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TAKASHI SUZUKI ($3K8)
Ryo TAKAHASHI (%)

Division of Mathematical Science. Department of Systems Innovation,

Graduate School of Engineering Science, Osaka University

Abstract

We study some properties of the solution to a semilinear elliptic equa-
tion with subcritical expenent in higher dimensions. Classification of the
bounded energy solution in whole space, an inequality of sup + inf type, a
theorem of Brezis-Merle type, and the quantized blowup mechanism are
presented.

1 Introduction

In this paper, we study the semilinear elliptic equation

—-Av =] in
e (1.1)
Jovs T dr < 400,

where v € (1: %‘f—g ,n >3, and 2 C R" is a bouned domain with smooth

boundary 9Q or 2 = R™. In the case v = -5, classification of the solution
to (1.1) with © = R", inequalities of sup + inf and Trudinger-Moser type, and
blowup analysis of the solution are done in [21]. As stated there, equation (1.1)

is close to Liouville's equation in two dimensions,

—Av=¢" in 2 C R?
{ Jqetdr < +oc.

In fact, equations (1.1) and (1.2) have the following common properties:

(A) Scaling invariance concerning the equation and the energy

(B) Classification of the bounded energy solution in whole space

(C) Existence of a sup + inf type inequality

(D) Alternatives concerning convergence of the solutions

(E) Quantized blowup mechanism



In what follows, we look over these properties.

(A) For a solution v = v(z) to (1.2), the transformation v,(z) = v(uz) +
2log p, p > 0, satisfies

—Av, = e in 0,
Ny, P — V-
fn,,e rdr = fﬂe dzx,

where 2, = {y € R? | puy € Q}. Similarly. for a solution v = v(z) to (1.1), the
transformation v,(z) = pfv(ux), p >0,q = 7—3—1-, satisfies

—Avy, = (vu)} in 2,
n(-—-1) . n(y-1)
Jo, )y T dr= Jou T dg,

where Q, = {y € R™ | uy € Q}, n > 3. These scale invariances are important
extremely in the proof of the properties (B)-(E), and, in particular, allow us to
the blowup analysis and the hierarchical argument.

(B) Any nontrivial classical solution to (1.2) in whole space (i.e., @ = R?)

has the form
v(z) = lo Buu? } (1.3)
TR\ F 2z = 20P) ‘

for some zo € R?. This fact is shown by Chen and Li [4]. Similar fact for
(1.1) with v = -2 is done by Wang and Ye (21]. A crucial difference between
(1.3) and (1.4) below is whether a support of the positive part of the solution is
compact or not. This makes several arguments for (1.1) simpler. We now state

the first result.

Theorem 1 Assume that v € (1;’;{%) and n > 3. Then, any non-

constant classical solution v = v(x) to (1.1) with Q = R™ 1s radially symmetric,
and the nonnegative part v, has a compact support. More precisely, there exist
xo € R™ and u > 0 such that

o(z) = {u%&glm —(:rol) 1 ] ) Eul:x - ’xo! < T? 1.4)
Grin=2) \Te=zol" -2 ~ Ta-Tr3)7-7 plr — ol > 73)

with wp_1 standing for the area of the boundary of the unit ball in R™, where

2 s the first zero point of the unique solution ¢ = ¢(r) to

¢"(r) + 2=Le/'(r) + ¢ (r) =0, r>0 (1.5)
$(0) =1,  ¢(0) =0,
and .
AL =Wy / ) qbl‘%;llv"’"_ldr. (1.6)
0

The general entire solution to

—Av = v’ in R“, n >3 (17)
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is concerned with the critical Sobolev exponent, ie., p, = Z"% Gidas and
Spruck showed [8] that there is no positive solution to (1.7) in subcritical case
1 < p < p,. On the other hand. it was shown by Caffarelli, Gidas, and Spruck
[3] that (1.7) has the positive solutions in critical case p = p,. Furthermore, the
solution to v = v(z) to (1.7) with p = p, has the form

{n(n — 2)p?}*5*

n—2
(12 + |2 = x0[?) 7"

v(z) =

for some g € R™ and u > 0 if v(x) = O(|x[*~") as |z| — +o00. In super critical
case p > ps, radial symmetry of the positive solution to (1.7) no longer hold
generally, see [11, 22] for details.

(C) The sup + inf type inequality for (1.2) was shown by Shalfrir [16], see also
[2, 6]. Several sup x inf type inequalities for equations concerning the critical
Sobolev exponent are found in [5. 12, 14]. The inequality of sup +inf type
for (1.1) with v = 25 was established in [21]. We extend it to the case v €

' n-2

Theorem 2 Assume that v € (1. %%) and n > 3. Let 2 C R™ be a

bounded domain. Then, for any compact set K C Q and any number T > 0,
there ezist Cy = Cy(n,vy) > 0 and C2 = Ca(n,v, K. T) > 0 such that

supv + C) infv < Cy (1.8)
K 9]

for any solution v = v(x) to (1.1) with the property

n{y-1)

s v, 2 dr <T. (1.9)
2

(D) Convergence of the solutions to (1.2) was studied by Brezis and Merle
(1], and then the stronger result was obtained by Li and Shafrir [13]. We note
that the sup +inf type inequality is a crucial component of the proof of the
latter result, see [13]. The corresponding results for (1.1) with v = 25 are
shown in [21]. They are extend as follows.

n—-2'n-2
bounded domain with smooth boundary 02 and {v,} be a sequence of the classical
solutions satisfying

Theorem 3 Assume that v € [—”—— ”*2) and n > 3. Let 2 C R™ be a

R (1.10)

—A’Uk = (1’1‘«)1 in )
’]'_Q(vk)+ T de <T

for some T > 0. Then there exists a subsequence. still denoted by the same
symbol {vi}. such that the following alternatives occur:

(1) {vk} is locally uniformly bounded.
(i1) vk — —oc locally uniformly in .
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(iii) There exists a finite set S = {x;}7., such that v, — —oc locally uni-
formly in Q\ S and that

in M(Q) with o, (x;) = LX) for some l; € N and for allt =1,---,m, where
8., and M(Q) denote the Dirac measure and the space of measure, respectively,
and X% is as in (1.6).

(E) Nagasaki and Suzuki [15] studied the quantized blowup mechanism for

—Av=o0c" in)
v=0 on OS).

The result is applicapable for

—Aw =e¥* in
w = (unknown) constant on 9N (1.11)
Joevdr = A

by combining the results by [1, 13. 7]. Then the quantized blowup mechanism
also arises for (1.11), see [19] for details. Here, we consider

—Av =] in Q
v = (unknown) constant on 9 (1.12)

Jy o™ dr = A

The corresponding result for v = —25 is shown in [19]. This property holds even

n n42
in the case v € [——n 55 ot 2)

n—2n-2
bounded domain with smooth boundary O, and (M., vy) be a solution sequence
to (1.12) satisfying Ap — Xo. Then, passing to a subsequence, we have the
following properties:

Theorem 4 Assume that v € ['—' 1'—+—2-) andn > 3. Let 2 C R™ be a

(i) vk is uniformly bounded in S).

(ii) supg v — —o0.

(iii) Ao = ALl for some | € N. and there exist x}
1 <7<, such that the following (a)-(e) hold:

* € Qand 2 for all

(a) S = {z}}; L_1 = {x¢ € Q| there are 1) € Q such that vg(xx) — +00}.

(b) VR(T )+ > VieG(a}.x}) =0  foralll <j<L.
i#j

(c) z = 12' ) is a local mazimum point of vy = vi(x).

(d) wvi( (J)) — +00 and vy — —oc locally uniformly in Q\'S for all 1 < j < 1.

(e) (vk) d.r — Z A% 6ys (dx) in M(2).
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Here, G = G(z,z') denotes the Green function of —A on Q with the Drichlet
boundary condition and

R(z) = [G(z,x") = [(z — )]

xr'=xr

for
1

wn—1(n = 2)|xzn=2|

with w,_, standing for the area of the boundary of the unit ball in R™.

[(z) =

This paper is composed of four sections. Theorems 1 and 2 are proven in
Section 2 and 3, respectively. Sketch of the proof of Theorem 3 is described in
Section 4. In the following, C; (i = 1,2,---) denote positive constants whose
subscripts are renewed in each section.

2 Proof of Theorem 1

In this section, we shall assume that n > 3 and v € (1, Z—‘E—%—)

In order to show Theorem 1, we shall provide several lemmas.
The following lemma is shown similarly to [21].

Lemma 1 For any R > 0 and A > 0. there exists a number C, =
Ci{v, R, A) > 0 such that

inf v < -C4 (2'1)
Br/a

for all solutions v € C?*(Br) N C(BR) to

—Av=v} 1inBgr
v(zg) =1  for some x9 € Bgy2 (2.2)
v< A in Bp.

Next, we show a uniform estimate which is crucial to obtain the boundedness
from above of the solution to (1.1) with 2 = R"™.

Lemma 2 There are Cy = Co(n,v) > 0 and 69 = do > 0 such that

max v < Cy (2.3)
1/4
for all solutions v € C*(B;) to
—Av =) in B
i ! (2.4)
I, v ™ <

Proof. 1f the assertion is false, then there exists a sequence {vy} C C?*(B)
such that
A = (1!1‘.)1 in By
-1

n(v—1)
fo (’l!h»)+ 2 da < —2— (25)
r > k.

ma.xB’H (g
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For each k, we can take h; € C*(B;) and y;. € B;; such that
1 K
mw=(3-7) nl)  me)=msme), 20
1/2
where ¢ = 7—2;—1 and r = |y|. It follows from (2.5)-(2.6) that
1 ¢ 1 g
hi(yx) = (‘2‘ - 7‘k:) v (yn) 2 max (—2' - r) vi(y)

Bisa

1 9 1 q
> (—) max vy (y) > (—) k (2.7
4) B 4

for all k, where 7, = yx.
Here, we consider the following function for each k:

wi(y) = pive (Y + pry) (2.8)
with
ok =35 =7k di=h(y) =ofuelye), e = on/d. (2.9)
We have
1 1 1 Ok Ok
- — > = - . -yl = == -y — >0 — — = —
sl 2 - (ol +ly-uh = (5-n) ~w-wlz0-%F =3
for all y € B, /2(yx). and hence
1 N q
di = hx(yx) > (5 - ly|> n(y) 2 (0—;) v (Y) (2.10)

for all y € B, /2(yx)-
Noting that the function w; = w(y) defined by (2.8) has the scale invari-
ance, we find

—Awy = (wk)1 in Bdk/Z
. n{y—1) . n{y—1
"IBdA-_/z (wk)+ dx = 'IBHA-./E(.UIJ(IU"')—{— dr < % (211)
wi(0) = pgor(y) =1
wi < 29 in By, /2

by using (2.5), (2.9) and (2.10). It is also clear that dx — +oc by (2.7). Thus
Lemma 1 and the elliptic regularity guarantee that there exist a subsequence,
still denoted by {wy}, and w € C?(R") such that

wy —w  in C2_(R™), (2.12)
~Aw =0 inR"
@(0) =1 (2.13)

w < 24 in R".

Since w = w(x) is harmonic and bounded from above in R" because of (2.13),
it holds that

w=1 m R"
by Liouville’s theorem, see {10}, and hence (2.12) shows that wx — 1in Cjoo(R"™).
This contradicts to the second of (2.11). (]
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Proposition 1 Any classical solution to (1.1) with @ = R" is bounded
from above.

Proof. Let v = v(zx) be a classical solution to (1.1) with @ = R™. Then

there exists R > 0 such that
ni{y-1)
/ vy ? < (5()
R_n \B"

because of the constraint of (1.1), where dy is as in Lemma 2. Therefore it
follows that
sup v < Cy
R"\Bp

from Lemma 2, where Cy is a positive constant appered there. Hence the
assertion holds. 1

By virtue of Proposition 1, operating (1.1) with (-=A)~! is justified.

Lemma 3 There exist positive numbers ¢, and ¢/, such that any nontrivial
and classical solution v = v(x) to (1.1) with @ = R™ has the relation

1

v(z) = (n — 2)wy -

/ lr =yl "] (y)dy - ¢, (2.14)

Moreover, we have the asymptotic profile
v(z) = —¢, + (:glatlz_" +o(]x]?7"). lzl > 1, (2.15)
and especially the nonnegative part v, = v, (x) has a compact support.

Proof. We introduce the function w = w(x) defined by

1 : i ,

We shall show that (2.16) is well-defined, and that

lim  w(z) =0. (2.17)

|r]—+>
It follows that

vy € L*(R") for any s € [3’(—"2_—1) oo] , (2.18)

from the constraint of (1.1) and Proposition 1. We fix R > 0 and represent w
as

_ 1
T (n- 2)wn—1

wi(z) = / lz — yI*>~"v] (y)dy. w2 (1) = / |z — yI>""v] (y)dy.
ly—z|=>R ly—ol<R

0 < w(x) (wy(x) + w2 (x)).
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Since y(n —1) € [ﬂl:—lz, oc) for n > 3, we have

2
w2 1
w1 7o
OSwz(x)S / IZ;J-H / ’U:}_(”‘l)(ll‘_z)
lz|<R |z|<R
< Cy(n, R)|I’”+“2w(n~1)(13(.1._;?)) -0 as |z| — +oo (2.19)

by (2.18). The term w; is estimated by

0 S ’LU](.’II)

R?-n fIEIZR vi(z — z)dz ify e (1, nﬁz]

2 ";'—(3_-11-)"
< (f;z1>n |Z|—"'(Hm)dz)
non O\ T
x (v_,_ 2 dz) if v € (725, 242)

REjuslly  ify € (1 525]

S vy n—2 (220)

n—-2'n-2

R0 sy 7 € (525, 242)
hoon

Combining (2.18)-(2.20), and noting that v € [ﬂ%——ll, oo) for v € (1., ﬁ], we
see that (2.16) is well-defined, and that

) , Ci(n,y)R?*™" ify e (1, 11’12]
0 < limsup w(z) < L ' )
el ¢ Cs(n.MRTT if v € (25, 243),

which implies (2.17) since R > 0 is arbitrary.
We have now
-A(v—w)=0 inR", sup(v — w) < +00
R~
by (2.16) and Proposition 1. Then, Liouville’s thorem, see [10], guarantees that
there exists ¢, € R™ such that v — w = ¢;. We claim that ¢; < 0. If this is not
the case then ,
—Av=v",v>0 in R™,
which is impossible because of 1 < v < 2+Z and the result from [8]. Thus we

obtain (2.14) for ¢, = —c¢; > 0.
It holds by (2.14) and the dominated convergence theorem that

22 (0(2) — €3) = w(a)
- =2
— (n———’.Zl)—u.;: / ] vidz
as [z| — +oc, which implies (2.15) for ¢/ = E;—_—Z,;L—_—l— Jr» vidz. 1

Proof of Theorem 1: First, we shall show the radial symmetricity of the
solution v = v(zx) to (1.1) with © = R™. To show this, we have only to show
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that w = w(x) defined by (2.16) also satisfies the same property. We introduce
the function
Fl) = (= ¢)s (2.21)

where ¢, > 0 is a positive constant in (2.14). Then, it holds that

-Aw = f(w) in R™
w>0 (2.22)
lim | — 4o w(x) =0

by virtue of Lemma 3. Noting (2.21) and the asymptotic profile (2.15), we can
apply the result from [9] and conclude that the solution w = w(z) to (2.22)
has the desired property. Namely, there exist a point z; € R™ and a function
V = V(r) defined on [0, +00) such that

v(z) =V(r), wv(ze)=V(0)= sup v(z), V'(r)<0 (forr>0), (2.23)

reR”
where r = |z — zy].

We can readily deduce the remainder of the assetions of Theorem 1 from
(2.23) and some direct computations. The proof is complete. 1

3 Proof of Theorem 2

In this section, we shall assume that n > 3 and v € (1, %‘{—%), again.

We begin with an a priori bound of the solution to (2.4).

Lemma 4 For any 6§ € (0.A}). we have a constant C; = Cs(n,v,d) > 0
such that
max v < Cs (3.1)
Bl/-l

for any solution v = v(x) to (2.4) with §, = 4.
Proof. Fix 6 € (0, A}) and suppose that the assertion is false. Then we can

discuss as in the proof of Lemma 2 and find that there exists w € C?(R") such
that

—Aw = w] in R
n(~-1)

s AT .
fR,, w, dr <4 < AL
w(0) =1
. q — _2 ; n
w < 29, =5 in R",

which is a contradiction by Theorem 1. 1

One can see that Theorem 2 is a direct consequence of the following lemma.

Lemma 5 Let T be a positive constant. Then we have C, = Cy(n,y) > 0
and Cy = Cy(n,v,T) > 0 such that

©v(0) + C, i1131f v < Ch (3.2)
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for any solution v = v(z) € C?*(B) to

I (3.3)

—Av =]} in By
fBl vy ° dx<T.

Proof. Suppose that the assertion does not hold. Then for any C > 0,
there exists a sequence {vx} C C?(B;) such that

—Avy, = (vk)} in B,
n(y—1

fBl (v); * dz<T (3.4)
v (0) + C’infBl v > k.

It is obvious that

k
v.{0) >
;.()_1+

~ — + ' 3.5
& 0o (3.5)

as k — oo.
Here, we use hy € C*(B,), yix € B2, wi = wi(y), ok, dr and py that are
taken in the proof of Lemma 2, see (2.6) and (2.8)-(2.9). Then it holds that

die > (vr(0))1 > +oc. (3.6)
by (3.5). We have also (2.10) for all y € B,, /2(yx), and so
wy < 27 in By, /2(yx)- (3.7)

Similarly to the proof of Lemma 2, we deduce

— Ak = (W) in By, /2
___Q_n(w-x) n(y—1)
L x= | 7
deL:/'Q((Uk)+' dr = jBnl_./!(.'/k)(vk)"" de <T
wi(0) =1
w2 in By, /2

from (3.4) and (3.7). Therefore, we can extract a subsequence, still denoted by
{w}, and a function w € C?(R") such that

Wy — W in C?,.(R™), (3.8)
-Aw =20 in R™
n{y—1)
fR" W, 2 dxr <T (3.9)
w(0) =1
W < 2 in R",

where we have used (3.6), Lemuma 1 and the elliptic regularity.

We may assume T' > A% thanks to Theorem 1. Noting the third and fourth
properties of (3.9), we have (1.4) for some zop € R™ and p = po € [1,2]. In
particular, it holds that

1u(0) =1, | I]im 'lU(l‘) < _C3
€r|=—4x
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for some C3 = C3(n,v) > 0. Consequently, there exist Cy = Cy(n,vy) > 0 and
R = R(n,~v) > 1 such that

w(0) + Cy4 jgi w < 0. (3.10)

Hence it follows from (3.8) and (3.10) that

wy (0) + Cy inf wy < 0. (3.11)
IdBRr

for k> 1.
Noting that vy is super-harmonic, and that B(yy, uxR) C By for kK > 1 by
(3.6). Then we obtain

e (0) + Cyinfor < v (yr) + C. inf Ve
x(0) + Cy 0 (yx) 4ot o vk

= ;! (u:k(O) + Cy 5%& wk) <0

for k > 1 by virtue of the scale invariance and (3.11). However, this is contrary
to (3.4) if C > Cy, since v4x(0) > 0 by (3.4). 1

Proof of Theorem 2: Let Q be a bounded domain, fix any positive number
T and compact set K C €, and suppose that v = v(x) is a classical solution to
(1.1) and satisfies (1.9). Then we have jip = po(K) > 0 and xo € K such that

U B(x, o) C S v(xo) = supv.
rekK K

We introcude the function
w(x) = phv(rg + pox)

for x € By and ¢ = 3%—1 By the scale invariance, it holds that

v(zo) + Cinfv < v(ry) +C il v = py?(w(0) + Cinfw), (3.12)
Q B(xro.pn) B,

for any C > 0, and that w = w(2) satisfies (3.3). Hence Lemma 5 yields
Cs = Cs(n,v) > 0 and Cs = Cs(n.y.T) such that

w(0) + (5 ill;.)f w < Cg. (3.13)

Inequality (1.8) follows from (3.12) and (3.13) as Cy = Cs and Cy = pg °Cs. 1

4 Proof of Theorem 3 (Sketch)

In this section, we shall assume that € (”—'13 ﬁ'_*—%) and n > 3. Also, we shall

denote a subsequence of the sequence by the same notation without notice.

Proof of Theorem 3 is reduced to those of the following two propositions:
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Prop_osition 2 Assume that v € [T’_’—j, %f—%—) andnn>3. Let Q@ C R™ be a

bounded domain with smooth boundary 02 and {vy } be a sequence of the classical
solutions satisfying (1.10) for some T > 0. Then there exists a subsequence, still
denoted by the same symbol {vi}. such that the following alternatives occur:

(1) {vx} s locally uniformly bounded.
(ii) vk — —oo locally uniformly in Q2.

(iii) There exists a finite set S = {w; }., such that v, — —oc locally uniformly
in 2\ S and that

ri{y—1) n

(v)3 7 da =Y ou(w:)be, (dz)
i=1 ‘
in M(Q) with o, (x;) > A% foralli=1.--- ,m.

Proposition 3 In the alternative (iii) of Proposition 2, it holds that a. (x;) =
L; A} for somel; € N and for alli=1,--- .m.

n(y-1)
Proof of Proposition 2: Since {(v;)] 2> } is bounded in L'(Q), there exist
a subsequence {vx} and a bounded non-negative measure u such that

niy—1)

(vg)y T do—p in M(Q), (4.1)
where M(Q2) stands for the space of measure. Set

£={ceq|n{z)) =)

S = {z € Q| there exists {rx} C € such that zx — z and vk(zx) — +00.}.

First, we claim

=S (4.2)
Suppose that zg ¢ £. Then there exists 0 < ry < 1 such that
/.L(B(.‘l'().'l‘())) < )\; (43)

because of the property of the bounded non-negative measure. Hence we obtain

80 € (0, A%) such that
nimy—1)
/ (vi)y 7 da < do
B(rg.rp)

for k> 1 by (4.1) and (4.3). Putting

wi () = rdv (1o + o)

for x € B; and g = E%_v we see that wy satisfies

{*A'wk. = (’ll)},-)l in B1

niy~14)
JB,(“'k)+ T da < 4y
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for k > 1. Consequently, Lemma 4 assures that there exists Cs, = Cs,(n,7y, dp) >
0 such that

max uy, < Cg,

B4

for k > 1, which implies

max__ v < 1y 'Cs,
B(xg.70/1)

for Kk > 1. Thus we have S C ¥. In turn. suppose that zo ¢ S. From the
definition of S, it is clear that there exists 0 < 1y <« 1 such that

Sl}:P “(1’k)+”L%(B(.m.r,,)) < +oo
for some subsequence {vi}. Hence we obtain

" niy-1)
lim lim sup / (o) 4 dx=0. (4.4)
B r}(.l‘().‘l'n)

{0 ke

We deduce from (4.1) and (4.4) that p({z0}) = 0. and therefore o ¢ £. Thus
we have £ C S, and hence (4.2).

Next, we shall show that S = @ implies (i) or (ii). Assume that S = @ and
fix an open set w satisfying @ C €. Similarly to the proof of (4.2), we deduce
that there exists C; = Cy(n,v.w) > 0 such that

sup (00 12~ (o) < G- (45)

Let vy x be a solution to

*A’U]_k = ("k)’_:_ in w

v =0 on dw.
It holds that vy, > 0 in w by the maximum principle, and that {v; x} is uni-
formly bounded in w because of (4.5) and the elliptic regularity. In other words,
there exists Cy = Ca(n.v.w) > 0 such that

O0< vy <y in w. (4.6)

Hence v = vx — v1.% 1s harmonic and bounded from above in w. Since w is
arbitrary, we use the Harnack principle to the harmonic function and find that
{7« } is locally uniform bounded in §2, or otherwise @ — —oo0 locally uniformly
in . Noting inequality (4.6), we have (i) or (ii) in each cases.

Finally, we shall show that S # ) implies (iii). Since & = {x,}7, is finite,
we perfome the argument similar to above and find that {vx} is bounded in
LS (S2\ S), or otherwise vy — —oc locally uniformly in 2\ &§. We now claim
that the former does not hold. To show this claem. we suppose the contrary and
take 7, > 0 such that B(x;.»1) NS = {r;} which is possible by the finiteness
of S. Then there exists C3 = Cy(n.~v..x1.1) > 0 such that

v > —Cy on dB(xy,7y). (4.7



Let z; be a solution to

{—Azk = ()} in B(x1,71)
2 = —C3 on O0B(x1,11).
We obtain zx < vy in B(x,r)), and
zi(x)dr — ad,, (dx) + f(x)dx
in M(B(z1,7m)) with
a>X and 0<fe L (B(z,m)),
and therefore z; — 2 locally uniformly in B(xy,m) \ {z:} with

X,

) > _ 1
Sy ) S E S
for x € B(z1,7m1) \ {z1}. Then Fatou’s lemma assures
n(v-1 " n(y=1
+00 = z, * dx <lim inf'/ (zx) 4 > dx
B(x1.m1) k B(z1.71)

n(y=—1

< limin{ / (Vi) 4 dr < +00
3 JB(xy 1)

because of the assumption ~ € [7—1—’_’—5 %) and the constraint of (1.10). This
inequality is a contradiction. Thus we obtain v, — —oc locally uniformly in

2\ S. The proof is complete. 1

Proof of Proposition 3 is done similarly to [13]. More precisely, it is reduced
to the following lemmas.

Lemma 6 Given R > 0. we assume that v, = v (x) satisfies

— Av, = ('z;k)l in Bp., (4.8)
max vy — +00 and _Max v — —oC for any r € (0, R), (4.9)
BR BR\BI
n. -1

lim (V)4 Ty = a Jor some o > 0, (4.10)
k—oc Br
sup sup vi(x)|x|? < Cy for some Cy > 0, (4.11)

. x€DBp

where q = —7—%7 Then, a = XX and there exist C5 = Cs(---) > 0 and kg € N
such that
e <0 i Q\ Begs,

for all k > ko with 6] = maxg—),.
Lemma 7 Given R > 0. we assume that v, = v, () satisfies (4.8)-(4.10)
and there is T > 0, independent of k. such that

* n(y—=1)
/ (‘l’k~)+ T dae < T (4.12)
Bpr
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for all k. Then. passing to o subsequence. we have {JU)}L"‘OI C Bg. {l ])}’" !
N and m € N with IS‘,J) — 0. l,f_') — oc and 1 < m < T/A; such that the
follounng (4.13)-(4.17) hold:

vk(a‘i_j)) = max v (x) — +oc (4.13)

le—r? <18
forall0<j<m-—1,
B 2175y n B2 216y = 0 (4.14)
forall k and 0 < 14,5 < m — 1 satisfying i # j.

5]
v (ty +1(J))

En <0 (4.15)

t=1

forallk, 0 < j <m—1 and y satisfying 27':,5,(‘;’) <yl < Zlfcj)d,(cj),

) n(y=1) niy=1) . .
lim (vk)y 2 dx= (vk)y 2 dz=2A (4.16)
k— B( (5) 2,(])6(])) By N [(})6;})) v

forall0<j<m-—1. and

max {rk.(.r) min  |r — JU){"} < Cs (4.17)
Br 0<;j<m-1

for all k and for some Cs > 0 independent of k, where ((52_”)9 = vk(zg)),

qg= %, and 77, is as in Theorem 1.

Lemma 8 Given R > 0. we assume that vy = v (x) satisfies (4.8)-(4.10),

(4.12), and that there exist {xf)};','__"(,] and {7(’)}"’_01, m>1, 79 >0, such

that the following (4.18)-(4.22) hold:

w (1)) =— +oc (4.18)

forall0 <) <m—1,

(I)

Algla]c ;$(_7 = +oC (4.19)

forall0<j3<m-1,
B’ i) n B .r) =0 (4.20)

forall k and 0 < 1,5 < m — 1 satisfying i # j.
- ; p— pONa L«

. _nlx;?m u)){“‘(l)ngl,l%%] lr — x| } < C- (4.21)

for all k and for some C7 > 0 independent of k. and

n(y=1) g ni{y—1)
lim / (o)) 2 dx= lim / (ve)y 2 dx=p0; (4.22)
(,(1)27(1)) B(J'(A-j)~";~-)))

k—oc k—>

for some 3; > 0,0 < j <m—1. Then it holds that

m—1

lim/ )y T de=3 4, (4.23)
k—> Bnr

=0
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Proposition 3 is obtained by combining Lemmas 6-8. We will be able to find

their rigorous proofs in the forthcoming paper.
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