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Mountain pass and symmetric mountain pass approaches

for nonlinear scalar field equations

Kazunaga Tanaka

Department of Mathematics, School of Science and Engineering, Waseda University

1. Introduction

This note is based on my joint work [HIT] with J. Hirano and N. Ikoma and we study the

existence of radially symmetric solutions of the following nonlinear scalar field equations:

—Au=g(u) in R", (1.1)
uwe HY(RY). (1.2)

Here N > 2 and g : R — R is a continuous function. This type of problem appears in
many models in mathematical physics etc. and almost necessary and sufficient conditions
for the existence of non-trivial solutions are obtained by Berestycki-Lions [BL1, BL2] for
N > 3 and Berestycki-Gallouét-Kavian [BGK] for N = 2. See also Strauss [Sw] and
Coleman-Glaser-Martin [CGM] for earlier works.

In [BL1, BL2, BGK] they assume

(g0) g(&) € C(R,R) and g(&) is odd.
(gl) For N > 3, limsup (5) < 0. For N = 2, limsup g(fz < 0 for any o > 0.

&—00 fN &—o0

(g2) For N > 3

9(&) 9(&) _
—nc < hm 1(1)1f ¢ < ln\njgp 7 (1.3)
For N =2
_x<c1in%g%£—)—<0. (1.4)

(g3) There exists a (g > 0 such that G({y) > 0, where G(§) = fof g(T)dr.

Under the above conditions, they show the existence of a positive solution and infinitely

many (possibly sign changing) radially symmetric solutions.
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(g0)—(g3) are natural conditions for the existence of solutions. However we can see

a difference between cases N > 3 and N = 2 in the condition (g2). We remark that

when N = 2, the existence of a limit limg_,g g(*)

€ (—oc,0) is used essentially to show
the Palais-Smale compactness condition for the corresponding functional under suitable
constraint ([BGK]).

The aim of this paper is to extend the result of [BGK] slightly and we prove the
existence of positive solution and infinitely many radially symmetric solutions under the
conditions (g0), (gl1), (g3) and (1.3) (not (1.4)).

We also remark that in [BL1, BL2, BGK], they constructed solutions of (1.1)—(1.2)

through constraint problems in the space of radially symmetric functions:

find critical points of {/ (Vul|? dz; / G(u)dz = 1} (N > 3), (1.5)
R RV

N

or
find critical points of {/ |Vu)|? dz ; G(u)dx =0, / u? dr = 1} (N =2). (1.6)
R? R? R?

In fact, if v(z) is a critical point of (1.5) or (1.6), then for a suitable A > 0, u(x) = v(x/A) is
a solution of (1.1)—(1.2). On the other hand, solutions of (1.1)-(1.2) are also characterized
as critical points of the functional I(u) € C*(H}(R"),R) defined by

I(u) = —;—/ |Vu|? de — - G(u) dz
RN . N

Here we denote by H!(R") the space of radially symmetric H!-functions defined on RY.
It is natural to ask whether it is possible to find critical points through the unconstraint
functional 7 (u).

Our second aim is to give another proof of the results of [BL1, BL2, BGK] using
mountain pass and symmetric mountain pass arguments to I(u).

Now we can state our main result.

Theorem 1.1. Assume N > 2 and (g0), (gl), (g3) and
9(§) 9(§)
3

< limsup —= < 0.

g0

Then (1.1)—(1.2) has a pothne least energy solution and infinitely many (possibly sign

(g2') —o0 < hmlé’lf J

changing) radially symmetric solutions, which are characterized by the mountain pass and
symmetric mountain pass minimax arguments in H}(R") (see (2.1)—(2.2), (3.11) below

for a mountain pass minimax values).

We will take mountain pass and symmetric mountain pass approaches to prove The-

orem 1.1. Since I(u) is an even functional with a mountain pass geometry and it is
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possible to define a mountain pass minimax value b,,;,, and symmetric mountain pass val-
ues b, (n € N) for I(u). By the Ekeland’s principle. we can find a Palais-Smale sequence

(uj)‘;-‘;l C HYRY) at levels by and by,. that is, (uj)}’f’__l satisfies

I(uj) — by (o1 by), (1.7)
I'(u;) — 0 strongly in (H}(RM))*. (1.8)

However one of the difficulty is the lack of the Palais-Smale compactness condition and it
seems difficult to show the existence of strongly convergent subsequence merely under the
conditions (1.7)-(1.8). A key of our argument is to find a Palais-Smale sequence with an
extra property related to Pohozaev identity.

In the following sections, we give an outline of our approach to give a proof of our
Theorem 1.1. For the sake of simplicity. we just deal with the existence of a positive
solution, which is corresponding to the moutain pass theorem. For a proof for symmetric

moutain pass minimax values we refer to [HIT].

2. Mountain pass minimax value

Modifying the nonlinearity g(£) as in [BL1] if necessary, we may assume that g(f) satisfies
(20), (g2’), (g3) and

(g1’) when N > 3, lim gi)?
§{—o0 |€| 72

when N = 2, lim g(fz = 0 for any « > 0.

E—o0 v

We remark that under (g0), (g1’), (g2"), (g3)

~—~

=0.

I(u) = %/ |Vul? dr — G(u)dz: H}(R") - R
RN JRN

is of class C! and has a mountain pass geometry. That is,
(i) 1(0) =o0.
(ii) There exist 79 > 0 and pp > 0 such that

I(u) > po for ||ul|gr = ro.
(ili) There exists an eg(z) € H,; (R") such that |leg||z1 > ro and

I(eo) < 0.
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Here we use notation: |jullgp = ([pn |Vul® + |ul? dz)'/2.

We can define the mountain pass minimax value by,, by

bmp = Inf max I(~(t)), (2.1)
~v€l'te(0,1]
I'={yeC(0,1},H(R")); 7(0) = 0, 7(1) = eo}. (2.2)

As we stated in the Introduction, it is difficult to check the Palais-Smale condition for I (u)

and it is a main difficulty in proving Theorem 1.1.

3. Our approach

To show by, is a critical value of I(u), first we recall that fRN |Vu|? dz and fRN G(u) dx
have the following scaling property: for ug(z) = u(e %x)

/ |Vug|? doz = eV =29 / |Vu|? dz,
RY RN

Glug) dz = ™V G(u)dz.
RV RV

We introduce an auxiliary functional I(4.u) € C1(R xH}(RY),R) by
~ 1 :
I(0,u) = zeN-2)9 / |Vul? de — eN? / G(u)dzx
which has the following properties:

I(0,u) = I(u), (3.1)
I(0,u) = I(ug) for all # € R and u € H}(RY). (3.2)

We equip a standard product norm [[(¢.«)||g xmr = (|8]? + ||ul|%:)/? to R x HY(RY).

Remark 3.1. We remark that this type of auxiliary functionals was first used in Jeanjean
[J1] for a nonlinear eigenvalue problem. It should be compared with monotonicity method
due to Struwe [Sm] and Jeanjean [J2]. We expect that this type of auxiliary functionals
can be applied to other problems.

We define minimax values Emp for T (6.u) by
bmp = inf max I(7(0)),
D Seb teoo] (7(o)).

I'={3(t) € C([0,1],R xH}(R")); %(0) = (0,0), ¥(1) = (0,0)}.

Then we have



160

Lemma 3.2. Bmp = bpp-

Proof. For any v € " we can see that (0.v(t)) € I' and we may regard I’ ¢ T. Thus
by the definitions of byp, l~)mp and (3.1), we have bmp < bpp. Next for any given 4(t) =
(0(t), n(t)) € T, we set v(t) = n(t)(e ?Ma). We can verify that y(t) € I and by (3.2)
I(~(t)) = f(ﬁ(t)) for all ¢ € [0,1]. Thus we also have bp > bn. |

As a virtue of 1(f,u) we can find a Palais-Smale sequence (6;,u;) in the augmented
space R x HX(R") with an additional property (3.6) below. Namely we have

Proposition 3.3. For any n € N there exists a sequence (6;,u;)52; C R x H}(R™) such
that

(i) 6; — 0. ) (3.3)
(ﬁ) {(0]', U’j) - bmp (= bmp)' (3 4)
(iii) I'(6;,u;) — O strongly in (H}(R™))". (3 5)

Proof. We note that for any € > 0 there exists a path v(t) € I' ¢ T such that

1(0.%(t)) < by .
trerl[g?;]I(O (1) < bmp + €

Applying Ekeland’s principle in the product space R x H}(R"), we can show Proposition
3.3 in a standard way. [ |

Next we study boundedness and compactness of a sequence (6;,u;) given in Proposition
3.3. First we observe that (3.4) and (3.6) imply the following

, :

eV || Ty, )3 — N / G(uj) dz — bmp, (3.7)

2 R"

N —2 (N—2)97' v 2 N N6, G d 0 ) 3.8
—e IVuslla = New™ | Glug)de =0 as j = oo 3

Remark 3.4. We recall that if u(x) is a critical point of I(u), then u(zx) satisfies

N -2
P(u) =0, where P(u)=

/ |Vu|*dz - N G(u) dz.
RY R"

The above equality is called Pohozaev identity. We remark that since §; — 0, (3.8) gives
a property related to the Pohozaev identity.

It follows from (3.7)-(3.8) that
| Vul|3 — Nb,, (3.9)

N -2
bn.

G(u;)dr —
JRN
We can show
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Proposition 3.5. Let (6;,u;) be a sequence satisfying (3.3)~(3.6). Then we have
(i) (u;) is bounded in H}(R").

(ii) (u;) has a strongly convergent subsequence in H} (R"Y).

Proof. (i) When N > 3, we can prove Proposition 3.5 in a direct way. Indeed, by (g0),
(g1’), (g2’) there exists a small mg > 0 such that

mo€® + g()¢ < Cl¢|¥2 forall (€ R.
It follows from ¢; = ”]’:‘,(ej,u_j)”(Hi(RN))‘ — 0 that lf’(f)j,uj)uj[ < g5llujll 1. Thus

e(N—2)6

IN

V3 + moe™® us|f < ™% [ moud + gus)us dz + 5 llusllm
R

, 2N/(N-2
< CeN |l |I5N) N T + sl (3.10)

Since ||Vu;l|2 is bounded by (3.9), we can observe that |lu;llan/(nv—2) is also bounded.
Thus (3.10) implies boundedness of ||u;||2, that is, (u;) is bounded in H} (RY).

To prove (i) when N = 2, we need to use a blow-up argument. We refer to [HIT)] (see
also Jeanjean and Tanaka [JT2]).

(ii) By the boundedness of (u;)52, in H} (RY), we can extract a weakly convergent
subsequence — still we denote by j — such that u; — ug. We can easily see that (0, ug)

is a critical point of I(#,w). The weak upper semi-continuity of
2 . g N
U +— mou” + g(uw)udx; H.(R") — R,

RN
which follows from Fatou’s lemma, implies u; — ug strongly in H}(R"). ‘ [
End of the proof of Theorem 1.1. Let (¢;.u;) be a sequence obtained in Proposition
3.3. By Proposition 3.5, we may assume u; — ug strongly in H}(R”Y). Then uy satisfies

f(O,uo) = b,y and I~'(0,u0) =0,

that is nothing but

I(up) = by and  I'(ug) =0, (3.11)

Thus b, is a critical value of I'(u).
As to the positivity of a critical point corresponding to b,,, and the fact that it has
least energy among all non-trivial solutions, we refer to [HIT]. |
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