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1 Introduction and Main Result
In this note, we sketch the results and ideas of the forthcoming paper [16],
and discuss locations of concentration points of the following singular per-
turbation problem for coupled nonlinear Schrodinger equations:

$\{\begin{array}{ll}-\epsilon^{2}\triangle u_{1}+V_{1}(x)u_{1}=l^{\iota_{1}u_{1}^{3}}+\beta n_{1}u_{2}^{2} in R^{N},-\in^{2}\triangle u_{2}+V_{2}(x)u_{2}=jin_{1}^{2}u_{2}+\mu_{2}u_{2}^{3} in R^{N},u_{1}(x), n_{2}(x)>0 in R^{N},u_{1}, \tau\iota_{2}\in H^{1}(R^{N}). \end{array}$ (1)

Here $N=2,3,$ $\mu_{1},$ $\mu_{2}>0,$ $/;\in R$ are constants, $V_{1}(x),$ $V_{2}(x):R^{N}arrow R$ are
given functions, and $\in>0$ is a small parameter.

In [16], we will prove that (1) has a sequence of non-trivial positive solu-
tion $u_{\epsilon}=(u_{\epsilon,1}, u_{\epsilon,2})$ such that after taking a subsequence, $(u_{\epsilon_{\tau z}})$ concentrates
to a some point $P_{0}\in R$ . Here we call $n=(u_{1}, u_{2})$ a non-trivial positive solu-
tion of (1) if $u$ satisfies the differential equations in (1) and $u_{1}(x),$ $u_{2}(x)>0$

in $R^{N}$ .
One of the difficulties to prove the existence of the above solutions of (1)

is that (1) has semi-trivial positive solutions where we call $u=(u_{1}, u_{2})$ a
semi-trivial positive solution of (1) if $us_{\ddot{\epsilon}}\iota t]_{I}\backslash ^{-\backslash }fies$ the differential equations in
(1) and one of $u_{1}$ and $u_{2}$ is positive in $R^{N}$ and the other is equal to zero
identically. In fact, if $u_{i}(x)\in H^{1}(R^{N})$ is a positive solution of

$-\epsilon^{2}u_{i}+V_{i}(x)u_{i}=l^{l_{i}u_{i}^{3}}$ in $R^{N}$ , (2)

then, $(u_{1}(x), 0)$ or $(0, u_{2}(x))\grave{l.}\backslash \backslash ()1\iota^{r}es$ the (1 $iH^{\backslash }erent.i_{\dot{\mathfrak{c}}}\searrow 1$ equations in (1).
The singular perturbation problem (1) is studied by Lin and Wei [19],

Pomponio [25], Montefusco, Pellacci and Squassina [22] and Wei [27, 28]. In
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[19], they considered both of the existence and the behavior of non-trivial
least energy solutions of (1). They treated (1) in both of attractive case
$(\beta>0)$ and repulsive case $(\beta<0)$ . In particular they showed the existence
of a non-trivial least energy solution of (1) for a small $\in>0$ under suitable
conditions on the behavior of $V_{1}(x),$ $V_{2}(x)$ as $|x|arrow\infty$ . Furthermore, they
proved that if

$\inf_{P\in R^{N}}m(P)<\inf_{P\in R^{N}}d_{1}(P_{1})+\inf_{P\in R^{N}}d_{2}(P_{2})$

(see (5), (6) and (8) for notation) holds, then after extracting a subsequence,
the both components of non-trivial least energy solutions of (1) concentrate
to the same point $P_{0}\in R^{N}$ where $P_{0}$ satisfies

$m(P_{0})=i_{Y1}fm(P)P\in R^{N}$ .

On the other hand, it also was proved in [12] that if the opposite inequality

$\inf_{P\in R^{N}}m(P)>\inf_{P\in R^{N}}d_{1}(P_{1})+\inf_{P\in R^{N}}d_{2}(P_{2})$

holds, then each component of non-trivial least energy positive solutions of
(1) concentrate to a different point $P_{i}\in R^{N}$ , where $P_{i}$ satisfies

$\inf_{P\in R^{N}}d_{1}(P)=d_{1}(P_{1})$ , $\inf_{P\in R^{N}}d_{2}(P)=d_{2}(P_{2})$ .

In Montefusco et al. [22], they studied the case $\beta>0$ and considered
the existence of solutions which concentrates to a local minimum point of
potential functions $V_{1}(x),$ $V_{2}(x)$ . More precisely, if $V_{1}(x),$ $V_{2}(x)$ satisfy

$\min_{|x-z|\leq r}V_{i}(x)<\min_{|x-z|=r}V_{i}(x)$

for some $z\in R^{N}$ and $r>0$ , then for small $\in>0$ , there exists a solution
$u_{\epsilon}=(u_{\epsilon,1}, u_{\epsilon,2})$ of (1) such that $(u_{\epsilon,1}, u_{\epsilon 2})\not\equiv(0,0)$ and $u_{\epsilon,1}(x)+u_{\epsilon,2}(x)$ has
exactly one global maximum point in $\{x||x-z|<r\}$ . However, in the case
where $\beta>0$ is small, one of $u_{\epsilon,1}$ and $u_{\epsilon,2}$ converges to $0$ as $\inarrow 0$ . See also
Pomponio [25] and Wei [27, 28] for another cases.

The aim in [16] is to prove that when $j^{j}>0$ and $\beta$ is relatively small (see
Assumption 1), there exists a family of non-trivial positive solutions of (1)
whose components concentrate to the same point as $\inarrow 0$ without assuming
the behavior of potentials $V_{1}(x),$ $V_{2}(x)$ as $|x|arrow\infty$ .
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To state our main result, we need some preparations. In the study of (1),
the following constant coefficient system plays an important role:

$\{\begin{array}{ll}-\triangle u_{1}+V_{11l^{l_{1}}}u=u_{1}^{3}+\beta u_{1}u_{2}^{2} in R^{N},-\triangle u_{2}+V_{2}u_{2}=\beta n_{1}^{2}u_{2}+\mu_{2}u_{2}^{3} in R^{N},u_{1}(x), u_{2}(x)>0 in R^{N},u_{1}, u_{2}\in H^{1}(R^{N}). \end{array}$ (3)

Here $V_{1},$ $V_{2}$ are positive constants. We remark that the system (3) appears
as a limit problem of (1) after a suitable rescaling. The system (3) has been
studied recently by many authors. See [2, 4, 5, 10, 12, 15, 18, 21, 26, 29, 30].
In the above articles, they considered both of cases $\beta>0$ and $\beta<0$ , and
proved the existence of non-trivial positive solutions of (3). Here the size of $\beta$

plays an important role. For more precise statements, see the above articles
and references therein.

In this note, we treat the case where $\beta$ is positive and relatively small.
Solutions of (3) is characterized as critical points of the following functional
$J_{V_{1},V_{2}}$ : $H_{r}^{1}(R^{N})\cross H_{r}^{1}(R^{N})=H_{r}arrow R$ :

$J_{V_{1},V_{2}}(u_{1}, u_{2})= \frac{1}{2}\int_{R^{N}}|\nabla u_{1}|^{2}+V_{1}u_{1}^{2}+|\nabla u_{2}|^{2}+V_{2}u_{2}^{2}dx$

(4)
$- \frac{1}{4}\int_{R^{N}}l^{l}\iota^{u_{1}^{4}}+2\beta v_{1}^{2}u_{2}^{2}+\mu_{2}u_{2}^{4}dx$ ,

where
$H_{r}^{1}(R^{N})=\{\varphi_{1}\in H(R^{N})|\varphi_{1}(x)=\varphi_{1}(|x|)\}$ .

To find a critical point of $J_{\iota_{1}^{\gamma},V_{2}}$ , we consider the following minimizing prob-
lem: (See Lin-Wei [18] and Sirakov [26])

$b(V_{1}, V_{2})= \inf_{v\in \mathcal{M}_{?}(V_{1},V_{2})}J_{V_{1},V_{2}}(u)$ , (5)

where

$\mathcal{M}_{r}(V_{1}, V_{2})=\{u=(u_{1}, u_{2})\in H_{r}|u_{1},$ $u_{2}\not\equiv 0$ ,

$J_{V_{1},V_{2}}’(u)(u_{1},0)=J_{V_{1},V_{2}}’(u)(0, u_{2})=0\}$ .

Under the condition $\beta<\sqrt{\mu_{1\{l_{2}}}$ , we can prove that if a minimizer exists, then
the minimizer is a critical point of $J_{V_{1},V_{2}}$ . Moreover, without loss of generality
we can assume that the minimizer is a non-trivial positive solution of (3).
In [18] and [26], they considered when $b(V_{1}, V_{2})$ is attained and proved the
existence of non-trivial positive solution of (3).
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Remark 1.1. Under the condition $/f>0$ , by the result of Busca and Sirakov
[6], any non-trivial positive solution of (3) is a radially symmetric with respect
to some point $P_{0}\in R^{N}$

To state our main result, we suppose the following conditions.

Assumption 1 There exists a set $A=[\ell_{11}, l_{12}]\cross[\ell_{21}, l_{22}]\subset R^{2}$ such that
(i) For any $(\lambda_{1}, \lambda_{2})\in A$ , the following $(\langle)nditions$ are satisfied:

$\int_{R^{N}}|\nabla\varphi_{1}|^{2}+(\lambda_{1}-\beta\omega_{\lambda_{2}}^{2})\varphi_{1}^{2}dx$ , $\int_{R^{N}}$ V $\varphi_{1}|^{2}+(\lambda_{2}-\beta\omega_{\lambda_{1}}^{2})\varphi_{1}^{2}dx>0$

for all $\varphi_{1}\in H_{r}^{1}(R^{N})\backslash \{0\}$ . Here $\omega_{\lambda_{?}}(x)\in H_{r}^{1}(R^{N})$ is a unique positive radially
symmetric solution of

-A$u)i+\lambda_{i}w_{j}=l^{i_{i}u)}i3$ in $R^{N}$ .

(ii) $(V_{1}(P), V_{2}(P))\in A$ for all $P\in R^{N}$ .

Remark 1.2. The condition (i) was introduced in Ambrosetti and Colorado
[2]. They showed the existence of non-trivial positive solution of (3) under
the condition (i) using the mountain pass theorem on the Nehari manifold.

We define the function $m(P)$ : $R^{N}arrow R$ as follows:

$m(P)=b(V_{1}(P), V_{2}(P))$ . (6)

As the second assumption, we assume

Assumption 2 There exists a bounded open set $\Lambda\subset R^{N}$ such that

$\inf_{P\in\Lambda}m(P)<\inf_{P\in\partial\Lambda}m(P)$ . (7)

We set

$m_{0}= \inf_{P\in\Lambda}m(P)$ , $K=\{P\in\Lambda|m(P)=m_{0}\}$ .

Now we can state our main result.
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Theorem 1.3 ([16]). Suppose that Assumptions 1 and 2 hold, $0<\beta<$
$\sqrt{\mu_{1}\mu_{2}}$ and $V_{1}(x),$ $V_{2}(x)\in C^{1}(R^{N})$ . Then there exists an $5_{0}>0$ such
that (1) possesses a family of non-trivial positive solutions $((u_{\epsilon}))_{\epsilon\in(0,\epsilon_{0}]}=$

$((u_{\epsilon,1}, u_{\epsilon,2}))_{\epsilon\in(0_{1}\epsilon 0]}$ which satisfies the $foll_{ou)}inq$ properties:
after taking a subsequence $6_{n}arrow 0$ , there exists a sequence $(P_{n})\subset\Lambda,$ $P_{0}\in K$

and $\omega(x)=(\omega_{1}(x), \omega_{2}(x))$ such that

$P_{\epsilon}$ . $arrow P_{0}$ , $u_{\epsilon,i}(\mathcal{E}_{n}X+P_{\epsilon_{?\mathfrak{l}}})arrow\omega_{i}(x)$ strongly in $H^{1}(R^{N})$ .

Here $\omega(x)=(\omega_{1}(x), \omega_{2}(x))$ is a non-trivial positive solution of the limit prob-
lem

$\{\begin{array}{l}-\triangle u_{1}+V_{1}(P_{0})u_{1}=\mu_{1}u_{1}^{3}+\beta u_{1}u_{2}^{2} in R^{N},-\triangle u_{2}+V_{2}(P_{0})u_{2}=\beta|x_{1}^{2}u_{2}+\mu_{2}u_{2}^{3} in R^{N},\end{array}$

and satisfies
$J_{V_{1}(P_{0}),V_{2}(P_{0})}(\omega)=m_{0}=b(V_{1}(P_{0}))V_{2}(P_{0}))$ .

Remark 1.4. (i) In Theorem 1.3, we do not suppose conditions on $V_{1}(x),$ $V_{2}(x)$

as $|x|arrow\infty$ .
(ii) We note that $b(V_{1}, V_{2})$ and $m(P)$ depend on $\beta>0$ . As $\betaarrow 0$ , we can
prove that

$b(V_{1}, V_{2}) arrow(\frac{V_{1}^{(4-N)/2}}{\mu_{1}}+\frac{V_{2}^{(4-N)/2}}{l^{12}}Id_{0}$ uniformly w.r. $t$ . $(V_{1}, V_{2})\in A$ .

Here
$d_{0}= \int_{R^{N}}\frac{1}{2}(|\nabla\omega_{0}|^{2}+\omega_{0}^{2})-\frac{1}{4}\omega_{0}^{4}dx$

and $\omega_{0}(x)\in H_{r}^{1}(R^{N})$ is a unique radially symmetric positive solution of
$-\triangle w+w=w^{3}$ in $R^{N}$ . So, we can conclude that

$m(P)arrow d_{1}(P)+d_{2}(P)$ in $L_{1oc}^{\infty}(R^{N})$ ,

where
$d_{1}(P)= \frac{V_{1}^{(4-N)/2}}{\mu_{1}}d_{0}$ , $d_{2}(P)= \frac{V_{2}^{(4-N)/2}}{\mu_{2}}d_{0}$ . (8)

Thus if there exists a bounded open $s^{\tau}ef\Lambda\subset R^{N}$ such that

$\inf_{P\in\Lambda}(d_{1}(P)+d_{2}(P))<\inf_{P\in\partial\Lambda}(d_{1}(P)+d_{2}(P))$

holds, then Assumption 2 is satisfied for sufficiently sriiall $\beta>0$ . About
another cases in which Assumption 2 is $1^{\backslash }\backslash atisfied$ , see Hemark 2.4.
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An another aim of this note is to discuss locations of concentrating points
of (1). The following result which has been proved by Wang [31] shows that
the positivity of/; is crucial in Theorem 1.3. (See also Wang and Zeng [32])

Proposition 1.5. Suppose that $V_{1},$ $V_{2}\in C^{1}(R^{N}).satiLsfies$ Assumption 1 and
there exist $C,$ $a>0$ such that

$|\nabla V_{1}(x)|+|\nabla V_{2}(x)|\leq C(|x|^{tY}+1)$ for all $x\in R^{N}$

Let $(u_{\epsilon})$ be a family of non-trivial positive solution of (1) with $\beta=0$ and
there exist $6_{n}arrow 0$ and $(P_{n,i})\subset R^{N}(i=1,2)$ such that

$P_{n,i}arrow P_{0,i}\in R^{N}$ $u_{\epsilon,i}(\in nx+P_{n,i})arrow\omega_{i}(x)\not\equiv 0$ stronly in $H^{1}(R^{N})$ ,

then
$\nabla V_{1}(P_{0,1})=0$ , $\nabla V_{2}(P_{0,2})=0$

holds.

By Proposition 1.5, if there is no point $P\in R^{N}$ such that $\nabla V_{1}(P)=$

$V_{2}(P)=0$ , then there does not exist a fainily of non-trivial positive solution
which has a property in Theoreni 1.:3 even if Assumption 2 is satisfied. Thus
we can conclude that Theorem 1.3 holds due to the positivity of $\beta$ .

We discuss the difTerences of 10( $\dot{\epsilon}t\{iollS$ of concentrating points between
the single nonlinear Schr\"odinger equations and our system (1) in section 3.

In section 2, we sketch the proof of Theorem 1.3. In order to obtain
the solutions of (1), we use the ideas of Byeon and Jeanjean [7]. For more
details, see the forthcoming paper [16]. In section 3, we prove the result
which is related to Proposition 1.5 and discuss locations of concentration
points.

2 Sketch of Proof of Theorem 1.3
In this section, we sketch a praof of Theorem 1.3. Before proving Theorem
1.3, we prepare some notation.

We set $H=H^{1}(R^{N})\cross H^{1}(R^{N})$ and $H_{r}=H_{r}^{1}(R^{N})\cross H_{r}^{1}(R^{N})$ .
Next, we define a norn$J(1tH$ as follows: for $\varphi=(\varphi_{1}, \varphi_{2})$ and an
open set $D\subset R^{N}$ ,

$\Vert\varphi_{1}\Vert_{H^{1}}^{2}:=\int_{R^{N}}|\nabla\varphi_{1}|^{2}+\varphi_{1}^{2}dx$ ,

$\Vert\varphi\Vert_{H}^{2}:=\Vert\varphi_{1}\Vert_{H^{1}}^{2}+\Vert\varphi_{2}\Vert_{H^{1}}^{2}$ ,

$\Vert\varphi_{1}\Vert_{H^{1}(D)}^{2}:=\int_{D}|\nabla\varphi_{1}|^{2}+\varphi_{1}^{2}dx$ ,

$\Vert\varphi\Vert_{H(D)}^{2}:=\Vert\varphi_{1}\Vert_{H^{1}(D)}^{2}+\Vert\varphi_{2}\Vert_{H^{1}(D)}^{2}$ .
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2.1 Properties of non-trivial positive solutions of (3)
In this subsection, we state the properties which non-trivial positive solutions
of (3) satisfy. We begin with the following definition.

Definition 2.1. We define the sets $S_{V_{1},V_{2}}\subset H_{r},$ $S_{A}\subset R^{2}\cross H_{r}$ and $S_{K}\subset$

$R^{N}\cross H_{r}$ as follows:

$S_{V_{1},V_{2}}=\{\omega=(\omega_{1}, \omega_{2})\in H_{r}|\omega_{1}, \omega_{2}>0, J_{V_{1},V_{2}}’(\omega)=0, J_{V_{1},V_{2}}(\omega)=b(V_{1}, V_{2})\}$ ,

$S_{A}=\{(V_{1}, V_{2}, \omega)\in R^{2}\cross H_{r}|(V_{1}, V_{2})\in A, \omega\in S_{V_{1},V_{2}}\}$ ,
$S_{K}=\{(P, \omega)\in\Lambda\cross H_{r}|\omega_{1},$ $\omega_{2}>0,$ $J_{V_{1}(P),V_{2}(P)}’(\omega)=0$ ,

$J_{V_{1}(P),V_{2}(P)}(\omega)=m(P),$ $P\in K\}$ .

$S_{A}$ has nice properties.

Proposition 2.2. (i) There $ex’\iota stC_{1},$ $C_{2},$ $C_{3},$ $C_{4}>0$ such that for all $(V_{1}, V_{2}, \omega)\in$

$S_{A}$ , it follows that

$C_{1}\leq\Vert\omega_{1}\Vert_{H^{1}}\leq C_{2}$ , $C_{1}\leq\Vert\omega_{2}\Vert_{H^{1}}\leq C_{2}$ ,

$|\omega(x)|+|\nabla\omega(x)|\leq C_{3}’\exp(-C_{4}|x|)$ for all $x\in R^{N}$ .

(ii) $S_{A}$ is compact in $R^{2}\cross H_{r}$ . Namely, for any sequence $(V_{n,1}, V_{n,2}, \omega_{n})\subset S_{A}$

there exist subsequence $(V_{n_{7},1}, V_{n_{j},2}, \omega_{n_{j}})$ and $(V_{0,1}, V_{0,2}, \omega_{0})\in S_{A}$ such that

$(V_{n_{j},1}, V_{n_{j},2})arrow(V_{0,1}, V_{0,2})$ , $\omega_{n},$ $arrow\omega_{0}$ strongly in $H_{r}$ .

Using the properties in Proposition 2.2, we can prove the following lemma.

Lemma 2.3. (i) $b(V_{1}, V_{2}):Aarrow R$ is continuous.
(ii) $b(V_{1}, V_{2})$ is strictly increasing in $V_{1}$ (resp. $V_{2}$ ) for $fixedV_{2}$ (resp. $V_{1}$ ). In
particular, if $V_{11}<V_{12}$ or $V_{21}<V_{22}$ holds, then it follows that

$b(V_{11}, V_{21})<b(V_{12}, V_{22})$ .

Remark 2.4. From Lemma 2.3, the function

$m(P)=b(V_{1}(P), V_{2}(P))$

is continuous on $R^{N}$ and $S_{K}$ is compact. Thus we see that if there exist a
bounded open set A $\subset R^{N}$ and a point $P_{0}\in\overline{\Lambda}$ such that

$V_{1}(P_{0})< \inf_{P\in\partial\overline{\Lambda}}V_{1}(P)$ , $V_{2}(P_{0})< \inf_{P\in\partial\overline{\Lambda}}V_{2}(P)$ ,

then, $m(P)$ satisfies $Assuml$)$tion2$ with $\Lambda=$ A for all $\beta>0$ which satisfies
Assumption 1.
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Finally, we give some remarks about the minimizing problem (5). In order
to obtain non-trivial positive solution of (3), we consider the minimizing
problem (5). On the other hand, there is an another minimizing problem:

$\overline{b}(V_{1)}V_{2})1$ (9)

where

$\mathcal{M}(V_{1}, V_{2})=\{u=(u_{1}, u_{2})\in H|u_{1},$ $u_{2}\not\equiv 0$ ,
$J_{\iota_{1}^{\gamma},\iota_{2}^{\gamma}}’(u)(u_{1},0)=J_{V_{1},V_{2}}’(u)(0, u_{2})=0\}$ .

Under the condition $0<\beta<\sqrt{\mu_{1\{\iota_{2}}}$ , if there exists a minimizer of the
problem (9), the minimizer is a non-trivial positive solution of (3). It is easy
to see that the inequality $\tilde{b}(V_{1}, V_{2})\leq b(V_{1}, V_{2})$ holds. Furthermore, we can
prove that the opposite inequality holds.

Lemma 2.5. Under the assumptions in Theorem 1.3, the equality $\tilde{b}(V_{1}, V_{2})=$

$b(V_{1}, V_{2})$ holds.

2.2 Nehari type manifold and the Palais-Smale condi-
tion

In this subsection, we consider the following problem:

$\{\begin{array}{ll}-\triangle u_{1}+V_{1}(\mathcal{E}X)u_{1}=l^{\iota_{1}u_{1}^{3}}+\beta n_{1}u_{2}^{2} in R^{N},-\triangle u_{2}+V_{2}(\epsilon x)u_{2}=\beta n_{1}^{2}u_{2}+\mu_{2}u_{2}^{3} in R^{N}u_{1}(x), u_{2}(x)>0 in R^{N},u_{1}, u_{2}\in H^{1}(R^{N}). \end{array}$ (10)

The system (10) appears when we consider a rescale function $u(x)=v(\in x)$ .
To treat the existence of non-trivial $I$) $O_{\iota}\backslash \backslash itive$ solution of (10), we define the
following functional $I_{\epsilon}$ : $Harrow R$ ,

$I_{\epsilon}(u)= \frac{1}{2}\int_{R^{N}}|\nabla u_{1}|^{2}+V_{1}(\in x)u_{J}^{2}+|\nabla u_{2}|^{2}+V_{2}(\in x)u_{2}^{2}dx$

$- \frac{1}{4}\int_{R^{N}}l^{(}\iota^{u_{1}^{4}}+2/i_{11_{1}^{2}}u_{2}^{2}+l^{l_{2}u_{2}^{4}dx}$ .

A solution of (10) is characterized as a critical point of $I_{\epsilon}$ . In order to obtain
non-trivia positive solutions of (10), we consider the following Nehari type
manifold $\mathcal{M}_{\in}$ :

$\mathcal{M}_{\epsilon}=\{u\in H|u_{1}, u_{2}\not\equiv 0, I_{\epsilon}’(u)(u_{1},0)=I_{\epsilon}’(u)(0, u_{2})=0\}$ .
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Under the condition $0<\beta<\sqrt{l^{l_{1}}l^{(2}}$ a critical point of $I_{\epsilon}$ is equivalent to a
critical point of $I_{\epsilon}|_{\mathcal{M}_{\epsilon}}$ . So, we will find $ct$ (ritical point of $I_{\epsilon}|_{At_{\epsilon}}$ .

One of difficulties in finding a ( riti $(a1$ point of $I_{\epsilon}|_{\mathcal{M}_{\epsilon}}$ is that the functional
$I_{\epsilon}$ does not satisfy the Palais-Smale condition. Here we say the functional
$I_{\epsilon}$ satisfies the Palais-Smale (on$(Jition$ if for any sequence $(u_{n})\subset \mathcal{M}_{\epsilon}$ which
satisfies

$I_{\epsilon}(u_{n})arrow c$ , $I_{\epsilon}’(v_{\eta})arrow 0$ in $H^{*}$ ,

then $(u_{n})$ has a strongly convergent subsequence.
Following the ideas in Byeon and Jeanjean [7], we consider the following

sets. For $\in,$ $\delta,$ $d>0$ , we set

$S_{\epsilon,\delta}=\{\omega_{P}(x-\overline{P}/\in)|P\in K, |P-\overline{P}|\leq\delta, \omega_{P}\in S_{K}\}$ ,
$S_{\epsilon,\delta}^{d}=\{\omega_{P}(x-\tilde{P}/\in)+\varphi(x)|\omega_{P}(x-\tilde{P}/\in)\in S_{\epsilon,\delta}, \varphi\in H, \Vert\varphi\Vert_{H}<d\}$.

Remark 2.6. The set type of $S_{\xi}^{d_{\delta}}$. is introduced in Byeon and Jeanjean [7]
to study the singular perturbation problem for single nonlinear Schr\"odinger
equations with a general nonlinearity. They proved the existence of solutions
which concentrate to some point without using the uniqueness and nonde-
generacy of the limit problem.

To prove Theorem 1.3, we consider the existence of local minimum point
of $I_{\epsilon}$ on $\mathcal{M}_{\epsilon}\cap S_{\epsilon,\delta}^{d}$ , i.e., we consider the following minimizing problem:

$m_{\epsilon}=. \inf_{\delta}.I_{\epsilon}(u)u\in\Lambda 4_{\epsilon}\cap S_{r}^{d}$
. (11)

The set $\mathcal{M}_{\epsilon}\cap S_{\epsilon,\delta}^{d}$ and the functional $I_{\epsilon}$ have the following properties.

Proposition 2.7. There exist $d_{1},$ $\delta_{1},$ $\epsilon_{1}>0$ such that for $all\in\in(0,6_{1})$ , if
$(u_{j})\subset \mathcal{M}_{\epsilon}\cap S_{\epsilon.\delta_{1}}^{d_{1}}$ satisfies

$I_{\epsilon}’(u_{j})arrow c$ , $I_{F}’(u_{j})arrow 0$ in $H^{*}$ ,

then $(u_{j})$ has a strongly convergent subsequence in $H$ and its limit $u_{0}$ is a
critical point of $I_{\epsilon}$ and $I_{\epsilon}(u_{0})=c$ .

Proposition 2.8. There exist $d_{2},$ $\delta_{2}>0$ such that if a sequence $(\Xi_{j}),$ $\mathcal{E}_{j}arrow 0$

and $(u_{j})\subset H$ which satisfy

$u_{j}\in \mathcal{M}_{\epsilon_{j}}\cap S_{\epsilon_{j},\delta_{2}}^{d_{2}}$ , $I_{\epsilon_{j}}(u_{j})arrow c_{0}\leq m_{0}$ , $I_{\epsilon_{j}}’(u_{j})arrow 0$ in $H^{*}$ ,

then $c_{0}=m_{0}$ holds and there exist a subsequence (we still denote $(j)$ ), $(P_{j})\subset$

$R^{N},$ $P_{0}\in K$ and $\omega_{0}\in S_{V_{1}(P_{0}),V_{2}(P_{()})}$ such that

$P_{j}arrow P_{0}$ , $u_{j}(x+P_{j}/\mathcal{E}_{j})arrow\omega_{0}$ strongly in $H$ .
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Proposition 2.7 states that if $(l,$ $\delta_{\overline{\backslash }}\wedge$ are sufficiently small, then a Palais-
Smale sequence in $\mathcal{M}_{\epsilon}\cap S_{\delta-,\backslash }^{d}$ has a strongly convergent subsequence. On
the other hand Proposition 2.8 states the behavior of non-trivial solutions of
(10). From $Proposition2.8$ . we $(_{\dot{\zeta}}\{11$ see that if we find a critical point $u_{\epsilon}$ in

$\mathcal{M}_{\epsilon}\cap S_{\xi}^{d_{\delta}}$

, for each small $\in$ , then both components of $(u_{\epsilon})$ concentrate to the
same point $P_{0}\in R^{N}$ .

Thus in order to prove Theorem 1.3, we shall show that the minimizing
problem (11) has a minimizer for each small $\in>0$ .

2.3 Solvability of (11) and Proof of Theorem 1.3
In this subsection, we prove that the minimizing problem is solvable for a
small $e>0$ and complete a proof of Theorem 1.3.

To ensure the existence of minimizers for (11), the following proposition
is a key.

Proposition 2.9. There exist $d_{3\}\delta_{3},$ $\in 2>0$ which sati sfies the following. For
any $\iota/>0$ , there exists an $R_{l/}>0$ such that for any $u\in \mathcal{M}_{\epsilon}\cap S_{\xi}^{d_{\delta}},$

’ there
exists a $v\in \mathcal{M}_{\epsilon}\cap S_{\xi}^{d_{\delta}}$

, rvhich $sati.\sigma fi.,s$

$I_{\epsilon}(v)\leq I_{\epsilon}(\iota\iota)$ , $\Vert\uparrow)\Vert_{H(|x-P/\epsilon|>R_{\nu})}\leq\iota/$

for all $d\in(0, d_{3}],$ $\delta\in(0, \delta_{3}],$ $\in\in(0, \in 2)$ . Here $P$ satisfies
$u(x)=\omega_{P}(x-\tilde{P}/\in)+\varphi(x)$ , $P\in K,$ $\omega_{P}\in S_{V_{1}(P),V_{2}(P)}$ .

Let $d_{0}= \min\{d_{1}/2, d_{2}/2, d_{3}/2\}$ and $\delta_{0}=\min\{\delta_{1}, \delta_{2}, \delta_{3}\}$ . By the aid of
Proposition 2.9, we can prove the following:

Lemma 2.10. For any $d\in(0, d_{0}]$ and $\delta\in(0, \delta_{0}],$
$\lim_{\epsilonarrow}\inf_{0}m_{\epsilon}=m_{0}$ .

Now we prove that the minimizing problem (11) has a minimizer for small
$e>0$ .

Proposition 2.11. (i) There exists a $\rho_{()}>0$ such that

$\lim_{\epsilonarrow 0}\inf_{\vee}\inf_{\delta_{0}\delta_{0}}I_{\epsilon}(u)u\in \mathcal{M}_{r}\cap s_{\vee}^{d_{0}}\backslash s_{\sigma}^{r\prime}\circ/2\geq m_{0}+\rho_{0}$

.

(ii) There exists an $\mathcal{E}_{3}>0$ such that for $each\in\in(0, \in 3)$ , there exist $u_{\epsilon}\in$

$\mathcal{M}_{\epsilon}\cap S_{\epsilon,\delta_{0}}^{d_{0}}$ which $satisfic_{\backslash }\backslash$

$I_{\epsilon}(u_{\epsilon})= \inf_{u\in\Lambda t_{\underline{\epsilon}}\cap s_{\vee}^{d_{\bigcup_{s_{0}}}}}.,I_{\epsilon}(u)$

.
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Proof. (i) We argue indirectly and assume that there exist $(\Xi_{j})$ and $(u_{j})\in$

$\mathcal{M}_{\epsilon_{j}}\cap S_{\epsilon_{J},\delta_{0}}^{d_{0}}\backslash S_{\epsilon_{J},\delta_{0}}^{d_{0}/2}$ such that

$I_{\epsilon_{j}}(u_{g})arrow m_{0}$ .

By Ekeland’s variational principle and Lemma 2.10, there exist a sequence
$(v_{j})$ such that

$v_{j}\in \mathcal{M}_{\epsilon_{j}}\cap S_{\epsilon_{j},\delta_{0}}^{2d_{0}}\backslash S_{\epsilon_{J}\delta_{0}}^{d_{0}./4}$ , $I_{\xi}j(v_{j})\leq I_{\epsilon_{3}}(u_{j})$ , $I_{\epsilon_{J}}’.(v_{j})arrow 0$ in $H^{*}$ .

By Proposition 2.8, there exist a subsequence (we still denote $(j)$ ) $(6_{j}),$ $(P_{j})\subset$

$R^{N},$ $P_{0}\in K$ and $\omega_{0}\in S_{V_{1}(P_{0}),V_{2}(P_{0})}$ such that

$P_{j}arrow P_{0}$ , $v_{j}(x+P_{j}/\in j)arrow\omega_{0}$ strongly in $H$ .

Thus $(v_{j})$ satisfies
$\Vert v_{j}(x)-\omega_{0}(x-P_{j}/\epsilon_{j})\Vert_{H}arrow 0$ .

Therefore $v_{j}\in S_{\epsilon_{j},\delta_{0}}^{d_{0}/4}$ for $suffi(ient,lv$ large $j$ . However, this is a contradiction,
which implies that there exists a $\rho_{0}>0$ such that

$\lim_{\epsilonarrow}\inf_{0}.\inf_{\delta_{0}}I_{\epsilon}(u)u\in\Lambda t_{e_{\underline{\sigma}}}ns_{\delta_{0}}^{d_{0}}\backslash s_{\sigma}^{d_{0}/2}\geq m_{0}+\rho_{0}$

.

(ii) By (i), there exists an $\Xi_{3}>0$ such that if $0<\in<\in 3$ , then

$\inf_{u\in \mathcal{M}_{\epsilon}\cap S_{\delta_{0}}^{d_{0}}\backslash S_{\delta_{0}}^{d_{0}/2}}I_{\epsilon}(u)\geq m_{0}+\rho_{0}$

. (12)

On the other hand, by Lemma 2.10, if E3 is sufficiently small, we can show
that if $0<\in<6_{3}$ , then $m_{\epsilon}<m_{0}+\rho_{0}$ .

Let $0<\in<6_{3}$ and $(u_{n})\subseteq \mathcal{A}\Lambda_{\epsilon}\cap S_{\epsilon(\rangle_{0}}^{d_{0}}$ be a minimizing sequence:
$I_{\epsilon}(u_{n})arrow$ $\inf$ $I_{\epsilon}(u)$ .

$u\in \mathcal{M}_{\mathcal{E}}\cap S_{\underline{r}\delta_{0}}^{d_{0}}$

From (12), we can suppose $(u_{n})\subset \mathcal{M}_{\epsilon}\cap S_{\xi}^{d.0_{\delta_{0}^{/2}}}$ . By Ekeland’s variational
principle, there exists a sequence $(v_{r\iota})\subset \mathcal{M}_{\epsilon}\cap S_{\epsilon.\delta_{0}}^{d_{0}}$ such that

$I_{\epsilon}(v_{n}) arrow\inf_{u\in \mathcal{M}_{\underline{r}}\cap S_{\delta_{0}}^{d_{0}}}I_{\epsilon}(u)$

, $I_{\epsilon}’(v_{n})arrow 0$ in $H^{*}$ .

By Proposition 2.7, $(v_{n})$ has a strongly convergent subsequence $(v_{n})$ and
there exists a critical point $v_{0}\in \mathcal{M}_{\epsilon}\cap S_{arrow\delta_{0}}^{d_{0}}=$. and $v_{0}$ satisfies

$I_{\epsilon}(v_{0})=i_{11}fI_{\epsilon}(u)v\in\Lambda 4_{\tau}\cap S_{\vee^{-\delta_{0}}}^{d_{0}}$

.

This completes the proof. $\square$
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Proof of Theorem 1.3. From Propositions 2.8 and 2.11, there exist a family
of non-trivial solutions $(u_{\epsilon})$ . Furthermore for any sequence $(\mathcal{E}_{n})$ , there ex-
ist a subsequence $(\in j)$ (we still denote $(j)$ ), $(P_{j})\subset R^{N},$ $P_{0}\in R^{N},$ $\omega_{0}\in$

$S_{V_{1}(P_{0}),V_{2}(P_{0})}$ such that

$P_{j}arrow P_{0}$ , $u_{\epsilon},$ $arrow\omega_{0}$ strongly in $H$ .

Thus $v_{\epsilon}(x)=u_{\epsilon}((x+P_{j})/\mathcal{E}_{j})$ is a non-trivial solution of the equations of (1)
and after taking a subsequence, both components of $(v_{\epsilon})$ concentrate to the
same point $P_{0}\in K$ . Therefore we only prove that $(u_{\epsilon})$ is a positive function
if $\in>0$ is sufficiently small.

Now we prove the following proposition and this completes the proof of
Theorem 1.3.
Proposition 2.12. There exists an $6_{4}>0$ such that if $0<\in<\mathcal{E}_{4}$ , then both
of components of $u_{\epsilon}$ are positive.

Proof. We prove indirectly and assume that there exist $(\mathcal{E}_{n})$ and $(u_{n})$ such
that $\in_{n}arrow 0$ and $\Vert u_{n,1}^{-}\Vert_{L^{2}}>0$ , where $u_{n,1}^{-}(x)= \min\{0, u_{n,1}(x)\}$ . Moreover
we can assume that

$u_{n}(x)=\omega_{n}(x-P_{n}/\epsilon_{n})+\varphi_{n}(x)$ , $P_{n}arrow P_{0}$ ,
$\omega_{n}(x)arrow\omega_{0}(x)$ , $\varphi_{r\iota}arrow 0$ strongly in $H$

where
$P_{0}\in K$ , $\omega_{n}(x-P_{n}/\in_{\eta})\in S_{\epsilon_{l1}.\delta_{0)}}$ $\omega_{0}\in S_{V_{1}(P_{0}),V_{2}(P_{0})}$ .

Let $\tilde{u}_{n}(x)=u_{n}(x+P_{n}/\in)$ . Then $\tilde{u}_{\eta t}$ satisfies

$\{\begin{array}{l}-\triangle\tilde{u}_{n.1}+V_{1}(\mathcal{E}_{n}X+P_{n})\tilde{u}_{n.1}=\mu_{1}\tilde{u}_{n,1}^{3}+\beta\tilde{u}_{n,1}\tilde{u}_{n,2}-\triangle\tilde{u}_{n2}+V_{2}(\Xi_{r\iota}X+P_{n})\prime\tilde{\iota\iota}_{n,2}=/;_{\tilde{u}_{n,1}^{2}\tilde{u}_{n2}}+\mu_{2}\tilde{u}_{n,2}^{3}\end{array}$ (13)

and $\tilde{u}_{n,i}arrow\omega_{0_{\tau}i}$ in $H$ . Thus by the elliptic regularity theory, we have

$\tilde{u}_{7\downarrow i}arrow\omega_{0i}$ in $C_{1oc}^{2}(R^{N})$

and there exists $C_{5}’,$ $C_{6}>0$ such that for all $x\in R^{N}$ and $n$ , it follows that

$|\tilde{u}_{n,1}(x)|+|\tilde{u}_{n.2}(x)|+|\nabla\tilde{u}_{7I}.1(x)|+|\nabla\tilde{u}_{7\iota,2}(x)|\leq C_{5}\exp(-C_{6}|x|)$

Let $R_{0}>0$ . We take an $n_{R_{0}}\in N$ such that if $n\geq n_{H_{0}}$ , then $\tilde{u}_{n,1}(x)>0$

on $|x|\leq R_{0}$ . We $niulti_{I)}1v$ the fist equation in (1:;) $I_{)}y\tilde{u}_{n,1}^{-}$ and integrate on
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$\{|x|\geq R_{0}\}$ . Then there exists an a $>0$ which depends only on $V_{1}(x)$ such
that

$\Vert\nabla\tilde{u}_{n,1}^{-}\Vert_{L^{2}(|x|\geq R_{0})}^{2}+c)^{1}\Vert\tilde{u}_{n_{t}1}^{-}\Vert_{L^{2}(|x|\geq R_{0})}^{2}$

$\leq\Vert\nabla\tilde{u}_{n,1}^{-}\Vert_{L^{2}(|x|\geq R_{0})}^{2}+/|x|\geq R_{0}V_{1}(\in n^{X+P_{n})(\tilde{u}_{n,1}^{-})^{2}d_{X}}$

$=\mu_{1}\Vert\tilde{u}_{n,1}^{-}\Vert_{L^{4}(|x|\geq R_{0})}^{4}+\beta\Vert\tilde{u}_{7t.1}^{-}\tilde{u}_{n.2}\Vert_{L^{2}(|x|\geq R_{0})}^{2}$

$\leq C_{7}\exp(-2C_{5}R_{0})\Vert\tilde{u}_{n_{2}1}^{-}\Vert_{L^{2}(|x|\geq B_{\langle)})}^{2}$ .

Thus if $R_{0}>0$ and $n_{R_{0}}$ are sufficientlv large, we can $\langle;onclude$ that if $n\geq n_{R_{XJ}}$ ,
then $\tilde{u}_{n_{1}1}^{-}\equiv 0\equiv u_{n,1}^{-}$ . However, this contradicts to $\Vert u_{n,1}^{-}\Vert_{L^{2}}>0$ , which
completes the proof. $\square$

By Proposition 2.12, we can prove the positivity of the minimizer $(u_{\epsilon})$ .
Thus we complete the proof of Theorem 1.3.

$\square$

3 Observation of concentrating points

In this section, we discuss points to which non-trivial solution of (1) concen-
trate. We begin with the following definition.

Deflnition 3.1. Let $(u_{\epsilon})$ be a family of solution of (1). We say that $P_{0}\in R^{N}$

is a concentrating point of $(u_{\epsilon})$ if and only if there exist a subsequence $(6_{n})$ ,
$(P_{n})\subset R^{N}$ and a limit function $\omega_{0}=(\omega_{0.1}, \omega_{0,2})$ such that

$P_{n}arrow P_{0}$ , $u_{\epsilon_{71}}(\Xi_{n}X+P_{j})arrow\omega_{0}$ strongly in $H$ .

Here $\omega_{0}$ is a non-trivial positive solntion of

$\{\begin{array}{l}-\triangle v_{1}+V_{1}(P_{0})v_{1}=l^{l_{I}v_{1}^{3}}+\beta\iota_{1}v_{2}^{2} inR^{N},-\triangle v_{2}+V_{2}(P_{0})v_{2}=\beta\iota_{1}^{2}|v_{2}+\mu_{2}v_{2}^{3} in R^{N}.\end{array}$

Remark 3.2. A family of solution we found in Theorem 1.3 satisfies the above
condition.

Now we prove the following characterization of concentrating points,
which is related to Proposition 1.5.

Proposition 3.3. Let $\beta\in R$ and $P_{0}\in R^{N}$ be a concentrating point of $(u_{\epsilon_{n}})$ .
Furthermore, suppose that $V_{1},$ $V_{2}\in C^{1}(R^{N})$ satisfy Assumption 1 and there
exist $C_{8},$ $\alpha>0$ such that

$|\nabla V_{1}(x)|+|\nabla V_{2}(x)|\leq C_{8}(|x|^{\alpha}+1)$ for all $x\in R^{N}$
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Then $P_{0}$ satisfies

$\nabla V_{1}(P_{0})\int_{R^{N}}\omega_{0,1}^{2}dx+\nabla V_{2}(P_{0})\int_{R^{N}}\omega_{0,2}^{2}dx=0$ . (14)

Here $\omega_{0}$ is a limit function of $(u_{\epsilon},, )$ .

Remark 3.4. The conclusion of Propositlion 3.3 is still valid if $V_{1}(x),$ $V_{2}(x)$ are
unbounded and satisfy some growth conditions as $|x|arrow\infty$ . In that case, we
replace the function space $H$ by

$\mathcal{H}=\{u\in H|\int_{R^{N}}V_{1}(x)u_{1}^{2}dx<\infty, \int_{R^{N}}V_{2}(x)u_{2}^{2}dx<\infty\}$ .

Proof. We set $v_{n}(x)=u_{\epsilon_{n}}(\Xi_{n}X+P_{n})$ . Then $v_{n}$ satisfies

$\{\begin{array}{l}-\triangle v_{n,1}+V_{1}(6_{n}X+P_{n})tv_{n,1}^{3}+/i\iota_{n,1}v_{n,2}^{2} in R^{N},-\triangle v_{n_{1}2}+V_{2}(\mathcal{E}_{n}X+P_{n})\iota)_{\gamma\iota,2}=1^{i\iota_{n,1}^{2}v_{n,2}}+\ell_{l_{2}}v_{n,2}^{3} in R^{N}.\end{array}$ (15)

By the assumption about $V_{1},$ $V_{2}$ and the ellipt,ic regularity theory, we can
assume that there exist $C_{9},$ $C_{10}>0$ such that for all $n$ and $x\in R^{N}$ , it
follows

$v_{n,1}(x)+v_{n,2}(x)\leq C_{9}’\exp(-C_{10}|x|)$ .

Moreover, we can show that $v_{n,1},$ $v_{n,2}\in H^{2}(R^{N})$ . We multiply $\partial v_{n,1}/\partial x_{j}$ by
the first equation in (15) and integrate over $R^{N}$ , we obtain

$\int_{R^{N}}-\triangle v_{n,1}\frac{\partial v_{n,1}}{\partial x_{j}}dx+\int_{R^{N}}V_{1}(\epsilon_{n}x+P_{n})v_{n,1}\frac{\partial v_{n,1}}{\partial x_{j}}dx$

(16)
$= \int_{R^{N}}\mu_{1}v_{n,1}^{3}\frac{\partial v_{n,1}}{\partial x_{j}}+i^{t_{1_{\eta.1}t\prime_{n,2}^{2}}\frac{\partial v_{n,1}}{\partial x_{j}}dx}$ .

In a similar way, we can obtain

$\int_{R^{N}}-\triangle v_{n,2}\frac{\partial v_{n,2}}{\partial x_{j}}dx+\int_{R^{N}}V_{2}(\in nx+P_{n})v_{n,2}\frac{\partial v_{n,2}}{\partial x_{j}}dx$

(17)
$= \int_{R^{N}}\beta_{t_{n1}’}^{2}.v_{n,2}\frac{\partial v_{n,2}}{\partial x_{j}}+l)$ .

Direct calculations show that

$- \int_{R^{N}}\triangle v_{n,j}\frac{\partial v_{n,j}}{\partial x_{J}}dx=\int_{R^{N}}\nabla v_{nj}\cdot\nabla(\frac{\partial\tau J_{n,j}}{\partial x_{j}})dx=\frac{1}{2}\int_{R^{N}}\frac{\partial}{\partial x_{j}}|\nabla v_{n,j}|^{2}dx=0$ .

(18)
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In a similar way, it follows that

$\int_{R^{N}}\mu_{1}v_{n,1}^{3}\frac{\partial v_{n,1}}{\partial x_{j}}+\beta_{t\}}n,1_{n,2}^{t)^{2}}\frac{\partial v_{n1}}{\partial x_{j}}+13_{t_{n_{\tau}1}^{2}}v_{n,2}\frac{\partial v_{n,2}}{\partial x_{j}}+\mu_{2}v_{n,2}^{3}\frac{\partial v_{n,2}}{\partial x_{j}}dx$

(19)
$= \int_{R^{N}}\frac{\partial}{\partial x_{j}}(\frac{\mu_{1}}{4}v_{n,1}^{4}+\frac{\beta}{2}v_{n.1^{t1_{\eta}^{2}}2}^{2}+\frac{l^{(2}}{4}?)_{\eta 2)dx}^{4}=0$ .

By the assumption about $V_{i}(x)$ , we have

$\int_{R^{N}}V_{i}(\epsilon_{n}x+P_{n})v_{n,i}\frac{\partial v_{n,i}}{\partial x_{j}}dx=\frac{1}{2}\int_{R^{N}}V_{i}(\epsilon_{n}x+P_{n})\frac{\partial}{\partial x_{j}}v_{n,i}^{2}dx$

(20)
$=- \frac{\epsilon_{n}}{2}\int_{R^{N}}\frac{\partial V_{i}}{\partial x_{j}}(\epsilon_{n}x+P_{n})v_{71}^{2},dxi$ .

Combining (16) $-(20)$ , we have

$\int_{R^{N}}\frac{\partial V_{1}}{\partial x_{j}}(\epsilon_{n}x+P_{r\iota})v_{n,1}^{2}+\frac{\partial V_{2}}{\partial x_{j}}(\in n^{X}+P_{n})v_{n,2}^{2}dx=0$ .

Let $narrow\infty$ , then it follows that

$\frac{\partial V_{1}}{\partial x_{j}}(P_{0})\int_{R^{N}}\omega_{0,1}^{2}dx+\frac{\partial V_{2}}{\partial x_{j}}(P_{0})\int_{R^{N}}\omega_{0,2}^{2}dx=0$ .

Thus we complete the proof. $\square$

In particular, in the case $\beta=0$ , we have the following corollary by the
above proof.

Corollary 3.5. Let $\beta=0$ and $P_{()},$ $V_{1}(x),$ $V_{2}(x)$ satisfy the same assumptions
in Proposition 3.3. Then $P_{0}.s$ati.sfi..s

$\nabla V_{1}(P_{0})=\nabla V_{2}(P_{0})=0$ .

Now we discuss the relationships between (14) and the function $m(P)$ .
At first we consider the siitgle nonlinear Schr\"odinger case, that is

$-\in^{2}\triangle\varphi_{i}+V,(x)\varphi_{i}=l^{l_{i}^{3}}\varphi_{i}^{3}$ in $R^{N}$ . (21)

In this case, the least energy level $d_{\gamma}(P)$ for (onstant coefficients case has the
following form:

$d_{i}(P)= \frac{V_{\tau}(P)^{(4-N)/2}}{l^{l_{1}}}d_{0}$ (22)

where $d_{0}$ is the least energy level for $-\triangle\varphi_{1}+\varphi_{1}=\varphi_{1}^{3}$ in $R^{N}$ . From (22),
we can see that $P_{0}\in R^{N}$ is a critical point of $V_{i}(P)$ if and only if $P_{0}$ is the
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one of $d_{i}(P)$ and if $P_{0}\in R^{N}$ is a strictly local minimum point or maximum
point of $V_{i},$ $P_{0}$ is the one of $d_{?}$ .

Concerning concentration points, we can show the following: If $P_{0}\in R^{N}$

is a concentration point of (21), then V $d_{i}(P_{0})=0$ , namely it holds $\nabla V_{i}(P_{0})=$

$0$ . Thus in the single nonlinear Schrodinger case, any concentrating point
must be a critical point of $V_{i}$ .

On the other hand, if a critical point $P_{0}$ of $V_{i}$ has some nondegeneracy,
then we can construct a family of solution of the single nonlinear Schr\"odinger
equation which concentrates to $P_{0}$ . See Ambrosetti, Badiale and Cingolani
[1], Ambrosetti and Malchiodi [3], Byeon and Jeanjean [7], Byeon, Jeanjean
and Tanaka [9], del Pino and Felmer [11], Floer and Weinstein [13], Jeanjean
and Tanaka [17], Oh [23, 24] and references therein.

Now, we consider system case. In the system case, the function $m(P)$

plays an important role to characterize concentration points. In fact, in the
case where $\beta>0$ is sufficient.ly small. then we can prove that the function
$m(P)$ is of class $C^{1}$ using the arguments in [15]. Furthermore, we can show
that any concentrating point $P_{0}$ satisfies

$\nabla rn(P_{0})=0$

and $\nabla m(P_{0})=0$ is equivalent to the equation (14). In the single case, we
see that a concentration point $P_{0}$ is a critical point of the potential function
and characterized the location explicitly, i.e., the local maximum point or
minimum point and so on. However, in the system case, we do not know
the explicit formula of the function $m(P)$ with using potential functions
$V_{1}(x),$ $V_{2}(x)$ . Therefore, we do not have the $spe($ ific location of concentration
points except for the equation (14). Furthermore, in general, we do not know
the regularity of the function $m(P)$ . In using the Liapunov-Schmidt reduc-
tion method, it is important that it holds the uniqueness and nondegeneracy
of non-trivial positive solution of (3). However, except for special cases, we
do not know the uniqueness $a11(]$ non($legellera($ . Thus it seems difficult to
apply the Liapunov-Schmidt reduction method for obtaining the solutions
of (1) which has the properties in Theorem 1.3.
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