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1. Introduction

Let H be the upper half space of R**! (n > 1), thatis, H = {X = (z,t); = € R™, t > 0}.
For 0 < a < 1, the parabolic operator L(®) is defined by

0
L™ = = 4 (=A,)°,
where A, = 3%27 + o+ ;‘i—i— is the Laplacian on the z-space R™. A real-valued continuous
1 ‘1

function u on H is said to be L(®)-harmonic if u satisfies L{(®4 = 0 in the sense of distributions.
( The explicit definition of the L{®)-harmonic function is described in section 3. ) For A > —1
and 1 < p < oo, the a-parabolic Bergman space b” () is the set of all L(®)-harmonic functions
u on H with

. 1/p
Il wllLrory:= (/ lu(z, t)|Pt*dV (z, t)) < 00,
H

where V' is the Lebesgue volume measure on H and L”()\) := LP(H,t*dV). In particular, we
may write LP = L?(0) and b2, = b%(0), respectively.

Our aim of this paper is to study conjugate systems on a-parabolic Bergman spaces. The a-
parabolic Bergman spaces &%, were introduced and studied by Nishio, Shimomura, and Suzuki
[7]. It was shown in [7] that b’f/z coincide with the usual harmonic Bergman spaces of Ramey
and Y1 [11]. Accordingly, usual harmonic Bergman spaces are the classes of LP-solutions of the
parabolic equation L(®)u = 0 with @ = 1/2. In[12], the Cauchy-Riemann equations on a region
of the two-dimensional Euclidean space are extended to higher dimensions, and properties of
systems of conjugate harmonic functions on Hardy spaces were studied ( see also [3] ). In the
theory of harmonic Bergman spaces, properties of conjugate functions were also studied, and
as an application, estimates of tangential derivative norms of harmonic Bergman functions were
given ( see section 6 in [11] ). On the other hand, Yamada [13] studied conjugate functions of
parabolic Bergman functions. However, the suitable notion of conjugacy were not extended to
a-parabolic Bergman spaces. In this paper, we introduce a suitable extension of conjugacy to
a-parabolic Bergman spaces and study their properties. We also give estimates of tangential
derivative norms of «-parabolic Bergman functions.

Now, we introduce the extension of conjugacy to a-parabolic Bergman spaces. Let 9; =
0/0z; (1 < j <n)and §, = /0t. Let C(Q) be the set of all real-valued continuous functions
on a region €2, and for a positive integer k, C*(2) C C(S2) denotes the set of all k£ times
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continuously differentiable functions on €2, and put C"*°(€2) = NxC*(§2). Furthermore, for a
real number «, let Df = (—d;)" be the fractional differential operator with respect to ¢. ( The
definition of the fractional differential operator and the fundamental properties of fractional
calculus for -parabolic Bergman functions are described in section 2. )

DEFINITION 1. For a function u € b/.(\), we shall say that a vector-valued function V' =

(v1,...,vn) on H is an a-parabolic conjugate function of u if v; € C'(H) and V satisfies the
equations

(C.1) Vou=-D\V, V,v;=0;V(1<j<n),

and

(C.2) DF lu=V,-V,

where V, = (9,---,0,) and V, - V is the divergence of V.

We remark that the fractional derivative ’D,i “1u is well defined whenever u € b2()\) with
0<a<11<p<oo and X > —1 ( see section 2 ). Our formulation of the extension of
conjugacy is based on the Cauchy-Riemann equations u, = v; and —u; = v, on a region of
the two-dimensional Euclidean space. Evidently, when a = 1/2, the equations (C.1) and (C.2)
coincide with the generalized Cauchy-Riemann equations for harmonic functions in [12];

(1.1) dju = Jv;,  Okv; =0uk, 1< 5,k<n,
and
(1.2) dyu + i 0;v; = 0.
j=1
Particularly, an (n+ 1)-tuple (vy, - . . , Un, u) which satisfies (1.1) and (1.2) is said to be a system

of conjugate harmonic functions on H. We present results of Ramey and Yi [11] concerning
with conjugate functions of harmonic Bergman functions.

THEOREM A. ( Theorem 6.1 of [11]) Let 1 < p < coandu € b’l’/z. Then, there exists a
unique 1/2-parabolic conjugate function V- = (v1, ..., vn) of u such that v; € b’l’/z. Also, there
exists a constant C = C(n,p) > 0 independent of u such that

CH | u <l V] < C Nl s,
where ’Vl = {‘U% + e+ UZ}l/Q. ]

For a multi-index v = (71, -+ ,v,) € N&, let 87 := 87" --- 92, where Ny := NU {0}.
The following theorem gives estimates of tangential derivative norms of harmonic Bergman
functions.

THEOREM B. ( Theorem 6.2 of [11]) Let 1 < p < coandu € bf

1/2 Then, for each m € Ny,
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there exists a constant C' = C(n,p,m) > 0 independent of u such that
C i D IO < C b -
yl=m
We describe the main results of this paper. We remark that the condition p (ﬁ - 1) +A>
—1 in Theorem 1 below holds forall 1 < p < coand A > —1 whenever 0 < o < 1/2.

THEOREM 1. Let0 < a < 1,1 < p< oo, A > —1,andu € bL(N). If o, p, and )\ satisfy the
conditionn = p ( 2—10- — 1) + A > —1, then there exists a unique a-parabolic conjugate function
V = (v1,...,v0,) of usuch that v; € b (n). Also, there exists a constant C = C(n,p,a, ) > 0
independent of u such that

(1.3) CH  ulleny< V]

< C ol u ey -

We remark that similar statements in Theorem 1 can not hold for the case n = p (515 — 1) +
A < —1. In fact, we can show that b%(\) = {0} when A < 1. We do not know whether
Theorem A 1is extended to the fullrange 0 < o« < 1,1 < p < o0, and A > —1. However, we
can give estimates of tangential derivative norms of b? (A)-functions.

THEOREM 2. Let0 < a < 1,1 <p < oo, A > —1,andu € b(X\). Then, for eachm € Ny,
there exists a constant C = C(n,p,a, A\, m) > 0 independent of u such that

.

(1.4) CH lu < D 115 87u |lmn< C

Il=m

[ ulzren -

This paper is constructed as follows. In section 2, we describe properties of fractional cal-
culus on b%,(A). In section 3, we define integral operators induced by the fundamental solution
of the parabolic operator L{® and investigate their properties, which are useful for studying
a-parabolic conjugate functions. In section 4, we present more properties of a-parabolic con-
jugate functions.

Throughout this paper, C' will denote a positive constant whose value is not necessary the
same at each occurrence; it may vary even within a line.

2. Fractional calculus on b% ()

In order to extend conjugacy to a-parabolic Bergman spaces, we need fractional calculus on
b2 (). First, we describe fractional differential operators for functions on R, = (0,00). For a
real number x > 0, let

FC T ={peC(Ry); Ie >0, 3C >0 s.t. |p(t)] < Ct™™ ¢ VteR,}.
For a function ¢ € FC ™", we can define the fractional integral D; "¢ of ¢ by

1

2.1) Dy p(t) = F(?)A T lo(r 4+ t)dr = T(?)/L (1 —t)* lp(r)dr, teRy,



61

where I is the gamma function. Morcover, let

FC* = {p: d"lp e FCIRIRY

where d; = d/dt, [x] is the smallest integer greater than or equal to «, and we will write
FC° := C(R, ). We can also define the fractional derivative D¢ of ¢ € FC* by
22) Dro(t) =D, " ((—d)Mg) (1), teR,.

In particular, we will write DY = . For a real number x, we may call both (2.1) and (2.2) the
Jfractional derivatives of ¢ with order k. And, we call D; the fractional differential operator
with order . Some basic properties of the fractional difterential operators are the following.

LEMMA 2.1. ( Proposition 2.1 of [4] ) For real numbers k,v > 0, the following statements
hold.

(1) If p € FC™", then D;"p € C(R,).

) If o€ FC "% thenD; "D, p =D; " Yo

(3) If dkp € FC™ for all integers 0 < k < [k] — 1 and dtmgo e FCUR=9=v then
DfD; "¢ =D, *Dip = Di V.

(4) Ifdf”l'](p e FC-Y) for all integers 0 < k < (] — 1, d,m_%tp e FC~UR1=5) for all
integers 0 < £ < [v] — 1, and d|"V "o € o Us1-m) (V1) fpep DDy = Dt .

Next, we also describe some basic results concerning with the fundamental solution of L@,
For x € R™, let

1
W (z,1) = { (2m)" / exp(~t)]** +i1z-£)dE (t>0)
° (t <0),

where z - £ denotes the inner product on R™ and |¢| = (¢ - £)/2. The function W) is
the fundamental solution of L(® and L(®-harmonic on H. We note that W(® > 0 on H
and [, W)(z,t)dz = 1 forall 0 < t < oco. Furthermore, W(® € C*~(H). Lety =
(71, ,7¥m) € NP be a multi-index and k£ € N;. The following estimate is Lemma 1 of [9]:
there exists a constant C = C(n, «, -y, k) > 0 such that

n+]v]
4 k)

(2.3) 0705 W ) (2,8)] < C(t + |z[2)~(

for all (z,t) € H. In particular, by (2.3), we note that for each z € R", the function
@(-) =W®(z, -)belongs to FC* for k > — 2. The statements in the following lemma are
consequences of [4].

LEMMA 2.2. ( Theorem 3.1 of [4] ) Let O < o < 1, v € N} be a multi-index, and k be a
real number such that k > — 3. Then, the following statements hold.

(1) The derivatives 8y DrW () (x,t) and DFOYW ™) (z,t) are well defined, and
NDEW D (z,t) = DEIW ™ (. 1).
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Furthermore, there exists a constant (' = C'(n.«,y. k) > O such that

():’D;‘ H'(O)(I I)‘ S (V(I - ]:I"Qu) (Y}%)’;N+N)

forall (z,t) € H.

(2) If a real number v satisfies the condition v+ > — 2=, then the derivative D} 0] D (@
is well defined, and
DroIDIW ) (a, 1) = DY W D (e, t)

forall (z,t) € H.
(3) The derivative O3 DEW (), t) is L\“'-harmonic on H.

By the elementary calculation, we also give the following lemma. This lemma plays an
important role for the study of conjugate functions on parabolic Bergman spaces.

LEMMA 2.3. Let 0 < o < 1. Then,
(Df + A ) Wz, 1) = 0
forall (z,t) € H.

We present basic properties of fractional derivatives of b’ (\)-functions. We begin with
describing estimates of ordinary derivatives of b (A)-functions. Let0 < a < 1,1 < p < oo,
A > —1,v € N2 be a multi-index, and £k € Ny. Then, it is known that b2 (\) € C*(H)
( see [13]) and the following estimate is given by Lemma 3.4 of [13]: there exists a constant
C =C(n,a,p, A7, k) > 0such that

2.4) @p0kulz, )] < Ct- (B ) ~(E0)5 g

for all w € b2()) and (z,t) € H. The estimate (2.4) implies that the point evaluation is a
bounded linear functional on b2 (). Furthermore, the estimate (2.4) also shows that a function
@( - ) = u(z, - ) belongs to FC* foru € bi(N) and k > — (£ + A + 1)%, so we can define
fractional derivatives of b”,(\)-functions. Some properties of fractional derivatives of b% (\)-
functions are given in the following.

LEMMA 2.4, ( Proposition 4.1 of [4] ) Let 0 < «
a multi-index, and x be a real number such that Kk > —
following statements hold.

(1) The derivatives Oy Dju(z,t) and D0} u(x, t) are well defined, and
Y Dfu(zx, t) = DFdjul(x, t).

0o, A > —1, v € N} be
. fu € bE(N), then the

Furthermore, there exists a constant C = C(n,a,p, A\, 7, k) > 0 independent of u such that

@paru(z, 0] < 0t (B0 GEran)d
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forall (z,t) € H.
(2) If a real number v satisfies the condition v + Kk > — (E% + A+ 1) % then the derivative
Dy o) Diu(x, t) is well defined, and
DY Dyu(x, t) = 0)DY Fulx, t)
forall (z,t) € H.
(3) The derivative Y Dru(x,t) is L'*)-harmonic on H.

For a real number A > —1, let ¢y = 2*"1/I'(A + 1). The following lemma is also a
consequence of {4], and (2.5) is the reproducing formula for b], (\)-functions.

LEMMA 2.5. (Theorem 5.2 of [4] ) Let0 < a < 1,1 < p < o0, and X > —1. Suppose that
v and k are real numbers such that v > —22 and k > 2L, Then,

T e
(2.5) u(z,t) = Cypn-1 / DYu(y, s)DEW @ (z — y, t + 5)s" T 1dV (y, s)
H

holds for all u € bE.(\) and (z,t) € H. Furthermore, (2.5) also holds whenever p = 1 and
k=A+1

Finally, we present the following lemma. This lemma plays an important role for proving
Theorem 2.

LEMMA 2.6. Let0 <a<1,1<p<oo, A>—1,andu € bl(\). Then,
(Dt% + Az) u(z,t) =0

forall (z,t) € H.

3. Integral operators induced by the fundamental solution

In this section, we define integral operators induced by the fundamental solution W(*) and
investigate their properties. These investigations are useful for studying a-parabolic conjugate
functions of b? (\)-functions.

First, we recall the definition of L(®)-harmonic functions. ( For details, see section 2 of [7].)
We describe about the operator (—A,)®. Since the case o = 1 is trivial, we only describe the
case 0 < a < 1. Let C°(H) C C(H) be the set of all infinitely differentiable functions on H
with compact support. Then, (—A,)?* is the convolution operator defined by

(3.1) (—Az)Y(z,t) = —Cha lgm/ (Y(z+y,t) — lﬂ(ﬂi,t))ly[""'z"‘dy
0 Jiyi>s

for all p € C®(H) and (z,t) € H, where C,,, = —4%7""?T'((n + 2a)/2)/T'(a) > 0. Let
L@ := —9t + (—A,)* be the adjoint operator of L(®). Then, a function u € C(H) is said to be
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L!*)-harmonic if u satisfies L*)u = () in the sense of distributions, that is, [,, [uL®y|dV < oo

and fH uz(")dzdv = ( forall vv € C"*(H). By (3.1) and the compactness of supp() ( the
support of ¥ ), there exist 0 < {; < {» < > and a constant " > () such that

supp(L®y) € § = R™ x [t,,1,] and Ly, O < C(1 + |x|) ™ 2> for (z,t) € S.

Hence, the condition [, luL(@)|dV < oo for all 1 € C™(H) is equivalent to the following:
forany 0 < t; < t, < o0,

ty o
/ / lu(e, )1 + |z]) ™ **dzdt < oco.
. tl Rn

Next, we define integral operators induced by the fundamental solution W(®)_ Let v € N2
be a multi-index and k, p € R with x > —3=. Then, we define the integral operator P} by

Py~ f(z,t) = / f(y, $)TDFW D (@ — y, t + 5)s°dV (y, 5),
H

whenever the integral is well defined. Some properties of PJ** are given in the following
theorem.

THEOREM 3.1. Let0 < a < 1,1 < p < 00, and g € R. Suppose that a multi-index v € Nj
and K, p € R with k > — 3= satisfy

o—pp<p-1< (%+n)p+a—pp.

Then, for every f € LP(0), the following assertions hold.

(1) The function PY"™" f (z,t) is well defined for every (z,t) € H and there exists a constant
C > 0 independent of f such that

B2 f vy < C I

Lr(o)>»
where n = (% +K—p— 1) p + 0. Moreover, PY™* f is L'®)-harmonic on H. Consequently,

Fyerf e bg(n).
(2) Furthermore, let § € N} be a multi-index and v € R. If v satisfies

1/+/{>——1L—ana’p—1< I—1[-#1/+/€ P+ o — pp,
2a 2¢e

then the derivative OPDY PY** f(x,t) is well defined for every (x,t) € H and 8°DY PY*+rf =
PB+Yvtrp £ that is,

OEDYPY~r f(z,) = [ f(y. )02 "Dy W (@ —y, t + 5)s7dV (y, 5).
H
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Consequently, put n = (I—ﬁ—‘;&m +VA+K—p— 1) p + o, then there exists a constant C' > 0
independent of [ such that

107D P f vy = C N S v
and O°DY P1r f € b (n).
By the above theorem, we have the following corollary.

COROLLARY 3.2. Let0 < a < 1,1 < p < oo, and A > —1. Then, the following assertions
hold.

(1) If a real number k satisfies K > ’\—:;1 then the operator RE™' = ¢, 1 PY™*"1is a
bounded projection from LP(\) onto b%,(X).

(2) For a real number v > —A—;f—l, there exists a constant C = C(n,p, a, A\, v) > 0 such that

— vyv by, v
CH w S EDiu ey > 12 MOrDy M || oy < C oy

[vl<y+ 2

»

Jor all u € b2 (), where v € N denotes a multi-index.

4. More properties of a-parabolic conjugate functions

In this section, we present more properties of a—parabolic conjugate functions. Given a
harmonic function v on H, it is well known that a vector-valued function V = (vy,...,v,) on
H with v; € C'(H) satisfies the equations (1.1) and (1.2) if and only if there exists a function
g € C*(H) such that

4.1) g is harmonic on H and V(59 = (v1, ..., Vn, u),
where V ;4 = (01,...,0,,0:). The following theorem is a analogous result of (4.1) for our
case.

THEOREM 4.1. Let0 < a < 1,1 < p < o0, A > —1, andu € b2(N). Then, a vector-
valued function V = (vy,...,v,) on H is an a-parabolic conjugate function of u if and only if
there exists a function g € C*(H) N FC s such that

1
(’D{’ + Ax)g =0onH and V; g = (v1,...,Vn, u).

Next, we give an inversion theorem, that is, for a vector-valued function V' = (vy,...,v,)
on H we construct a function u € b () such that V' is an a-parabolic conjugate function of u.

THEOREM 4.2. Let0 < a < 1,1 < p < o0, andn > —1. Suppose that a vector-valued
SJunction V- = (vy,...,v,) on H satisfies v; € bE(n) and Vv, = 0;V foralll < j <n. Ifa,
p, and n satisfy the condition A = p(1 — 51(;) + 1 > —1, then there exists a unique function u
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on H such that v € b2 (\) and V' is an a-parabolic conjugate function of u. Also, there exists a
constant C' = C(n, p,a,n) > 0 independent of V' such that

C IV lran < e lleron < C IV e -

We also have the following proposition.

PROPOSITION 4.3. Let0 < a < 1,1 <p<oo, A > =1, andu € bL(N). Let1 < 5 <n
be fixed. Suppose that a vector-valued function V.= (vy,...,v,) on H is an a-parabolic
conjugate function of u. Then, v; € FC*. Furthermore, ifvi. € C*(H) forall1 < k <n, then

(Di + A)v, =0 on H.

Finally, we present a decomposition theorem for a-parabolic conjugate functions. We begin
with presenting the following lemma.

LEMMA 4.4, Let0<a <1, 1<p<oo A>—1 andu € bE(N). Suppose «, p, and X

satisfy the conditionn = p (5= — 1) + X > —1. Then, for every a-parabolic conjugate function
2a

U = (uy,...,u,) of u, the function D; ' Dyu; on H is well defined and belongs to bL,(n) for all
1<j<n

The following theorem is a decomposition theorem for a—parabolic conjugate functions.

THEOREM 4.5. Let0 < « < 1,1 < p < o0, A > —1, and u € b5 (N). Suppose a, p, and
A satisfy the conditionn = p (i — 1) + A > —1. Then, every a-parabolic conjugate function

U = (uy,...,u,) of ucan be uniquely expressed in the form
(4.2) U(z,t) =V(x,t)+ F(z), (z,t)€ H,
where V = (v1,...,vU,) is the unique a-parabolic conjugate function of u with v; € bb(n) in

Theorem 1 and F = (fy, ..., fn) is an n-tuple of harmonic functions on R™ with O f; = 0, f,
1 <4,k <nand Z?:l 0;f; =0 (thatis, F = (f1,..., fa) is a system of conjugate harmonic
Sfunctions on R", consequently each u; belongs to C*(H) ). Conversely, every function U of
the form (4.2) is an a-parabolic conjugate function of u.
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