \beta \in \mathbf{R}^d; \exists \psi(x) = e^{-\beta \cdot x} u(x) \in C_{L-\lambda} \text{ where } u \text{ is periodic} \}$$

$$K_{\lambda} := \{ \beta \in \mathbf{R}^d; \exists \psi = e^{-\beta \cdot x} u(x) > 0 \text{ s.t. } (L-\lambda)\psi \ge 0 \text{ and } u \text{ is periodic} \}.$$

Define K_{λ}^* and Γ_{λ}^* for $L^* - \lambda$ analogously to K_{λ} and Γ_{λ} for $L - \lambda$. Agmon, Pinsky and Kuchment-Pinchover proved the following theorem.

Theorem AP([A], [P], [KP])

- (i) If $\lambda < \lambda_c$, then K_{λ} is a d-dimensional strictry convex compact set with smooth boundary $\Gamma_{\lambda} = \partial K_{\lambda}$.
- (ii) If $\lambda = \lambda_c$, then $\Gamma_{\lambda} = K_{\lambda} = \{\beta_0\}$ for some $\beta_0 \in \mathbf{R}^d$.
- (iii) If $\lambda > \lambda_c$, then $\Gamma_{\lambda} = K_{\lambda} = \emptyset$.
- (iv) $K_{\lambda}^* = -K_{\lambda}$, and $\beta_0 = 0$ if $L^* = L$
- (v) $E(\beta)$ is an algebraically simple eigenvalue and it is a real analytic. Hess $E(\beta)$ is neg. def. for $\beta \in \mathbf{R}^d$. The equality $\lambda_c = \sup_{\beta \in \mathbf{R}^d} E(\beta)$ holds, and the sup is attained uniquely at β_0 in (ii). $\nabla E(\beta) = 0$ if and only if $\beta = \beta_0$.
- (vi) $\Gamma_{\lambda} = \{ \beta \in \mathbf{R}^d; E(\beta) = \lambda \}$ and $K_{\lambda} = \{ \beta \in \mathbf{R}^d; E(\beta) \ge \lambda \}.$

Let $B_R = \{|x| < R\}$. Let L_R be the Dirichlet realization of L in $L^2(B_R)$: $D(L_R) = H_0^1(B_R) \cap H^2(B_R)$. If L is subcritical, then \exists the resolvent L_R^{-1} , and its integral kernel (the Green function) $G_R(x,y) > 0$, and \exists the limit $G(x,y) = \lim_{R \to \infty} G_R(x,y)$ which is called the minimal Green function of L on \mathbb{R}^d .

First, suppose that $\lambda_c > 0$. Then L is subcritical, and for any $s \in \mathbf{S}^{d-1}$, take $\beta_s \in \Gamma_0$ s.t. $\sup_{\beta \in \Gamma_0} \beta \cdot s = \beta_s \cdot s$.

Theorem 1 Suppose that $\lambda_c > 0$. Then the minimal Green function G of L admits the following asymptotics as $|x - y| \to \infty$:

$$G(x,y) = \frac{1}{|\nabla E(\beta_s)| \sqrt{C(\beta_s)}} \frac{e^{-(x-y)\cdot\beta_s}}{(2\pi|x-y|)^{(d-1)/2}} \frac{u_{\beta_s}(x)v_{\beta_s}(y)}{(u_{\beta_s},v_{\beta_s})_{L^2(\mathbf{T}^d)}} \times (1 + O(|x-y|^{-1})),$$

where s = (x - y)/|x - y|, and $C(\beta_s)$ is the Gauss-Kronecker curvature of Γ_0 at β_s .

Schroeder [S] gave a lower and upper bounds.

Let us determine explicitly the Martin compactification of \mathbf{R}^d with respect to L in the case $\lambda_c > 0$. Fix a reference point x_0 in \mathbf{R}^d . Then the following proposition is a consequence of Theorem 1.

Proposition 2 Suppose that $\lambda_c > 0$. Then for any sequence $\{y_n\}$ in \mathbb{R}^d such that $|y_n| \to \infty$ and $|y_n| \to \nu$ as $|y_n| \to \infty$,

$$\lim_{n \to \infty} \frac{G(x, y_n)}{G(x_0, y_n)} = e^{-(x - x_0) \cdot \beta_{-\nu}} \frac{u_{\beta_{-\nu}}(x)}{u_{\beta_{-\nu}}(x_0)} =: K(x, \nu).$$

 $\psi \in C_L$ is minimal (If $\varphi \in C_L$ satisfies $\varphi(x) \leq \psi(x)$, then $\varphi(x) = c\psi(x)$) if and only if $\psi = e^{\beta x}u(x) \in C_L$ where u is periodic (see [A]). Thus $\Gamma_0 \simeq$ the minimal Martin boundary. On the other hand $K(x,\nu) \in C_L$, $K(x_0,\nu) = 1$, $K(x,\nu) \neq K(x,\nu')$ if $\nu \neq \nu'$. $K(x,\nu)$ is minimal. Hence we can determine the Martin boundary and Martin compactification of \mathbf{R}^d for L as follows.

Theorem 3 Suppose that $\lambda_c > 0$. Then the Martin boundary and the minimal Martin boundary of \mathbf{R}^d for L are both equal to the sphere \mathbf{S}^{d-1} at infinity which is homeomorphic to Γ_0 ; the Martin kernel at $\nu \in \mathbf{S}^{d-1}$ is equal to $K(\cdot, \nu)$; and the Martin compactification of \mathbf{R}^d for L is equal to

$${x \in \mathbf{R}^d; |x| < 1} \cup [1, \infty] \times \mathbf{S}^{d-1}$$

equipped with the standard topology.

Next, suppose that $\lambda_c = E(\beta_0) = 0$. Then Pinsky [P] proved that L is critical if $d \leq 2$, and subcritical if $d \geq 3$.

Theorem 4 Let $d \geq 3$. Suppose $\lambda_c = 0$. Put $H = -\text{Hess } E(\beta_0)$. Then the minimal Green function G of L admits the following asymptotics as $|x - y| \to \infty$:

$$G(x,y) = \frac{\Gamma(\frac{d-2}{2})}{2\pi^{d/2}(\det H)^{1/2}} \frac{e^{-(x-y)\cdot\beta_0}}{|H^{-1/2}(x-y)|^{d-2}} \frac{u_{\beta_0}(x)v_{\beta_0}(y)}{(u_{\beta_0},v_{\beta_0})} \times (1 + O(|x-y|^{-1})).$$

We determine directly from Theorem 4 the Martin boundary. These results, however, are also simple consequences of the known result that C_L is one dimensional in this case.

Theorem 5 Let $d \geq 3$. Suppose that $\lambda_c = E(\beta_0) = 0$. Then for any sequence $\{y_n\}$ in \mathbf{R}^d with $|y_n| \to \infty$ as $n \to \infty$,

$$\lim_{n \to \infty} \frac{G(x, y_n)}{G(x_0, y_n)} = e^{-(x - x_0) \cdot \beta_0} \frac{u_{\beta_0}(x)}{u_{\beta_0}(x_0)}, \quad x \in \mathbf{R}^d.$$

The Martin boundary and the minimal Martin boundary are both equal to one point ∞ at infinity; the Martin kernel at ∞ is equal to the right hand side; and the Martin compactification of \mathbf{R}^d for L is equal to the one point compactification $\mathbf{R}^d \cup \{\infty\}$ of \mathbf{R}^d .

2 Proof of Theorem 1

Assume $\lambda_c = E(\beta_0) > 0$. Put $L_0 = e^{\beta_0 \cdot x} L e^{-\beta_0 \cdot x}$. Then the principal eigenvalue $E_0(0)$ of $\beta = 0$ of L_0 is positive, and the minimal Green function $G_0(x,y)$ of L_0 satisfies $G_0(x,y) = e^{\beta_0 \cdot x} G(x,y) e^{-\beta_0 \cdot y}$. Regard L as a closed operator in $L^2(\mathbf{R}^d)$ with domain $H^2(\mathbf{R}^d)$. We have only to show the following.

Theorem 6 Assume E(0) > 0. Then there exists the resolvent L^{-1} ; and the integral kernel of L^{-1} equals the minimal Green function and admits the same asymptotics as in Theorem 1.

Let

$$\mathcal{H} = L^2((-\pi, \pi)^d, (2\pi)^{-d}d\zeta; L^2(\mathbf{T}^d)).$$

Define an operator $\mathcal{F}: L^2(\mathbf{R}^d) \to \mathcal{H}$ by

$$(\mathcal{F}f)(\zeta, x) = \sum_{l \in \mathbf{Z}^d} f(x - l)e^{-i(x-l)\cdot\zeta}, \quad \zeta \in (-\pi, \pi)^d, \quad x \in \mathbf{T}^d$$

(Bloch transformation). Then \mathcal{F} is a unitary operator, and an isometric isomorphism from $H^1(\mathbf{R}^d)$ to $L^2((-\pi,\pi)^d,(2\pi)^{-d}d\zeta;H^1(\mathbf{T}^d))$. The adjoint \mathcal{F}^* is given by, for $g\in\mathcal{H}$,

$$(\mathcal{F}^*g)(x-l) = (2\pi)^{-d} \int_{(-\pi,\pi)^d} e^{i(x-l)\cdot\zeta} g(\zeta,x) \, d\zeta, \quad x \in \mathbf{T}^d, \ l \in \mathbf{Z}^d.$$

We have

$$\begin{cases}
\mathcal{F}(\nabla f) = (\nabla_x + i\zeta)\mathcal{F}f \\
\mathcal{F}(af) = a\mathcal{F}f \text{ if } a : \text{periodic}
\end{cases} \Rightarrow \mathcal{F}L = L(\zeta)\mathcal{F}.$$

Proposition 7 Let E(0) > 0. Then there exists the resolvent $L^{-1}(\zeta)$, $\zeta \in \mathbf{R}^d$; and $L^{-1} = \mathcal{F}^*L(\zeta)^{-1}\mathcal{F}$, i.e., for $x \in \mathbf{T}^d$, $l \in \mathbf{Z}^d$, and $f \in L^2(\mathbf{R}^d)$,

$$L^{-1}f(x-l) = (2\pi)^{-d} \int_{(-\pi,\pi)^d} F(\zeta) d\zeta,$$

where

$$F(\zeta) = e^{i(x-l)\cdot\zeta} L(\zeta)^{-1} \left(\sum_{m \in \mathbf{Z}^d} f(\cdot - m) e^{-i(\cdot - m)\cdot\zeta}\right)(x).$$

Moreover, $F(\zeta)$ is $2\pi \mathbf{Z}^d$ -periodic.

 $\{L(\zeta)\}_{\zeta\in\mathbb{C}^d}$ is an analytic family of type (B). By the analytic perturbation theory, $E(\beta)$ has an analytic continuation $\Lambda(\zeta)$, $\zeta=\alpha+i\beta$, near $\zeta=i\beta_s$; note that $E(\beta)=\Lambda(i\beta)$. Mreover $\Lambda(\zeta)$ is also an algebraically simple eigenvalue of $L(\zeta)$ with eigenfunction u_{ζ} : $(L(\zeta)-\Lambda(\zeta))u_{\zeta}=0$. $\overline{\Lambda(\zeta)}$ is an algebraically simple eigenvalue of $L(\zeta)^*$ with eigenfunction v_{ζ} : $(L(\zeta)^*-\overline{\Lambda(\zeta)})v_{\zeta}=0$.

Put $\eta_s := \beta_s/|\beta_s|$, and let $\{e_{s,1}, \ldots, e_{s,d-1}, s\}$ be an orthonormal basis of \mathbf{R}^d . Put $e_s := (e_{s,1}, \ldots, e_{s,d-1})$. We introduce new coordinates (w, z) near $i\beta_s$ such that $\zeta = w\eta_s + z \cdot e_s = w\eta_s + \sum_{j=1}^{d-1} z_j e_{s,j}, w \in \mathbf{C}, z = (z_1, \ldots, z_{d-1}) \in \mathbf{R}^{d-1}$.

Proposition 8 For $z \in \mathbb{R}^{d-1}$ with $|z| \ll 1$, the resolvent $L(w\eta_s + z \cdot e_s)^{-1}$ has a simple pole $w_s(z)$ as a function of w, and has the following asymptotics at the pole

$$L(w\eta_s + z \cdot e_s)^{-1} = \frac{A_{s,z}}{w - w_s(z)} + O(1).$$

Here $A_{s,z}$ is a rank one operator-valued function with

$$A_{s,z} = rac{1}{\eta_s \cdot
abla \Lambda(\zeta(z))} rac{(\cdot, v_{\zeta(z)}) u_{\zeta(z)}}{(u_{\zeta(z)}, v_{\zeta(z)})}, \quad \zeta(z) = w_s(z) \eta_s + z \cdot e_s$$

and $w_s(z)$ satisfies $w_s(0) = i|\beta_s|$, for $1 \leq j, k \leq d-1$,

$$\begin{split} &\frac{\partial w_s}{\partial z_j}(0)=0,\\ &\frac{\partial^2 w_s}{\partial z_j \partial z_k}(0)=i\frac{\partial^2 \mathrm{Im}\, w_s}{\partial z_j \partial z_k}(0)=i\frac{e_{s,j}\cdot \mathrm{Hess}\, E(\beta_s)e_{s,k}}{\eta_s\cdot \nabla E(\beta_s)},\\ &\mathrm{Hess}\, \mathrm{Im}\, w_s(0)=\left(\frac{\partial^2 \mathrm{Im}\, w_s}{\partial z_j \partial z_k}(0)\right)_{1\leq j,k\leq d-1}\colon \ positive\ definite. \end{split}$$

Here the function $\zeta(z) = w_s(z)\eta_s + z \cdot e_s$ is the zeros of $\Lambda(\zeta)$.

Proof. $\Lambda(\zeta)$ is an algebraically simple eigenvalue, so

$$(L(\zeta) - \lambda)^{-1} = \frac{P(\zeta)}{\Lambda(\zeta) - \lambda} + O(1), \quad P(\zeta) = \frac{(\cdot, v_{\zeta})u_{\zeta}}{(u_{\zeta}, v_{\zeta})}.$$

Putting $\lambda = 0$, we have

$$L(\zeta)^{-1} = \frac{P(\zeta)}{\Lambda(\zeta)} + O(1).$$

Noting that

$$\Lambda(\zeta) = \Lambda(w\eta_s + z \cdot e_s)
= (w - w_s(z))\eta_s \cdot \nabla \Lambda(w_s(z)\eta_s + z \cdot e_s) + O((w - w_s(z))^2),$$

we have the proposition. \Box

Let $P: t\eta_s + z \cdot e_s \to z$ be a projection, and $Q = P(-\pi, \pi)^d$. We have $(-\pi, \pi)^d = \{t\eta_s + z \cdot e_s; z \in Q, \exists t_1(z) < t < \exists t_2(z)\}$. We change the integral variables from ζ to $(t, z) \in \mathbf{R} \times \mathbf{R}^{d-1}$ such that $\zeta = t\eta_s + z \cdot e_s$ to obtain that

$$(L^{-1}f)(x-l) = (2\pi)^{-d} \int_{(-\pi,\pi)^d} F(\zeta)d\zeta$$
$$= \frac{|D_s|}{(2\pi)^d} \int_Q dz \int_{t_1(z)}^{t_2(z)} dt F(t\eta_s + z \cdot e_s),$$

where $D_s = \det(\eta_s, e_{s,1}, \dots, e_{s,d-1})$, and

$$F(\zeta) = e^{i(x-l)\cdot\zeta} L(\zeta)^{-1} \left(\sum_{m \in \mathbf{Z}^d} f(\cdot - m) e^{-i(\cdot - m)\cdot\zeta}\right)(x).$$

For $0 < \delta \ll 1$, put

$$U_{\delta} = \{ z \in \mathbf{R}^{d-1}; \operatorname{Im} w_s(z) < |\beta_s| + \delta \}.$$

For $z \in Q$ let $C(z) = C_1(z) \cup C_2(z)$ be a closed contour in \mathbb{C} :

$$C_{1}(z) = \{t : t_{1}(z) \to t_{2}(z)\},$$

$$C_{2}(z) = \{t_{2}(z) + it; t : 0 \to |\beta_{s}| + h\}$$

$$\cup \{t + i(|\beta_{s}| + h); t : t_{2}(z) \to t_{1}(z)\}$$

$$\cup \{t_{1}(z) + it; t : |\beta_{s}| + h \to 0\}$$

where $h = 2\delta$ if $z \in U_{\delta}$, $h = \delta/2$ if $z \in Q \setminus U_{\delta}$. For $z \in U_{\delta}$ the integrand has only a simple pole $w_s(z)$ near and inside C(z), and for $z \in Q \setminus U_{\delta}$ the integrand is holomorphic near and inside C(z). Hence by the residue theorem we have

$$(L^{-1}f)(x-l) = I_1f(x-l) + I_2f(x-l)$$

with $\zeta(z) = w_s(z)\eta_s + z \cdot e_s$, where

$$I_1 f(x-l) = \frac{2\pi i |D_s|}{(2\pi)^d} \int_{U_\delta} dz \exp[i(x-l) \cdot \zeta(z)]$$

$$\times \frac{\left(\sum_m f(\cdot - m) \exp[-i(\cdot - m) \cdot \zeta(z)], v_{\zeta(z)}\right) u_{\zeta(z)}(x)}{\eta_s \cdot \nabla \Lambda(\zeta(z))(u_{\zeta(z)}, v_{\zeta(z)})},$$

$$I_2 f(x-l) = -\frac{|D_s|}{(2\pi)^d} \int_Q dz \int_{C_2(z)} dw F(w \eta_s + z \cdot e_s).$$

The integral kernel $I_1(x,y)$, $x,y \in \mathbf{R}^d$, of I_1 is equal to

$$I_{1}(x,y) = \frac{i|D_{s}|}{(2\pi)^{d-1}} \int_{U_{\delta}} dz \exp[i(x-y) \cdot (w_{s}(z)\eta_{s} + z \cdot e_{s})] a(z;x,y),$$

$$a(z;x,y) := \frac{1}{\eta_{s} \cdot \nabla \Lambda(\zeta(z))} \frac{u_{\zeta(z)}(x) \overline{v_{\zeta(z)}(y)}}{(u_{\zeta(z)}, v_{\zeta(z)})}.$$

Take s = (x - y)/|x - y|. We regard $(x - y) \cdot \eta_s \gg 1$ as a large parameter, and note that $(x - y) \cdot (z \cdot e_s) = 0$. We have shown that the critical point of $w_s(z)$ is z = 0. By the saddle point method

$$I_{1}(x,y) = \frac{-|D_{s}|}{(2\pi)^{d-1}} \left(\frac{2\pi}{(x-y)\cdot\eta_{s}}\right)^{(d-1)/2} \frac{e^{-(x-y)\cdot\beta_{s}}}{(\det \operatorname{Hess Im} w_{s}(0))^{1/2}} \times \left(\frac{1}{\eta_{s}\cdot\nabla E(\beta_{s})} \frac{u_{\beta_{s}}(x)\overline{v_{\beta_{s}}(y)}}{(u_{\beta_{s}},v_{\beta_{s}})} + O(|x-y|^{-1})\right).$$

This leads to the main term of the asymptotics.

We can show that the integral kernel of I_2 satisfies

$$|I_2(x,y)| \le Ce^{-(x-y)\cdot\beta_s}e^{-c|x-y|},$$

using the $2\pi \mathbf{Z}^d$ -periodicity of $F(\zeta)$. These are an outline of the proof of Theorem 1. \square Remark. We can get the following asymptotic expansion. Assume that $\lambda_c > 0$. There exist bounded functions $g_j(x,y)$, $j=1,2,\cdots$, s.t. for any natural number n

$$G(x,y) = \frac{1}{|\nabla E(\beta_s)| \sqrt{C(\beta_s)}} \frac{e^{-(x-y)\cdot\beta_s}}{(2\pi|x-y|)^{(d-1)/2}} \frac{u_{\beta_s}(x)v_{\beta_s}(y)}{(u_{\beta_s},v_{\beta_s})_{L^2(\mathbf{T}^d)}} \times \left(1 + \sum_{j=1}^n \frac{g_j(x,y)}{|x-y|^j} + O(|x-y|^{-n-1})\right).$$

References

- [A] S. Agmon, On positive solutions of elliptic equations with periodic coefficients in R^d, spectral results and extensions to elliptic operators on Riemannian manifolds, Differential Equations (I. W. Knowles and R. T. Lewis ed.), North-Holland Mathematics Studies 92, 1984, pp. 7–17
- [KP] P. Kuchment and Y. Pinchover, Integral representations and Liouville theorems for solutions of periodic elliptic equations, J. Funct. Anal. 181 (2001), 402–446
- [P] R. G. Pinsky, Second order elliptic operators with periodic coefficients: Criticality theory, perturbations, and positive harmonic functions, J. Funct. Anal. 129 (1995), 80–107
- [S] C. Schroeder, Green functions for the Schrödinger operator with periodic potential, J. Funct. Anal. 77 (1988), 60–87