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Liouville type theorem associate with
the wave equation

KPR EHEER FAB#E! (Katsunori Shimomura)
(Faculty of Science, Ibaraki University)

1 Introduction

The well-known Liouville’s theorem states that every conformal mapping
in the n-dimensional Euclidean space (n = 3) is a similarity or an inver-
sion with respect to a sphere. The conformal mapping associates with the
Laplace equation in the following sense. Let U,V C R" be domains and
f=(fi,f2,-., fa) : U —V a C*mapping, and ¢ be a positive C*-function
on U. Assume that ¢(z) - (u o f)(z) satisfies the Laplace equation on U for
every solution u of the Laplace equation on V. This is possible only if f is a
conformal mapping.

In this note, we consider Liouville type theorem associate with the wave
equation instead of the Laplace equation. We note that Sugimoto considered
this problem in [4] and partially solved the problem.

2 Transformation which preserves the solu-
tion of the wave equation

Let R™™! be the (n + 1)-dimensional Euclidean space (n 2 2), and denote its
point by z = (z0, 1, ...,Zs). We define the (-, ) quadratic form in R**! by

(,y) = —ZoYo + T1y1 + -+ + TnYn.

Let
-1 0 . 0
0 1 ... 0
J=1 . . .| €GL(n+1,R)
0 0 ... 1
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and put Oy = {R e GL(n+1,R);'RJR = J}. Then (Rz, Ry) = (z,y) holds
for all z,y € R*! if and only if R € O,.
In the following, we consider the wave equation

92 I 92
'Wu::Gﬁg—§:5E>u:0

on R**1,

Let U,V C R™! are domains, f = (fo,f1,...,fn) : U — V a C?
mapping, and ¢ a positive C*-function on U. The pair (f, ) is called a
transformation which preserves the solution of the wave equation, if the func-
tion p(z) - (uo f)(x) satisfies the wave equation on U for every solution u of
the wave equation on V. This is possible if and only if f and ¢ satisfy the
following equations on U ([4]):

Wy =0, (1)

e Wf; —2(Vp,Vf;) =0, (j=0,1,...,n) (2)

(Vfi, Vi) =0, 0=j<k=n) (3)

(Vi Vi) =—(Vfo,Vfo), (1£j=n) (4)
where Vf; = (afj 0 8fj) (=0,1,...,n).

8.’130, 83;1 o 81'71

It is easy to see that if (f, ¢) and (g, %) are transformations which preserve
the solution of the wave equation such that the image of f is contained in the
domain of g, then (go f, -1 o f) is also a transformation which preserves the
solution of the wave equation. We call this new transformation (go f, ¢-9o f)
the composition of the transformations (f, ) and (g, ¢)

In the following, we list fundamental transformations which preserves the
solution of the wave equation.

Ezxample 1 (J-similarity). The pair of a mapping
f(z)=aRz+a (a¢€R, a>0, Re€ Oy, ac R

and a positive constant function p(z) = C (C € R, C > 0) is a trans-
formation which preserves the solution of the wave equation. We call such
transformation J-similarity.

Example 2 (J-inversion). The pair of the mapping j and the function ¢
1 1
) n—1
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is a transformation which preserves the solution of the wave equation de-
fined on each connected component of {z € R (z,z) # 0}. We call this
transformation J-inversion. By simple calculation, we have

(Vii(x), Vii(z)) = —(Vjo(x), Vio(z)) = 7 133)2’ (i=1,...,n),

where we put j(z) = (jo(z), j1(z). ..., jn(2)).
FEzample 3 (Bateman transformation [2]). The pair of the mapping B and ¢
(z,z) +1 (v.z) -1 Z9 Tn )
2(zg+ 1) 2(z0+ 1) To+ T Txot+T:1”
n—1
p(z) = |Zo + 71|72

B(z) =

is a transformation which preserves the solution of the wave equation defined

on each connected component half space of {z € R**}; 20+ z; # 0}. We call

this transformation Bateman transformation. By easy calculation, we have
1

(zo + 11)?’

where we put B(z) = (Bo(z), Bi(z), ..., Bn(z)).

(VBy(z), VBi(z)) = —(VBy(x), VBo(z)) = (i=1,...,n),

3 J-conformal mapping
We can write the quadratic form (-, -) as
(z,y) = (Jz,y) = (z,Jy), =,y € R™,

where (-, -) is the usual Euclidean inner product.
Let U,V ¢ R™! be domains and f = (fo, f1,...,fa) : U — V a C%

mapping and let %(m) be the Jacobian matrix of f :
dfo dfo dfo
/g—?m 7 g%-(x)\
1 1 1
G_f(x) — a—za(f) 5;1(37) 5;;(33)
ek : : :
Ofn, \ Ofn dfn

\533—0-(33) 8$1(:E) axn(:c))



The mapping f is said to be J-conformal if there exists a function As(z) > 0
defined on U such that

0 %} ,

<5£(I)1L, gfg(a:)v) = Mx)*(u,v) Vo €U, Vu,v € R"
If f:V—>Wandg:U — V are J-conformal mappings, then the composi-
tion mapping fog: U — W is also a J-conformal mapping. In fact, by the
chain rule

o o(f o a 0 J 0
LD g, A2 D ) = (S (gt 32 2 B ta() G o)
= A{g(e) S (), 2 (o) = Ar(9(a)PAg(2)? s, v)

holds for all x € U, and all u,v € R**!. Hence fog is a J-conformal mapping
and

Arog(T) = Ap(9(2))Ag(z), T €U (5)

holds.
It is easily seen that the combination of the conditions (3) and (4) is
equivalent to the condition that f is a J-conformal mapping and

A (@) = (Vf;, V) = —(V fo, V fo).
Example 4. The mapping
flzx)=aRz+a (¢€R, a>0, R€ Oy, ac R
is a J-conformal mapping defined on R™*! satisfying Af(z) = a. We call
such mapping J-similarity (mapping).

Ezample 5. The mapping
1

(z, )

is a J-conformal mapping defined on each connected component of {z €
R™*; (z,z) # 0}. We call j J-inversion (mapping). By simple calculation,
we have

j(z) =

and
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Ezxample 6. The mapping
(r,z) +1 (z,z)—1 Ty T,

B(zx) = . ) s
(z) 2(xo + x1) 2(wvo+ xy) To+ T, '1:0+:1,',)

is a J-conformal mapping defined on each connected component half space
of {z € R"*1; 2o+ z; # 0}. we call B the mapping of the Bateman transfor-
mation. By easy calculation, we have

B_I(I>:((.r,m>+1’1—(:1:,:E>’ To L Tn |
2(350 - .’131) 2(130 - .’El) Lo — Ty Ty — Ty
and
Ap(@) = e Ager(z) = —
= ——, -1 = —
B |$0+5C1[ B IIO—SE1|

4 Liouville type theorem for J-conformal map-
ping
In this section, we determine the J-conformal C*-mapping on R**! (n > 2).

Our main theorem is the following.

Theorem 1 ([3], cf.[4]). Let f be a J-conformal C*-mapping defined on a
domain U C R™'. Then f has one of the following forms :

(a) f(z) = (hojog)(z),

(b) f(z) = (ho Bog)(z),

(c) f(z) = g(z),

where g and h are J-similarities.

First part of the proof, up to the following proposition, follows from the
same argument as the proof Liouville’s theorem for conformal mapping in

1.

Proposition 1. If f is a J-conformal C*-mapping, then p(z) = (@) sat-
f T
isfies
n an
2 5r.0m, (2)uv; = c(u,v),
1,7=0

where ¢ 1s a constant.



Therefore, p(x) is a polynomial of degree at most 2. Integrating the both
sides of the above equation, we have the following proposition.

Proposition 2. If f is J-conformal and C*, then \¢(z) has one of the
following forms :

1
A = th c,b € R, 0, R™+!
7(z) P — with ¢, b € c#0, ae€
1
Af(.'L') = m, wlth/ a,dE Rn+l, d#o,
Ar(z) =1, withl € R, [ > 0.

In contrast to the conformal mapping case, there exists a J-conformal
mapping which has the second form. The mapping of the Bateman transfor-
mation on {z;zo + x; > 0} satisfies

1
Zgo + 1 ’
which is of second form with d = (—1,1,0,...,0) and a = 0. Note that
every J-conformal mapping has local inverse and the local inverse is also a

J-conformal mapping. With a help of some geometric argument, we obtain
the following proposition.

/\B(fL') =

Proposition 3. If f is a J-conformal C*-mapping, then A\f(z) has one of
the following forms :

1

_ . n+1

/\f(x)_c<:v-—a,a:~a)’ withc € R, ¢# 0, a € R™!, (6)
1

Ap(x) = T with a,d € R™', d#0, {(d,d) =0, (7)

A(z) =1, withl € R, [ > 0. (8)

In the following, we shall show that the above cases (6), (7) and (8)
correspond to the cases (a), (b) and (c) of Theorem 1, respectively.
First we study the case (8):

/\f(il)):l, leR, 1>0.

It can be shown that if a J-conformal mapping has constant A\f with A¢(z) = [
then f is equal to a J-similarity

f(z) =IlRzx+a, (Re€ Oy, acR",
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This is the case (¢) of Theorem 1.
Next we study the case (6):

1
)\ ) = . - R O : Rn+1,
() c{x —a,xr —a) ¢ , ¢c#0, ae

g(‘:(;) =T —a,

__t oyt 1

cj(2),5(=)) ~ Kz,z)| (2, 2) [(z,7)|
(z, )

_ 1

e

which imply that (f o g7' 0 j)(z) is equal to a J-similarity

1
h(z) = HRx +b, (R€O0,, beR").

Thus we have (f o g=! 0 5)(y) = h(y) and
f)=(hojog)(z), zel,

because 7 !(z) = j(z). This is the case (a) of Theorem 1.
Finally we study the case (7):

1
A = ,deR™ d=(dy,dy,...,d = 0.
f(fl')) (d,:z:—~a)’ a S (0 1 ’n)#o) (d)d> 0
Since (d,d) = 0and d # 0, |(dy, ...,dn)| = |do| # 0 and there exists a matrix
Ro € O(n) whose first column is equal to the vector @’d—’dnl We put
0

vo = (—1,1,0,...,0). Then

-1 0
d= do ( 0 R()) Vg =: doRl’Uo,



where R; € Oy, and
(d,x —a) = (doRyvy, 2 — a) = do(vy, J'R1J(z — a))
holds. Define the J-similarity ¢ by
g9(z) = JTJ(z — a),

so that
(d,z — a) = do{vo, 9(x))
and
—1y, — 1 — 1 = !
As(g™ (2)) (d,g Y z) —a) dolve,g(g~Hx)))  do(vo,x)
1
- do(zo + 1)

Now consider the mapping f o g7! o B™! defined on B(g(U)). We have
Afog-1o8-1(z) = Af(97 (B7H(2)))Ag-1(B™1(2)) Ap-1 (2)
1 1
= i
(z,z) +1 1—{(z,x) |zo — z1]
d
O<2(.’1§0 - .’I,'l) + 2(150 - 231))

. 1
|dol’
which implies that (f o g7! o B7!)(z) is equal to a J-similarity
1
h(.’IJ) = mRZ + b, (R € OJ, be Rn+1).
0

Thus we have (f o g~ o B71)(y) = h(y) and
f(z) =(hoBog)(z), zeU.
This is the case (b) of Theorem 1.

By Theorem 1, we can determine the transformation which preserves the

wave equation as follows.

Theorem 2. FEvery transformation which preserves the solution of the wave

equation is one of the following :

(a) J-inversion composed with J-similarities,
(b) Bateman transformation composed with J-similarities,

(c) J-similarity.

155



156

References
[1] M. Berger, Geometry, Springer-Verlag, 1986.

[2] P. Hillion, The Courant-Hilbert solutions of the wave equation, J. Math.
Phys. 33(8), 1992, 2749-2753.

[3] K. Shimomura, Liouville type theorem associate with the wave equation,
in preparation.

[4] T. Sugimoto, On Kelvin type transformations associate with the wave
equation (in Japanese), Master thesis (Nagoya University), 1997.



