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Asymptotics of Green functions and Martin boundaries
for elliptic operators with periodic coefficients

(joint work with Minoru Murata)
Tetsuo Tsuchida (Meijo University)
1 Results
The main purpose of this paper is to establish asymptotics at infinity of Green functions

for elliptic equations with periodic coefficients on R? and to determin the Martin boundary
for the elliptic operators.

Let
d 9 0 d 0
L = -5 —~— — S b)) +
j,kzl axk(a]k(l)a ]) ; j(x)a ; C(SC)

= —V.a(z)V —b(z) -V + C(—‘”)’

be a second-order elliptic operator on R? with periodic coefficients, where d > 2, V =
(8/0z1,---,0/0z4), a(z) = (ax(z))ir=y, and b(z) = (bj())4=,. We assume that the
coefficients are Zd-periodic, real-valued smooth functions on R?. We assume that a is a
symmetric matrix-valued function satisfying for some a > 0

d
A€ < S ap(m)g& < a7 MEP?, z,6 € RE

k=1
For ¢ € C¢, define an operator L(¢) on the d-dimensional torus by
L(¢) = e %TLe%”
= —(V+i) a(x)(V+i) = bz) (V+i) + c(z).

We regard L(¢) as a closed operator in L?(T%) with domain H?(T4).

By the Krein-Rutman theorem, for each 8 € R¢, L(i8) = e#*Le™#* has the principal
eigenvalue E((), i.e. L(i¢0) has an eigenvalue E(#) € R of multiplicity one such that
the corresponding eigenspace is generated by a positive function ug € H?(T?); E(f) is
also an eigenvalue of L(i3)* of multiplicity one such that the eigenspace is generated by
a positive function v € H?(T4).

Put

Cp = {ue H. (R?%; Lu= 0 and u > 0}.
When a positive Green function for L on R? exists, L is called subcritical; in this case
CL # 0. When a positive Green function for L on R dose not exist but Cp # 0, L is
called critical. Let A, be the generalized principal eigenvalue of L on RY:

A :=sup{\ € R; L — X is subcritical}.

Then it is known that —oco < A, < 00, L — X is subcritical for A <A , and L — A, is
subcritical or critical. The formal adjoint operator L* of L is subcritical (or critical) if
and only if L is subcritical (or critical), and the generalized principal eigenvalue of L and
L* coincide.

For A € R, put

I = {8 € R% I(z) = e P"u(z) € Cp_» where u is periodic}
Ky = {B € R%3p=eP%u(z) > 0st. (L— A >0 and u is periodic}.
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Define K3} and [} for L* — A analogously to K and I'y for L — A. Agmon, Pinsky and
Kuchment-Pinchover proved the following theorem.
Theorem AP([A], [P], [KP])

(i) If A < A, then K, is a d-dimensional strictry convex compact set with smooth
boundary I'y = 9K,.

(ii) If X = A, then T'y = K, = {3} for some & € R
(ii}) If A >A , then T’y = K, = 0.
(iV) K:\k = —K)\, and ,60 =0if L*=1L

(v) E(B) is an algebraically simple eigenvalue and it is a real analytic. Hess E(f) is neg.

def. for B € R%. The equality A\, = sup E(J) holds, and the sup is attained uniquely
BeRA
at Bp in (ii). VE(G) = 0 if and only if 3 = [p.

(vi) Ty = {8 € R4 E(B) = A} and K, = {# € RL E(B) > A}

Let Br = {|]z| < R}. Let Lg be the Dirichlet realization of L in L*(Bg): D(Lg) =
H}(Bgr)N H?(Bg). If L is subcritical, then Jthe resolvent L', and its integral kernel (the
Green function) Gg(z,y) > 0, and 3the limit G(z,y) = I%im Gr(z,y) which is called the

minimal Green function of L on R¢.
First, suppose that A\, > 0. Then L is subcritical, and for any s € S¢71, take 3, € I'g

s.t. supger, B-5=0s - s.

Theorem 1 Suppose that A\, > 0. Then the minimal Green function G of L admits the
following asymptotics as |z — y| —oo :

1 e &7V o ug, (2)vg, (y)

T VEB) /() Crle — v (g, vg,) e
«(1+0(lz —y|™),

G(z,y)

where s = (z — y)/|x — y|, and C(fs) is the Gauss-Kronecker curvature of Uy at ;.

Schroeder [S] gave a lower and upper bounds.

Let us determine explicitly the Martin compactification of R¢ with respect to L in
the case A > 0. Fix a reference point zo in R%. Then the following proposition is a
consequence of Theorem 1.

Proposition 2 Suppose that \. > 0. Then for any sequence {y,} in R® such that |y,| —
00 and Yn/|yn] — v as n — oo,

. G(J:, yn) —(z—x0) Ug_ (:I:)
lim ——22 = = (@=%0) By TPv A - (1 ).
N Gl v () K@)

¥ € Cp is minimal (If p € C, satisfies p(z) < ¥(z), then ¢(z) = cy¥(z)) if and only if
Y = eP*u(z) € Cp where u is periodic (see [A]). Thus I'y ~ the minimal Martin boundary.
On the other hand K(z,v) € C, K(zo,v) =1, K(z,v) # K(z,V') if v £ V. K(z,v) is
minimal. Hence we can determine the Martin boundary and Martin compactification of
R¢ for L as follows.
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Theorem 3 Suppose that A\, > 0. Then the Martin boundary and the minimal Martin
boundary of R? for L are both equal to the sphere S~ at infinity which is homeomorphic
to T'o; the Martin kernel at v € S%! 4s equal to K(-,v); and the Martin compactification
of R? for L is equal to

{z € R%|z| < 1} U[1, 00] x 84!

equipped with the standard topology.

Next, suppose that A\, = E(fGy) = 0. Then Pinsky [P] proved that L is critical if d < 2,
and subcritical if d > 3.

Theorem 4 Let d > 3. Suppose \. = 0. Put H = —Hess E(fy). Then the minimal
Green function G of L admits the following asymptotics as |x — y| — oo:

I'(42) e” (Wb ug (2)vs,(y)
2md/2(det H)'/2 [H=12(z — y)|*72  (ugy, vg, )
x(1+O(jz —y|™)).

Glz,y) =

We determine directly from Theorem 4 the Martin boundary. These results, however,
are also simple consequences of the known result that C is one dimensional in this case.

Theorem 5 Let d > 3. Suppose that Ao = E(8y) = 0. Then for any sequence {y,} in R4
with |y,| —o0 as n — oo,

lim M _ 6—(;r—-:no)-ﬁoﬁf9_(ﬁ, T € Rd‘.
n—00 G(Z0, Yn) ugo (Zo)

The Martin boundary and the minimal Martin boundary are both equal to one point co at
infinity, the Martin kernel at co is equal to the right hand side; and the Martin compact-
ification of R® for L is equal to the one point compactification R% U {co} of RY.

2 Proof of Theorem 1

Assume )\, = E(By) > 0. Put Ly = ePo®Le P2  Then the principal eigenvalue
FEo(0) of B = 0 of Lg is positive, and the minimal Green function Go(z,y) of Lg satisfies
Go(z,y) = €®*G(z,y)e Y. Regard L as a closed operator in L?(R%) with domain
H?(R?). We have only to show the following.

Theorem 6 Assume E(0) > 0. Then there exists the resolvent L™'; and the integral
kernel of L™! equals the minimal Green function and admits the same asymptotics as in
Theorem 1.

Let
H = L*((—m,m)% (2m)~%d¢; L*(T)).

Define an operator F : L?(R%) — H by
(FHCz) =3 fla—De = (e (~mm)¢, =zeT

leZd

(Bloch transformation). Then F is a unitary operator, and an isometric isomorphism
from H'(RY) to L?((—m,n)¢, (2m)~4d¢; H'(T4)). The adjoint F* is given by, for g € H,

(F*g)(z —1) = (27r)—d/( LEegGmyd, seTh ezt
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We have o )
F(Vf)= (Ve +iQ)Ff B
Flaf) =aF f if a: periodic } = FL = L({)F.
Proposition 7 Let E(0) > 0. Then there exists the resolvent L7}(¢), ¢ € R?; and
L—l - f*L(C)_lj-—’ i'e" fOT S Td: le Zd; and f S Lz(Rd))

L fla-D=0n" [  Fd,

(”nvﬂ)d

where

F(¢) = e =L (YD f(-—m)e "™\ (z).

meZd

Moreover, F(() is 2nZ%-periodic.

{L(¢)}¢ece is an analytic family of type (B). By the analytic perturbation theory, ()
has an analytic continuation A((), ( = o + i, near ( = if,; note that E(8) = A(:3).
Mreover A(() is also an algebraically simple eigenvalue of L({) with eigenfunction wu:

(L(¢)—A(¢))u¢ = 0. A(() is an algebraically simple eigenvalue of L({)* with eigenfunction
ve: (L(C)* — A(¢))ue = 0.

Put n, := Bs/|Bs|, and let {es,,...,€s4-1,5} be an orthonormal basis of R%. Put
es = (es1,...,€s4-1). We introduce new coordinates (w, z) near if; such that { =
wns + 2 - e = wns + Z?;% zjesj, w € C, z=(2,...,24-1) € R4-1.

Proposition 8 For z € R4 ! with |z| < 1, the resolvent L{wns + z - €)™ has a simple
pole wg(z) as a function of w, and has the following asymptotics at the pole

As,z

Motz )™ = 20
S

+ O(1).
Here A, , is a rank one operator-valued function with

4 - 1 (-, V¢ () Ue(2)
T ns - VA(C(2)) (i) vez)

and ws(z) satisfies ws(0) = i|Gs], for 1 < jk <d -1,

C(z) = wS(z)"?s +2z- e

ows _

82_7' (0) B 0’

O?w; 0) = z,(921m Ws 10y — 468 Hess E(0s)es «
02,0z~ 020z ns- VE(Bs)

0%Im w; )
0202 1<j,k<d—1

Hess Im w,(0) = < . positive definite.

Here the function ((z) = ws(z)ns + z - e, is the zeros of A(C).

Proof. A(¢) is an algebraically simple eigenvalue, so

P)

ACQ —x T o(1), P(()= by veJue

(L) =N = e
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Putting A = 0, we have

Noting that
AC) = Alwns+z-e)
= (w—ws(2))ns - VA(ws(2)ns + 2 - €5) + O((w — wy(2))?),

we have the proposition. O

Let P : tns + z-es — z be a projection, and Q = P(—m, 7). We have (—7,71)¢ =
{tns + z-es; 2 € Q,3t1(2) < t < Jty(2)}. We change the integral varlables from ¢ to
(t,2) € R x R% ! such that ( = tn, + 2 - e, to obtain that

L) =1) = (2m) /( M)dF(C)dC

| Ds|

= d dt F'(tn, s
(o) z/tl(z) (tns + z - e5),

where D; = det(ns,e51, -+, €54-1), and
F(¢Q) =L)X f(-—m)e ™) ().

mezd
For 0 < § < 1, put
Us = {z € R L Imw,(2) < |Bs| + 6}.
For z € Q let C(z) = Ci(z) U Cy(2) be a closed contour in C:
Ci(z) = {t:ti(z) - t2(2)},
Ca(z) = {ta(z) +it;t: 0 — |G| + R}

U{t + (| Bs] + h); t = ta(2) — t1(2)}
U{ti1(z) +it;t : |Bs] + h — 0}

where h = 20 if 2 € Us, h =6/2 if z € Q\ Us. For 2 € U; the integrand has only a simple
pole ws(z) near and inside C(z), and for z € Q \ Us the integrand is holomorphic near
and inside C(z). Hence by the residue theorem we have

(L7 )z =) =nLf(z—1)+Lf(z—1)
with {(z) = ws(2)ns + 2 - €5, where

nie=0) = T [ drexplite — 1) - ¢(a)

(o = m) explil- = m) - €(2)], v (@)
ns + VA(C(2)) (ue(a) Vo)) ’

dz/ dwF (wns + z - e5).
C2(2)

| Ds|

Lf(z—1) = ~@ni Jo
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The integral kernel I;(xz,v), z,y € R%, of I, is equal to

(;Lrl))il ./U dzexpli(r —y) - (ws(2)ns + 2 - es)]a(z; z,y),

[1(.’17,:1]) =

1 ug(z) (2)vg(z) (y)
s - VAC(2)  (uea), ve)
Take s = (z — y)/|x — y]. We regard (z — y) -1, > 1 as a large parameter, and note that

(z —y) - (2 es) = 0. We have shown that the critical point of ws(2) is z = 0. By the
saddle point method

a(z;z,y) =

—| D] 2 (d-1)/2 e~ (T=y)Bs
2m)4-) <(f’f —y) - 77.3) (det Hess Im w;(0))1/2

o 1 ug, (2)vg, () oyl
<775 : VE(IBS) (uﬁs’vﬁs) * O(! y| ))

This leads to the main term of the asymptotics.
We can show that the integral kernel of I, satisfies

]1(:an) = (

Iy, y)| < Cem(=vhremciz=u)

using the 2w Z%periodicity of F(¢). These are an outline of the proof of Theorem 1. O
Remark. We can get the following asymptotic expansion. Assume that A, > 0. There
exist bounded functions g;(z,v), j = 1,2.---. s.t. for any natural number n

1 e~ (@=v) P ug, (T)vg, (¥)

B IVE(Bs)/C(Bs) (2r|z — y|)@=1/2 (ug,, vg, ) L2(Te)
= gj(xay) —-n-1
<(1+ L PG 0l -0 ),

G(z,y)

References

[A] S. Agmon, On positive solutions of elliptic equations with periodic coefficients in R?,
spectral results and extensions to elliptic operators on Riemannian manifolds, Differ-
ential Equations (I. W. Knowles and R. T. Lewis ed.), North-Holland Mathematics
Studies 92, 1984, pp. 7-17

[KP] P. Kuchment and Y. Pinchover, Integral representations and Liouville theorems for
solutions of periodic elliptic equations, J. Funct. Anal. 181 (2001), 402-446

[P] R. G. Pinsky, Second order elliptic operators with periodic coefficients: Criticality
theory, perturbations, and positive harmonic functions, J. Funct. Anal. 129 (1995),
80-107

[S] C. Schroeder, Green functions for the Schrédinger operator with periodic potential,
J. Funct. Anal. 77 (1988), 60--87



