Mountain pass and symmetric mountain pass approaches for nonlinear scalar field equations

Kazunaga Tanaka

Department of Mathematics, School of Science and Engineering, Waseda University

1. Introduction

This note is based on my joint work [HIT] with J. Hirano and N. Ikoma and we study the existence of radially symmetric solutions of the following nonlinear scalar field equations:

$$-\Delta u = g(u) \quad \text{in } \mathbf{R}^N, \tag{1.1}$$

$$u \in H^1(\mathbf{R}^N). \tag{1.2}$$

Here $N \geq 2$ and $g: \mathbf{R} \to \mathbf{R}$ is a continuous function. This type of problem appears in many models in mathematical physics etc. and almost necessary and sufficient conditions for the existence of non-trivial solutions are obtained by Berestycki-Lions [**BL1**, **BL2**] for $N \geq 3$ and Berestycki-Gallouët-Kavian [**BGK**] for N = 2. See also Strauss [**Sw**] and Coleman-Glaser-Martin [**CGM**] for earlier works.

In [BL1, BL2, BGK] they assume

(g0) $g(\xi) \in C(\mathbf{R}, \mathbf{R})$ and $g(\xi)$ is odd.

(g1) For
$$N \ge 3$$
, $\limsup_{\xi \to \infty} \frac{g(\xi)}{\xi^{\frac{N+2}{N-2}}} \le 0$. For $N = 2$, $\limsup_{\xi \to \infty} \frac{g(\xi)}{e^{\alpha \xi^2}} \le 0$ for any $\alpha > 0$.

(g2) For $N \geq 3$

$$-\infty < \liminf_{\xi \to 0} \frac{g(\xi)}{\xi} \le \limsup_{\xi \to 0} \frac{g(\xi)}{\xi} < 0.$$
 (1.3)

For N=2

$$-\infty < \lim_{\xi \to 0} \frac{g(\xi)}{\xi} < 0. \tag{1.4}$$

(g3) There exists a $\zeta_0 > 0$ such that $G(\zeta_0) > 0$, where $G(\xi) = \int_0^{\xi} g(\tau) d\tau$.

Under the above conditions, they show the existence of a positive solution and infinitely many (possibly sign changing) radially symmetric solutions.

(g0)–(g3) are natural conditions for the existence of solutions. However we can see a difference between cases $N \geq 3$ and N = 2 in the condition (g2). We remark that when N = 2, the existence of a limit $\lim_{\xi \to 0} \frac{g(\xi)}{\xi} \in (-\infty, 0)$ is used essentially to show the Palais-Smale compactness condition for the corresponding functional under suitable constraint ([**BGK**]).

The aim of this paper is to extend the result of $[\mathbf{BGK}]$ slightly and we prove the existence of positive solution and infinitely many radially symmetric solutions under the conditions (g0), (g1), (g3) and (1.3) (not (1.4)).

We also remark that in [BL1, BL2, BGK], they constructed solutions of (1.1)–(1.2) through constraint problems in the space of radially symmetric functions:

find critical points of
$$\left\{ \int_{\mathbf{R}^N} |\nabla u|^2 dx ; \int_{\mathbf{R}^N} G(u) dx = 1 \right\} \ (N \ge 3),$$
 (1.5)

or

find critical points of
$$\left\{ \int_{\mathbf{R}^2} |\nabla u|^2 \, dx \, ; \, \int_{\mathbf{R}^2} G(u) \, dx = 0, \, \int_{\mathbf{R}^2} u^2 \, dx = 1 \right\} \, (N=2). \quad (1.6)$$

In fact, if v(x) is a critical point of (1.5) or (1.6), then for a suitable $\lambda > 0$, $u(x) = v(x/\lambda)$ is a solution of (1.1)–(1.2). On the other hand, solutions of (1.1)–(1.2) are also characterized as critical points of the functional $I(u) \in C^1(H_r^1(\mathbf{R}^N), \mathbf{R})$ defined by

$$I(u) = \frac{1}{2} \int_{\mathbf{R}^N} |\nabla u|^2 dx - \int_{\mathbf{R}^N} G(u) dx.$$

Here we denote by $H_r^1(\mathbf{R}^N)$ the space of radially symmetric H^1 -functions defined on \mathbf{R}^N . It is natural to ask whether it is possible to find critical points through the unconstraint functional I(u).

Our second aim is to give another proof of the results of [BL1, BL2, BGK] using mountain pass and symmetric mountain pass arguments to I(u).

Now we can state our main result.

Theorem 1.1. Assume $N \ge 2$ and (g0), (g1), (g3) and

$$(\mathbf{g2'}) \ -\infty < \liminf_{\xi \to 0} \frac{g(\xi)}{\xi} \le \limsup_{\xi \to 0} \frac{g(\xi)}{\xi} < 0.$$

Then (1.1)–(1.2) has a positive least energy solution and infinitely many (possibly sign changing) radially symmetric solutions, which are characterized by the mountain pass and symmetric mountain pass minimax arguments in $H_r^1(\mathbf{R}^N)$ (see (2.1)–(2.2), (3.11) below for a mountain pass minimax values).

We will take mountain pass and symmetric mountain pass approaches to prove Theorem 1.1. Since I(u) is an even functional with a mountain pass geometry and it is

possible to define a mountain pass minimax value b_{mp} and symmetric mountain pass values b_n $(n \in \mathbb{N})$ for I(u). By the Ekeland's principle, we can find a Palais-Smale sequence $(u_j)_{j=1}^{\infty} \subset H_r^1(\mathbb{R}^N)$ at levels b_{mp} and b_n , that is, $(u_j)_{j=1}^{\infty}$ satisfies

$$I(u_j) \to b_{mp} \text{ (or } b_n),$$
 (1.7)

$$I'(u_j) \to 0$$
 strongly in $(H_r^1(\mathbf{R}^N))^*$. (1.8)

However one of the difficulty is the lack of the Palais-Smale compactness condition and it seems difficult to show the existence of strongly convergent subsequence merely under the conditions (1.7)–(1.8). A key of our argument is to find a Palais-Smale sequence with an extra property related to Pohozaev identity.

In the following sections, we give an outline of our approach to give a proof of our Theorem 1.1. For the sake of simplicity, we just deal with the existence of a positive solution, which is corresponding to the moutain pass theorem. For a proof for symmetric moutain pass minimax values we refer to [HIT].

2. Mountain pass minimax value

Modifying the nonlinearity $g(\xi)$ as in [**BL1**] if necessary, we may assume that $g(\xi)$ satisfies (g0), (g2'), (g3) and

(g1') when
$$N \ge 3$$
, $\lim_{\xi \to \infty} \frac{g(\xi)}{|\xi|^{\frac{N+2}{N-2}}} = 0$.
when $N = 2$, $\lim_{\xi \to \infty} \frac{g(\xi)}{e^{\alpha \xi^2}} = 0$ for any $\alpha > 0$.

We remark that under (g0), (g1'), (g2'), (g3)

$$I(u) = \frac{1}{2} \int_{\mathbf{R}^N} |\nabla u|^2 dx - \int_{\mathbf{R}^N} G(u) dx : H_r^1(\mathbf{R}^N) \to \mathbf{R}$$

is of class C^1 and has a mountain pass geometry. That is,

- (i) I(0) = 0.
- (ii) There exist $r_0 > 0$ and $\rho_0 > 0$ such that

$$I(u) \ge \rho_0 \quad \text{for } ||u||_{H^1} = r_0.$$

(iii) There exists an $e_0(x) \in H^1_r(\mathbf{R}^N)$ such that $||e_0||_{H^1} > r_0$ and

$$I(e_0)<0.$$

Here we use notation: $||u||_{H^1} = (\int_{\mathbf{R}^N} |\nabla u|^2 + |u|^2 dx)^{1/2}$.

We can define the mountain pass minimax value b_{mp} by

$$b_{mp} = \inf_{\gamma \in \Gamma} \max_{t \in [0,1]} I(\gamma(t)), \tag{2.1}$$

$$\Gamma = \{ \gamma \in C([0,1], H_r^1(\mathbf{R}^N)); \ \gamma(0) = 0, \ \gamma(1) = e_0 \}.$$
(2.2)

As we stated in the Introduction, it is difficult to check the Palais-Smale condition for I(u) and it is a main difficulty in proving Theorem 1.1.

3. Our approach

To show b_{mp} is a critical value of I(u), first we recall that $\int_{\mathbf{R}^N} |\nabla u|^2 dx$ and $\int_{\mathbf{R}^N} G(u) dx$ have the following scaling property: for $u_{\theta}(x) = u(e^{-\theta}x)$

$$\int_{\mathbf{R}^N} |\nabla u_{\theta}|^2 dx = e^{(N-2)\theta} \int_{\mathbf{R}^N} |\nabla u|^2 dx,$$
$$\int_{\mathbf{R}^N} G(u_{\theta}) dx = e^{N\theta} \int_{\mathbf{R}^N} G(u) dx.$$

We introduce an auxiliary functional $\widetilde{I}(\theta,u) \in C^1(\mathbf{R} \times H^1_r(\mathbf{R}^N),\mathbf{R})$ by

$$\widetilde{I}(\theta, u) = \frac{1}{2} e^{(N-2)\theta} \int_{\mathbf{R}^N} |\nabla u|^2 dx - e^{N\theta} \int_{\mathbf{R}^N} G(u) dx$$

which has the following properties:

$$\widetilde{I}(0,u) = I(u), \tag{3.1}$$

$$\widetilde{I}(\theta, u) = I(u_{\theta}) \quad \text{for all } \theta \in \mathbf{R} \text{ and } u \in H^1_r(\mathbf{R}^N).$$
 (3.2)

We equip a standard product norm $\|(\theta, u)\|_{\mathbf{R} \times H^1} = (|\theta|^2 + \|u\|_{H^1}^2)^{1/2}$ to $\mathbf{R} \times H_r^1(\mathbf{R}^N)$.

Remark 3.1. We remark that this type of auxiliary functionals was first used in Jeanjean [J1] for a nonlinear eigenvalue problem. It should be compared with monotonicity method due to Struwe [Sm] and Jeanjean [J2]. We expect that this type of auxiliary functionals can be applied to other problems.

We define minimax values \tilde{b}_{mp} for $\tilde{I}(\theta, u)$ by

$$\begin{split} \tilde{b}_{mp} &= \inf_{\tilde{\gamma} \in \tilde{\Gamma}} \max_{t \in [0,1]} \widetilde{I}(\tilde{\gamma}(\sigma)), \\ \tilde{\Gamma} &= \{ \tilde{\gamma}(t) \in C([0,1], \mathbf{R} \times H^1_r(\mathbf{R}^N)); \, \tilde{\gamma}(0) = (0,0), \, \tilde{\gamma}(1) = (0,e_0) \}. \end{split}$$

Then we have

Lemma 3.2. $\tilde{b}_{mp} = b_{mp}$.

Proof. For any $\gamma \in \Gamma$ we can see that $(0, \gamma(t)) \in \tilde{\Gamma}$ and we may regard $\Gamma \subset \tilde{\Gamma}$. Thus by the definitions of b_{mp} , \tilde{b}_{mp} and (3.1), we have $\tilde{b}_{mp} \leq b_{mp}$. Next for any given $\tilde{\gamma}(t) = (\theta(t), \eta(t)) \in \tilde{\Gamma}_n$, we set $\gamma(t) = \eta(t)(e^{-\theta(t)}x)$. We can verify that $\gamma(t) \in \Gamma$ and by (3.2) $I(\gamma(t)) = \tilde{I}(\tilde{\gamma}(t))$ for all $t \in [0, 1]$. Thus we also have $\tilde{b}_n \geq b_n$.

As a virtue of $\widetilde{I}(\theta, u)$ we can find a Palais-Smale sequence (θ_j, u_j) in the augmented space $\mathbf{R} \times H^1_r(\mathbf{R}^N)$ with an additional property (3.6) below. Namely we have

Proposition 3.3. For any $n \in \mathbb{N}$ there exists a sequence $(\theta_j, u_j)_{j=1}^{\infty} \subset \mathbb{R} \times H_r^1(\mathbb{R}^N)$ such that

$$(i) \ \theta_i \to 0. \tag{3.3}$$

(ii)
$$\widetilde{I}(\theta_j, u_j) \to b_{mp} (= \widetilde{b}_{mp}).$$
 (3.4)

(iii)
$$\widetilde{I}'(\theta_j, u_j) \to 0$$
 strongly in $(H_r^1(\mathbf{R}^N))^*$. (3.5)

(iv)
$$\frac{\partial}{\partial \theta} \widetilde{I}(\theta_j, u_j) \to 0.$$
 (3.6)

Proof. We note that for any $\varepsilon > 0$ there exists a path $\gamma(t) \in \Gamma \subset \tilde{\Gamma}$ such that

$$\max_{t \in [0,1]} \widetilde{I}(0,\gamma(t)) \le \widetilde{b}_{mp} + \varepsilon.$$

Applying Ekeland's principle in the product space $\mathbf{R} \times H_r^1(\mathbf{R}^N)$, we can show Proposition 3.3 in a standard way.

Next we study boundedness and compactness of a sequence (θ_j, u_j) given in Proposition 3.3. First we observe that (3.4) and (3.6) imply the following

$$\frac{1}{2}e^{(N-2)\theta_j}\|\nabla u_j\|_2^2 - e^{N\theta_j} \int_{\mathbf{R}^N} G(u_j) \, dx \to b_{mp},\tag{3.7}$$

$$\frac{N-2}{2}e^{(N-2)\theta_j}\|\nabla u_j\|_2^2 - Ne^{N\theta_j} \int_{\mathbb{R}^N} G(u_j) \, dx \to 0 \quad \text{as } j \to \infty.$$
 (3.8)

Remark 3.4. We recall that if u(x) is a critical point of I(u), then u(x) satisfies

$$P(u) = 0$$
, where $P(u) = \frac{N-2}{2} \int_{\mathbf{R}^N} |\nabla u|^2 dx - N \int_{\mathbf{R}^N} G(u) dx$.

The above equality is called *Pohozaev identity*. We remark that since $\theta_j \to 0$, (3.8) gives a property related to the Pohozaev identity.

It follows from (3.7)–(3.8) that

$$\|\nabla u_j\|_2^2 \to Nb_n,$$

$$\int_{\mathbf{R}^N} G(u_j) dx \to \frac{N-2}{2} b_n.$$
(3.9)

We can show

Proposition 3.5. Let (θ_j, u_j) be a sequence satisfying (3.3)–(3.6). Then we have

- (i) (u_j) is bounded in $H_r^1(\mathbf{R}^N)$.
- (ii) (u_j) has a strongly convergent subsequence in $H^1_r(\mathbf{R}^N)$.

Proof. (i) When $N \geq 3$, we can prove Proposition 3.5 in a direct way. Indeed, by (g0), (g1'), (g2') there exists a small $m_0 > 0$ such that

$$m_0 \xi^2 + g(\xi)\xi \le C|\xi|^{\frac{N+2}{N-2}}$$
 for all $\xi \in \mathbf{R}$.

It follows from $\varepsilon_j = \|\widetilde{I}'(\theta_j, u_j)\|_{(H^1_r(\mathbf{R}^N))^*} \to 0$ that $|\widetilde{I}'(\theta_j, u_j)u_j| \le \varepsilon_j \|u_j\|_{H^1}$. Thus

$$e^{(N-2)\theta_{j}} \|\nabla u_{j}\|_{2}^{2} + m_{0}e^{N\theta_{j}} \|u_{j}\|_{2}^{2} \leq e^{N\theta_{j}} \int_{\mathbf{R}^{N}} m_{0}u_{j}^{2} + g(u_{j})u_{j} dx + \varepsilon_{j} \|u_{j}\|_{H^{1}}$$

$$\leq Ce^{N\theta_{j}} \|u_{j}\|_{2N/(N-2)}^{2N/(N-2)} + \varepsilon_{j} \|u_{j}\|_{H^{1}}. \tag{3.10}$$

Since $\|\nabla u_j\|_2$ is bounded by (3.9), we can observe that $\|u_j\|_{2N/(N-2)}$ is also bounded. Thus (3.10) implies boundedness of $\|u_j\|_2$, that is, (u_j) is bounded in $H_r^1(\mathbf{R}^N)$.

To prove (i) when N=2, we need to use a blow-up argument. We refer to [**HIT**] (see also Jeanjean and Tanaka [**JT2**]).

(ii) By the boundedness of $(u_j)_{j=1}^{\infty}$ in $H_r^1(\mathbf{R}^N)$, we can extract a weakly convergent subsequence — still we denote by j — such that $u_j \rightharpoonup u_0$. We can easily see that $(0, u_0)$ is a critical point of $\widetilde{I}(\theta, u)$. The weak upper semi-continuity of

$$u \mapsto \int_{\mathbf{R}^N} m_0 u^2 + g(u) u \, dx; \, H^1_r(\mathbf{R}^N) \to \mathbf{R},$$

which follows from Fatou's lemma, implies $u_j \to u_0$ strongly in $H^1_r(\mathbf{R}^N)$.

End of the proof of Theorem 1.1. Let (θ_j, u_j) be a sequence obtained in Proposition 3.3. By Proposition 3.5, we may assume $u_j \to u_0$ strongly in $H^1_r(\mathbf{R}^N)$. Then u_0 satisfies

$$\widetilde{I}(0, u_0) = b_{mp}$$
 and $\widetilde{I}'(0, u_0) = 0$,

that is nothing but

$$I(u_0) = b_{mp}$$
 and $I'(u_0) = 0,$ (3.11)

Thus b_{mp} is a critical value of I(u).

As to the positivity of a critical point corresponding to b_{mp} and the fact that it has least energy among all non-trivial solutions, we refer to [HIT].

References

- [BGK] H. Berestycki, T. Gallouët and O. Kavian, Equations de Champs scalaires euclidiens non linéaires dans le plan, C. R. Acad. Sci; Paris Ser. I Math. 297, no. 5, 307–310 (1983) and Publications du Laboratoire d'Analyse Numérique, Université de Paris VI (1984).
 - [BL1] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. I. Existence of a ground state, Arch. Rational Mech. Anal. 82, no. 4, 313–345 (1983).
 - [BL2] H. Berestycki and P.-L. Lions, Nonlinear scalar field equations. II. Existence of infinitely many solutions, Arch. Rational Mech. Anal. 82, no. 4, 347–375 (1983).
- [CGM] S. Coleman, V. Glaser and A. Martin, Action minima among solutions to a class of Euclidean scalar field equations. *Comm. Math. Phys.* **58**, no. 2, 211–221 (1978).
 - [HIT] J. Hirata, N. Ikoma, K. Tanaka, Nonlinear scalar field equations in \mathbb{R}^N : mountain pass and symmetric mountain pass approaches, *Preprint* (2009).
 - [J1] L. Jeanjean, Existence of solutions with prescribed norm for semilinear elliptic equations, Nonlinear Anal. 28, no. 10, 1633–1659 (1997).
 - [J2] L. Jeanjean, On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer-type problem set on \mathbb{R}^N , Proc. Roy. Soc. Edinburgh, Sect. A 129 (1999), no. 4, 787-809 (1999).
 - [JT1] L. Jeanjean and K. Tanaka, A remark on least energy solutions in \mathbb{R}^N , Proc. Amer. Math. Soc. 131, no. 8, 2399–2408 (2002).
 - [JT2] L. Jeanjean and K. Tanaka, Singularly perturbed elliptic problems with superlinear or asymptotically linear nonlinearities, Calculus of Variations and Partial Differential Equations 21, no. 3, 287-318 (2004).
 - [Sw] W. A. Strauss, Existence of solitary waves in higher dimensions, Comm. Math. Phys. 55 (1977), no. 2, 149–162 (1977).
 - [Sm] M. Struwe, Existence of periodic solutions of Hamiltonian systems on almost every energy surface, Bol. Soc. Brasil. Mat. (N.S.) 20, no. 2, 49–58 (1990).