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1 Introduction

Let R” denote the n-dimensinonal Euclidean space. We denote by B(z,r) the open
ball centered at = of radius 7. For a locally integrable function f on R"™, we consider
the maximal function M f defined by

Mf(x) = sup ————
(=) r>0 |B(z,7)| JB(zr)

|/ ()ldy,

where |B(z,r)| denotes the volume of B(z, 7).
In classical (constant exponent) Lebesgue spaces, we know the following basic
facts about the maximal operator (see the book by Stein {29, Chapter 1}):

(i) If ¢ > 1, then
IM5lle < Clifllg for all f € LI(Q2).

(ii) If © is bounded, then
IMfllh < Clifllciogr for all f € Llog L().

Following Orlicz [25] and Kovacik and Rakosnik [21], we consider a positive contin-
uous function p(-) on R™ and the space of all measurable functions f on R" satisfying

/ f) Y

— dy < oo
) Y
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for some A > 0. We define the norm on this space by

p(y)
llfllp<~):inf{/\>0:/|f_(jﬁ dySl}.

In connection with these classical results, a natural question arises about conditions
on p(-) implying the inequality

“]Mf“p(-) =< C“f”p(-)

for f € LPO(Q). Diening [6] is the first who treated the local boundedness of the
maximal operator, and Cruz-Uribe, Fiorenza and Neugebauer [5] showed that this
remains true for R™ when p(-) satisfies a log-Holder condition on R™ including the
point at infinity. In fact, they showed the following result.

THEOREM A. Let 2 be an open set, and let p(-) be a variable exponent in §2 satisfying
1 < infa p(z) < supg p(z) < oo,

C 1
:E ) x, E Q, Tr — < -
Ip(z) — p(y)| Tog(L/[z — 3] Y e —yl < 3
and o
— < '

Then the maximal operator is bounded on LP") (), that is,
1M fllpey < Clifllpcy for all f € LFO(Q).

In this paper we aim to extend their results and the authors {10].
We say that a positive nondecreasing function ¢ on the interval [0, 00) satisfies
(P) if there exist g > 0 and 0 < 79 < 1/e such that

(P) (log(1/7))~°p(1/7) is nondecreasing on (0, 7¢).

For positive nondecreasing functions ¢ and v satisfying (P), let us assume that our
variable exponent p(-) is a positive continuous function on R" satisfying :

(pl) 1 < p™ = infr~p(z) < supgn~p(z) =pt < 00 ;
log p(1/]z — yl)
log(1/]z — yl)

(p3) |p(z) — p(y)| < l_oig% whenever |y| > |z|/2 > e/2.

(2) Ip(z) —p(y)| < whenever |z —y| < 1/e;
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Condition (p3) implies that p(-) has a finite limit py, at infinity and

log 1(|z])

whenever |z| > e.
log ||

(p4) [P(Z) — Pool <

If fe LPO(R™), then we find for By = B(xg,7¢) with 0 < 1o < 1/e

log p(1/fzg-yl)

/ |f ()P0 f(y)| a7 =00 dy < 0o = | |f(y)P¥dy < oo
J Bo Bo

= [ @) S dy < oo

Bo

Since the left and right hand sides are considered to be Orlicz-type conditions, the
class LP)(R™) is related to certain Orlicz spaces. More precisely, see Remarks 2.9 -
2.11 below.
Now we set
D az,t) = trE ()",

\IIA(.r, t) — tp(w)w(t—l)—A/p(r)

and
Pa(z,t) = min{Ps(z,t), Va(z,t)}.

In view of Lemma 2.1 (ii) below, we see that ®4(z, ), Va(z, ) and Py(z,-) are quasi-
increasing on (0, 00); for example, there exists C' > 1 such that

Dy(z,8) < CDy(x,t) whenever 0 < s < t and z € R™. (1.1)

We define the quasi-norm

I fllpac.y = inf {/\ >0: /PA(a:, 1f(2)]/\)dz < 1}

and denote by LP40)(R™) the family of all functions f on R™ such that || f||,(.,) < oco.
It is well known (see for example Cianchi [3]) that the maximal operator is bounded
in the Orlicz space consisting of functions f satisfying

[ 20swhdy < oo,

where @ is a convex function on the interval [0, c0) such that ®(r)/7? is nondecreasing
for some p > 1. As an extension of this fact to the variable exponent case, we first aim
to establish the following result concerning the boundedness of maximal operators.

TueEOREM 1.1 The maximal operator M is bounded from LPO)(R™) to LPAC)(R™)
when A > n.
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If ¢ and 7 are constants, then we can take A = 0. Hence our theorem extends
the results by D. Cruz-Uribe, A. Fiorenza and C. J. Neugebauer [5]. In Theorem 1.1,
we can not take A < n in general, as will be seen from Remark 2.11 below.

In his paper [12], P. Hasto studied local integrability of maximal functions for the
exponent
log(e + log(e + 0k ()™ 1))

log(e + dx(z)~1)

where 0 (z) denotes the distance of z from the compact set K in R™. Further, P.
Harjulehto and P. Hasto [13] showed continuity of Sobolev functions for exponents of
the form

plz)=14+a

bl

log(e + log(e + x (z)1))
log(e + 0k (z)~1)

p(z) = po +a

I

which can be seen as an extension of the fact : if u € Wlf,’C"(R") satisfies

/n [Vu(z)|*(log(1 + |Vu(z)|))*dr < oo

with @ > n — 1, then u is continuous on R™. For further related results, see [9] and
[23].

If G is a bounded open set in R", then the conclusion of our theorem implies
[ IM£@PD (M (@) Dz < o0
G

for f € LPO)(R™), which gives the Orlicz-type condition

log w(1/|zg—=zl)
/ |M £ ()P {| M f(z)| a7z (M f ()~ AP }dz < oo
B(zo,‘ro) .

for small 7g.
To show Theorem 1.1, different from the bounded domain case, we need to discuss
a boundedness property for the Hardy operator defined by

1
Hf@ = s /B L wldy

As applications of Theorem 1.1, we discuss Sobolev’s type inequality for Riesz
potentials of functions in Orlicz spaces of variable exponent by use of the so called
Hedberg trick (see [19]). For the case of variable exponents satisfying the so called
log-Holder condition, there are many papers, e.g, Almeida-Samko [1], Capone-Cruz-
Uribe-Fiorenza [2], Cruz-Uribe-Fiorenza-Martell-Pérez [4], Diening [7], Edmunds-
Rékosnik (8], Futamura-Mizuta [9], Futamura-Mizuta-Shimomura [10, 11}, Mizuta-

Shimomura [24], Harjulehto-Héast6 [13], Harjulehto-Hasto-Koskenoja [14, 15}, Harjulehto-

Héasto-Koskenoja-Varonen [16], Harjulehto-Héasto-Latvala [17], Harjulehto-Héasto-Pere
(18], Kokilashvili-Samko [20], Samko-Shargorodsky-Vakulov {27] and Samko-Vakulov
[28].
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2 Proof of Theorem 1.1

Throughout this paper, let C' denote various constants independent of the variables
in question.
First we note the following result, which can be derived by condition (P).

LEMMA 2.1 ([22], [23, Lemma 2.1]).
(i) @(r) is of log-type, that is, there exists C > 0 such that

Clp(r) < p(r?) < Cp(r) whenever r > 0.

(ii) For 6 > 0, r=%p(r) is almost decreasing, that is, there exists C > 0 such that

r590(ry) < Crilp(r)) whenever o > 11 > 0.

(iii) There exists 0 < rg < 1/e such that wi(r) = log p(1/r)/log(1/r) is nondecreas-
ing on (0, 7o); set wy (1) = wy(rg) for r > ry.

(iv) There exists Rg > e such that wy(r) = logy(r)/logr is nonincreasing on
[Ro, 00); set wa(T) = wa(Ry) for 0 < r < Ry.

In view of (i) we see that

(i) for each v > 0 there exists C' > 0 such that

Clp(r) < o(r") < Co(r) whenever r > 0.

Recall
D a(z,t) = tPBp(t)~A/PE

for A > n. Setting

flloacr = inf {3 > 05 [ @aa @Mt <1},
we denote by L®4)(R™) the family of all functions f on R™ such that || flle,(..) < oco.
Then we see that || - ||¢,(.,) is & quasi-norm, that is,
(i) Iflloac,y = 0 if and only if f =0,
(i) N&flloacy = 1kl leac,
(i) If +glleacy < C (Iflloac) + Nglloac.)

for f,g € L*40)(R™) and a real number k. The same is true for || - ||y () as well as
Il @ac-
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ExamprLE 2.2 (1) Our typical example of ¢ is
©(r) = a(log r)’(log(log r))° for r > R,

and ¢(r) = p(Ry) for 0 < 7 < Ry if the numbers Ry > e, a > 0, b > 0 and ¢ are
chosen so that ¢(7) is nondecreasing on (0, 00).

(2) For a positive nondecreasing function ¢ satistying (P), set

log p(1/7)

)= log(1/7)

(0 <r<rg= l/Ro)
Then we see that
jw(s) —w(t)] < w(ls—tf) for all 0 < s,t < ry.

For this, we have only to see that

1 1
log(1/s) log(l/t)} < wls) +w(?)

wis+1) < logp(l/(s + t)){

for s,t > 0 with s+t < 1.

(3) Let K be a compact set in R™ and denote the distance of z from K by dx(x).
For ¢ as in the introduction and py > 1,

log p(1/6k(z))
log(1/6k(x))

can be extended to an exponent satisfying conditions (pl) and (p2).

for £ near K

p(z) =po +

(4) For pp > 1 and 6 > 0,

X 5
p(z) = po + <log(e + log(e + IIEI)))

satisfies (pl) — (p4) with ¢ and 1 replaced by suitable constants.

For a proof of Theorem 1.1, we need the following result. For this purpose, it is
worth to see that

(w1) rm ™) < Co(1/7)
and
(w2) re2() < Cap(r)

whenever r > 0.
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LEMMA 2.3 Let f be a nonnegative measurable function on R™ with || f{|,(y < 1 such
that f(z) > 1 or f(xz) = 0 for each x € R™. Set

1

F=Flxr f)= ——— ’
(z,7. f) Bl o f(y)dy
and
1
= . - - p(y)
Then

F < CGI/p(m)(p(G)n/P(r)z_

PROOF. Let f be a nonnegative measurable function on R™ with || f||,() < 1 such
that f(z) > 1 or f(z) = O for each x € R". First consider the case when G > 1.
Note by (w;) that

G (CET™) < Cp(G)"

and
(’D(G)wl(CG“l/") < C.

Since || f|lp() < 1 by our assumption, we find

/ Fly)@dy < 1,

so that G < 1/|B(z,r)|. Hence we have for y € B(z,r),

{grergGyrer} ™ < {ogummggyer} T

}-p(x)+w1(CG“1/")

< { CGHPE) oGy < CG,

so that

F < Gl/P(:r)Lp(G)n/p(z)z i 1 / f(y){ f@) }p(y)—ldy
N |B(z,7)| B G1/2(@) o (G)n/p(@)?
< CGI/P(z)W(G)n/p(z)Z.
In the case G < 1, noting that f(y) < f(y)P(y) for y € R™, we find
F < G < CGYPE) < oGP o(G)n/P)

since p(0) > 0. Now the result follows. O

PROPOSITION 2.4 Let 0 < R < oo. Then the maximal operator M is bounded from
LPO(B(0, R)) to L*40)(R™) when A > n.
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PROOF. Let f be a nonnegative measurable function on R™ with || f||,() < 1 such
that f = 0 outside B(0, R). We write

f = fX{y:f(y)zl} + fX{y:f(y)<]} = fl + f2>

where x g denotes the characteristic function of F.
Now take pg such that 1 < pg < p~, and set po(z) = p(z)/py. Then we see that

/ fiy)PeWdy < / fly)rdy < 1,
J B(O,R) J/ B(0,R)

so that || fillpo() < 1. Applying Lemma 2.3 with p(z) and ¢(7) replaced by po(z) and
@(r)*/Po respectively, we find

M fi(z) < C{Mgo(z)}/P°® (M go(z))™/ tPorol?)
for z € B(0,2R), where go(y) = f(y)P°¥). Since M fy(z) < 1, we establish
M f(z) < C{Mgo(z)}'P*@p(Mgo(x))™/ o + C,
so that Lemma 2.1 gives
{M f(2)}PDp(M f(z))"/P) < C (Mgo(z) + 1) .

Thus it follows that
Pa(z, M f(z)) < C+ C{Mgo(z)}"

with A = npo. Hence, by the well-known boundedness of the maximal operator, we
insist that

/ Oa(z, M f(z))dz < C.
B(0,2R)

If |z| > 2R, then

Mf@) < Clal™ [

{1+ f(y)PW}dy < Clz|™,
B(O,R)

which proves
/ Dy(z, M f(z))dx < C.
R"™\B(0,2R)

Thus the required result is proved. d

LEMMA 2.5 Let f be a nonnegative measurable function on R™ such that f = 0 on
B(0,Ry) and f <1 on R™. Then

F < C{Gy(G™)VPEPE) 4 Cy(z) + CH f ()

whenever |z| > e, where y(z) = |;,;|~H/P(fc)1/,(|$|)n/pio and

1
HI) = 5 /B Ly
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PROOF. Let f be a nonnegative measurable function on R"™ such that f = 0 on
B(0, Ry) and f < 1 on R™. Then note that

B 1
lB(iIf; 7")’ J B(x,r)

Let |z| > e. In the case G > |z|™", we have by (p3) and (w»)

G fly)PWdy < 1.

< {CGl/”(”z/)(G—l)n/p(x)z}"p(””}"“’z“"‘”")
< CcG™!
for |y| > |z|/2. Hence we find
: Flu)dy

|B(z, )| B(z,r)\B(0,|z}/2)

< GI/P(1)¢(G—1>n/p(x)2
1 / { /() }”‘y)*l
s f(a d
!B(SE, 'r)l B(z,m)\B(0,|z|/2) (J) Gl/p(w)w(G’—l)n/p(x)z Y
< (;'G'l/p(w)w((;—l)n/p(ar)2
< Cgl/p(x)¢(G—1)n/pgo_

In the case G < |z|™™, we see that

1
|B(z, 7‘)| B(z,r)\B(0,|z|/2)
< |x|—n/p(z)¢(!w|)n/p(z)2
1 f(y) p(y)—1
B / (y){ @) (| %
z,7)| J B(zr)\B(0,|z]/2) |z] P(|z])
< Cla|™P@y(jz )P < Cy(a).

f(y)dy

Finally we obtain

1
— f(y)dy < CH f(x),
|B($7 T)I B(z,r)NB(0,|z|/2) ( )

which completes the proof. O

LEMMA 2.6 Let f be a nonnegative measurable function on R™ such that f = 0 on
B(0,Ry), f <1 on R™ and

1

Go = +—=———
'B(Oa |LE|)| B(0,|z])

f)PWdy < Clz|™° (2.1)
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for some C' > 0 and 6 > 0 independent of x and f. If 0 < (3 < n, then

Hf(z) < C{Gop(Gg Yo} ™ 4 Claf -0
for |z| > Ry .
PROOF. Let f be a nonnegative measurable function on R™ satisfying f = 0 on
B(0, Ro), f <1 on R™ and (2.1). For |z] > Ry, we have by Holder’s inequality

1
< -
— B, |zD)] Jso,=n

1 / 1
- FOP@dy+ o [ e
EIGAE ) BOJN Joopens’ Y W
= H, + H,,

H f(z)"™) fy)"dy

where E = {y € R"\ B(0, Ry) : |y| ?/?® < f(y) < 1}. Note that
H, < Clz|™P.
If y € B(0,|z|) N E, then
Fu)P® < fly)P@ 2D < fyPOu(ly])PPS < fy)POp(|2])PP,

so that
H, < w(!xl)ﬂ/p(x)co)

which together with (2.1) gives

as required. O

Applying Hardy’s inequality, we can prove the following result.

LEMMA 2.7 Forl < pg < o0,

”HgOHPO < C”gO“Po

for all functions go € LP°(R™).

Now we are ready to prove Theorem 1.1.

PROOF OF THEOREM 1.1. Let f be a nonnegative measurable function on R"
such that || fl|,) < 1. Write

f = fX{y:f(y)Zl} + fX{y:f(y)<1} = fl + f2-
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We have by Lemma 2.3,
M fi(z) < C{Mg(z)}" /" p(Mg(z))"P",
where g(y) = f(y)?™¥), so that
Dy, Mfi(2)) < CMgla). (22)

‘Hence, in view of the proof of Proposition 2.4, we see that

/ Dz, M fr(z))dx < C

when A > n. Since M fy, < 1 on R, we have

/ D y(x, M fo(x))dz < C.
B(0,e)
Further we find by Proposition 2.4

/ B 4(z, M fo(z))dz < C,

where f5(y) = f2(y¥)xB(0o,e)(y)- Therefore it suffices to prove
/ WAz, Mf3(x))dr < C, ' (2.3)
R™\B(0,e)

where f} = f2 - f3.
Thus we may assume that 0 < f < 1 on R™ and f = 0 on B(0,e). In this case,
by Lemmas 2.5 and 2.6, we have for 0 < § < n

Mf(l') < C{Mg(x)v,[)(Mg(x)—l)n/p(r)}1/P(x) + C’y(a:) + CHf(:c)
< C{Mg(z)p(Mg(z) ' VPOP/PE 4 Clg| P/
+C{Hg(z)p(Hg(z)~1)/rle)}1/p(=)

so that
U, (z, M f(z)) < CMg(z) + CHg(z) + Clz|™* (2.4)

for |z] > e. Let 1 < po < p~. Applying (2.4) with p(z) and ¥ (r) replaced by
po(z) = p(x)/po and 1 (r)'/Po respectively, we find

Ua(z, Mf(z))/P° < CMgo(z) + CHgo(z) + Clz|™?,

where A = npy and go(y) = f(y)P°¥ = g(y)/P°. Hence, letting Bpo > n, by Lemma
2.7 and the boundedness of maximal operator on L?°, we derive

/ Wa(z, M f(x))dx < C.
R"™\B(0,e)

Thus the proof is completed. J
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REMARK 2.8 In Theorem 1.1, we can replace Pa(z,t) by
min{ P p(t) A7 () AP )

or
p(z)

[min{t(e) AP0 ey Ay |7
REMARK 2.9 Let p(-) be the variable exponent such that

log log(co/|z|)
log(co/lz|)
for z € B = B(0,1), where a > 0 and ¢y > e are chosen so that p(z) > p, on B

and p(z) satisfies (p2) with ¢(r) = (log(e + 7))*. If f is a nonnegative measurable
function in LP®)(B), then

p(z) =po+a

/B F )P (log(e + f(y))™*dy < co.

In fact, letting E = {y € B: f(y) < |y|™™/P(log(e + |y|7!))~*} with A > (an/po +
1)/po, then

/B )P (logle + f(y)))™ P dy

= C/ ly| "™ (log(e + |y|1))*™/P~ody + C | f(y)™(log(e + f(y)))*Pdy
E B\E

< C+C fy)PYdy < oo.
B\E

REMARK 2.10 We next consider the converse part of Remark 2.10. Let p(-) be the
variable exponent such that

log log(co/I])
log(co/lz])
for x € B, where a > 0 and ¢y > e are chosen so that p(z) > 1 on B and p(x)

satisfies (p2) with () = (log(e +r))®. If f is a nonnegative measurable function on
B satisfying

p(z) =po—a

/B Fy)Pologle + £ ()P dy < oo,
then f € LPO(B).

REMARK 2.11 Consider the variable exponent

log(e+log(e+z, 1))
p(;z;) = Po +a log(e+z;1) (:Cn > 0>
Po (zn <0)
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for z = (z1,...,x,) € B, where a > 0. Let

—n/po oc(e 1 —1\\~1/po oo log(e —1\\— .
f(y)sz@)x{gyi (log(e + [y =)~ V7 (log log(e + [y] 1)) ~* 83233

for Bpg > 1. Then f € LPY)(B). Noting that
M f(z) = Clz| ™™ (log(e + || 1))~ /7° (log log(e + |z[ ™)),

we have
[ MI@P g1 + M £ (@)
B

> C [ el (logle + 2] 1)K loglog(e + 2] ) Pda
r

where ' = {z = (21, ..., xn) € B: 2, > |z|/2}. Hence

/ M f ()@ (log(1 + Mf(x))) ¥ dz = oo
B

if ~K + an/py > 0. This implies that we can not take A < n in Theorem 1.1,
generally.
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