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1 Introduction and Main Result

In this note, we sketch the results and ideas of the forthcoming paper [16],
and discuss locations of concentration points of the following singular per-
turbation problem for coupled nonlinear Schrodinger equations:

—2Auy + Vi(z)uy = mud + fugul in RV,
—&2Aug + Va(z)ug = puug + poud in RV,
ur(z), ua(z) >0 in RV,

uy, ug € H'(RY).

(1)

Here N = 2,3, p1,u2 > 0, 3 € R are constants, V;(z), Va(z) : RY — R are
given functions, and € > 0 is a small parameter.

In [16], we will prove that (1) has a sequence of non-trivial positive solu-
tion ue = (u,1, Ue,2) such that after taking a subsequence, (u,, ) concentrates
to a some point Py € R. Here we call u = (uy, uz) a non-trivial positive solu-

- tion of (1) if u satisfies the differential equations in (1) and u,(z), ug(z) > 0
in RV,

One of the difficulties to prove the existence of the above solutions of (1)
is that (1) has semi-trivial positive solutions where we call u = (u1,us) a
semi-trivial positive solution of (1) if u satisfies the differential equations in
(1) and one of u; and uy is positive in R" and the other is equal to zero
identically. In fact, if u;(z) € H'(R") is a positive solution of

—&%u; + Vi(z2)y; = pus  in RV, (2)

then, (u;(x),0) or (0, us(z)) solves the differential equations in (1).
The singular perturbation problem (1) is studied by Lin and Wei [19],
Pomponio [25], Montefusco, Pellacci and Squassina [22] and Wei [27, 28]. In
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[19], they considered both of the existence and the behavior of non-trivial
least energy solutions of (1). They treated (1) in both of attractive case
(8 > 0) and repulsive case (/3 < 0). In particular they showed the existence
of a non-trivial least energy solution of (1) for a small € > 0 under suitable
conditions on the behavior of Vi(z), Vo(z) as |z|] — oo. Furthermore, they
proved that if

inf m(P) < inf dl(P1) + inf dQ(PQ)
PeRN PeRN PeRN

(see (5), (6) and (8) for notation) holds, then after extracting a subsequence,

the both components of non-trivial least energy solutions of (1) concentrate

to the same point Py, € R" where P, satisfies

m(Py) = inf m(P).

PeRN

On the other hand, it also was proved in [12] that if the opposite inequality

inf m(P) > inf dy(P)+ inf dy(P)
PeR¥ PeRW PeRN

holds, then each component of non-trivial least energy positive solutions of

(1) concentrate to a different point P; € RV, where P, satisfies

inf d](P) = d](P]), inf dg(P) = dz(Pg)

PeRN PeRN

In Montefusco et al. [22], they studied the case /3 > 0 and considered
the existence of solutions which concentrates to a local minimum point of
potential functions Vi(z), Va(z). More precisely, if Vi(z), Vo(z) satisfy

min V;(z) < min Vj(x)

lz—z|<7 |x—z|=7

for some z € R" and r > 0, then for small € > 0, there exists a solution
ue = (Ue 1, Ue2) Of (1) such that (us1,ue2) # (0,0) and wue1(z) + ue 2(z) has
exactly one global maximum point in {z | [t — 2| < r}. However, in the case
where 3 > 0 is small, one of u.; and u., converges to 0 as € — 0. See also
Pomponio [25] and Wei [27, 28] for another cases.

The aim in [16] is to prove that when 3 > 0 and /3 is relatively small (see
Assumption 1), there exists a family of non-trivial positive solutions of (1)
whose components concentrate to the same point as € — 0 without assuming
the behavior of potentials V;(z), Va(z) as |z] — oo.



To state our main result, we need some preparations. In the study of (1),
the following constant coefficient. system plays an important role:

—Auy + Viuy = qud + fugus in RY,

—Auy + Voug = Puduy + pous in RY,

ur(x), us(x) > 0 in RV,
uy,uy € HY(RY).

(3)

Here V;, V, are positive constants. We remark that the system (3) appears
as a limit problem of (1) after a suitable rescaling. The system (3) has been
studied recently by many authors. See [2, 4, 5, 10, 12, 15, 18, 21, 26, 29, 30].
In the above articles, they considered both of cases 3 > 0 and # < 0, and
proved the existence of non-trivial positive solutions of (3). Here the size of 3
plays an important role. For more precise statements, see the above articles
and references therein.

In this note, we treat the case where /3 is positive and relatively small.

Solutions of (3) is characterized as critical points of the following functional
T, : HA(RY) x HX(RY) = H, — R:

1
Ta(usw) =5 [ 1Vl + Vied + Vol + Vaudds
R
1
— —/ paud + 230Ul + pouidz,
4 RN

(4)

where
H (RY) ={ o1 € HR") | p1(x) = ¢1(|z))}-

To find a critical point of Jy, v,, we consider the following minimizing prob-
lem: (See Lin-Wei [18] and Sirakov [26])

b(Vy, V) = inf J )
( 1, 2) ueMlRVLVz) Vl,Vz(u)7 ( )

where

M, (V1,V2) = { u= (u1,u2) € H, | us,ug #0,
Jvve (W) (u1,0) = Jy, v, (1) (0, uz) = 0}.

Under the condition 3 < /t1[tz, we can prove that if a minimizer exists, then
the minimizer is a critical point of Jy, y,. Moreover, without loss of generality
we can assume that the minimizer is a non-trivial positive solution of (3).

In [18] and [26], they considered when b(Vi, V,) is attained and proved the
existence of non-trivial positive solution of (3).



Remark 1.1. Under the condition /3 > 0, by the result of Busca and Sirakov
(6], any non-trivial positive solution of (3) is a radially symmetric with respect
to some point Py € RV,

To state our main result, we suppose the following conditions.

Assumption 1 There exists a set A = [0y, £15] X [f91, £22] C R? such that
(i) For any (A1, Az) € A, the following conditions are satisfied:

/ IVr1]? + (M — Bws,)pida, / V12 + (A2 — Buwi,)pidz > 0
RN RN

for all p; € H}(RM)\{0}. Herew, (z) € H}(R") is a unique positive radially
symmetric solution of :

——A’u}i + /\.,;’LU,j = ,U.{LU? in RN

(ii) (V1(P),Va(P)) € A for all P € RY.

Remark 1.2. The condition (i) was introduced in Ambrosetti and Colorado
[2]. They showed the existence of non-trivial positive solution of (3) under
the condition (i) using the mountain pass theorem on the Nehari manifold.

We define the function m(P) : RN — R as follows:
m(P) = b(Vi(P), Va(P)). (6)
As the second assumption, we assume
Assumption 2 There exists a bounded open set A C R¥ such that
o (P < jof, m(P), g
We set

my = Iijnim(P), K={PeA|m(P)=mp}.
€

Now we can state our main result.



Theorem 1.3 ([16]). Suppose that Assumptions 1 and 2 hold, 0 < [ <
Viipz and Vi(z),Va(z) € CYRYN). Then there exists an g > 0 such
that (1) possesses a family of non-trivial positive solutions ((Ue))ee(o.es] =
((ue,1,Ue2))ee(0,e0) Which satisfies the following properties:

after taking a subsequence €, — 0, there exists a sequence (P,) C A, Ph € K
and w(z) = (wi(z),ws(x)) such that

P., - Py, uci(enx+ P.,) — wi(x) strongly in HI(RN).

Here w(z) = (wi(x),w2(x)) is a non-trivial positive solution of the limit prob-
lem

—Auy + Vi(Py)uy = pud + /3u1u§ in RV,

—Auy + Vo (Py)ug = /3-ufu2 + mu% in RV,

and satisfies
JVI(PU)1V2(P0)(W) =mgy = b(Vl(Po), Vz(Po))-

Remark 1.4. (i) In Theorem 1.3, we do not suppose conditions on V;(z), V,(x)
as |z| — oo.

(ii) We note that b(V;, V) and m(P) depend on 3 > 0. As 3 — 0, we can
prove that

(4~N)/2 (4—N)/2
AR 7

b(Vy, Vo) — ( ) dyp uniformly w.rt. (V1,V;) € A.

He H2

Here 1 )
dy = / ~(|Vwol* + wd) — ~widz
RN 2 4

and wo(z) € H}RY) is a unique radially symmetric positive solution of
—Aw+w = w3 in R". So, we can conclude that

m(P) — di(P) + dz2(P) in L5, (RY),

loc

where (4-N)/2 (4-N)/2
Vi Vo
dl(P) - -+ d(), dQ(P) = 2

K1 He2
Thus if there exists a bounded open set A € R such that

do. (8)

inf (d,(P) + do(P)) < Jnf (di(P) + dao(P))

PeA

holds, then Assumption 2 is satisfied for sufficiently small 3 > 0. About
another cases in which Assumption 2 is satisfied, see Remark 2.4.



An another aim of this note is to discuss locations of concentrating points
of (1). The following result which has been proved by Wang [31] shows that
the positivity of /3 is crucial in Theorem 1.3. (See also Wang and Zeng [32])

Proposition 1.5. Suppose that V1, Vy € CYRYN) satisfies Assumption 1 and
there exist C, v > 0 such that

IVVA(Z)| + |[VVa(z)| < C(|x]* +1) for all z € RM.

Let (u.) be a family of non-trivial positive solution of (1) with 3 = 0 and
there exist €, — 0 and (P,;) C RN (i = 1,2) such that

P.. o PR, € R", Ue i (EnZ + Pn;) — wi(z) #0 stronly in HI(RN),

then
vvl(PO,l) =0, vvz(Pn,z) =0

holds.

By Proposition 1.5, if there is no point P € R” such that VV;(P) =
Va(P) = 0, then there does not exist a family of non-trivial positive solution
which has a property in Theorem 1.3 even if Assumption 2 is satisfied. Thus
we can conclude that Theorem 1.3 holds due to the positivity of 3.

We discuss the differences of locations of concentrating points between
the single nonlinear Schrodinger equations and our system (1) in section 3.

In section 2, we sketch the proof of Theorem 1.3. In order to obtain
the solutions of (1), we use the ideas of Byeon and Jeanjean [7]. For more
details, see the forthcoming paper [16]. In section 3, we prove the result
which is related to Proposition 1.5 and discuss locations of concentration
points.

2 Sketch of Proof of Theorem 1.3

In this section, we sketch a praof of Theorem 1.3. Before proving Theorem
1.3, we prepare some notation.

We set H = H'(R") x HY(R") and H, = H}(R") x H}(R"V).
Next, we define a norm on H as follows: for ¢ = (1, p2) and an
open set D C R¥,

e llFn = IVor > + @idz, lleillfpy = [ Vel + pldz,
RN D

||<P||§1 = H%“?;l + ”902”%17 ||<P||12L1(D) = “<P1H§11(D) + “‘P2“§11(D)'



2.1 Properties of non-trivial positive solutions of (3)

In this subsection, we state the properties which non-trivial positive solutions
of (3) satisfy. We begin with the following definition.

Definition 2.1. We define the sets Sy, v, C H,, Sy C R?> x H, and Sg C
RY x H, as follows:

S, ={w=(w,w) € H, |w1,ws >0, Jy, y,(w) =0, Jv, v, (w) = b(V1,V2)},
Sa={ Vi, Va,w) eR?*x H, | (V1,Vz) € A, w € Sy, 15},
Sk ={ (Pw) € Ax H, | wi,wz >0, Jy,(pyvppy(w) =0,
Jvi(pyvap)(w) = m(P), P € K}.
S4 has nice properties.

Proposition 2.2. (i) There exist Cy, Cy, C3, Cy > 0 such that for all (V1,Va,w) €
Sa4, it follows that

Ci < flwillgr £ C2,  C1 < lwzllm < Cy,
lw(z)| + |Vw(z)| < Czexp(—Cy|z|) for all z € RV,

(1) Sa is compact in R* X H,. Namely, for any sequence (Vp1, Va2,wn) C Sa
there exist subsequence (Vo 1, Vn, 2,wn,) and (Vo 1, Vo2,wo) € Sa such that

(Va1 Vaj2) = (Vo, Vo2),  wn, — wo strongly in H,.
Using the properties in Proposition 2.2, we can prove the following lemma.

Lemma 2.3. (i) b(V4,V2) : A — R is continuous. |
(i) b(V1, V) is strictly increasing in Vi (resp. V) for fized Vy (resp. Vi). In
particular, if Vi1 < Vig or Vo1 < Vay holds, then it follows that

b(Vi1, Va1) < b(Viz, Vaa).
Remark 2.4. From Lemma 2.3, the function
m(P) = b(Vi(P), Va(P))

is continuous on R~N and Sk is compact. Thus we see that if there exist a
bounded open set A € R" and a point P, € A such that

Vi(Py) < inf Vi(P), Vio(Fy) < inf V5(P),
PedA PedA

then, m(P) satisfies Assumption 2 with A = A for all § > 0 which satisfies
Assumption 1.



Finally, we give some remarks about the minimizing problem (5). In order
to obtain non-trivial positive solution of (3), we consider the minimizing
problem (5). On the other hand, there is an another minimizing problem:

b(V], Vg) = inf JV,,VQ(U) (9)

ueM(V1,V2)

where

M(Vl’%) = { u = ('U,],’U,g) S H ‘ U1, Uz 7—é Ov
J{ﬁ,VQ(u)(ul?O) = J\l/l,VQ(u)(O’ UQ) = 0}
Under the condition 0 < [ < /iiftz, if there exists a minimizer of the
problem (9), the minimizer is a non-trivial positive solution of (3). It is easy

to see that the inequality b(V;i, V3) < b(V4, V) holds. Furthermore, we can
prove that the opposite inequality holds.

Lemma 2.5. Under the assumptions in Theorem 1.3, the equality b(Vy, V) =
b(Vh, Va) holds. .

2.2 Nehari type manifold and the Palais—Smale condi-
tion
In this subsection, we consider the following problem:

—Auy + Vi(ex)u; = ;1.1u;3 + /3'u,lu§ in RV,

—Auy + Valex)ug = pBuduy + poud in RY,
uy(x), ug(z) > 0 in R,
uy, uy € HY(RM).

(10)

The system (10) appears when we consider a rescale function u(z) = v(ezx).
To treat the existence of non-trivial positive solution of (10), we define the
following functional I, : H — R,

1
I.(u) =5 /};N IVui |2 + Vi(ex)ud + |Vus|? + Va(ex)uldx

1

2 / N pau] + 2p3utul + ppusde.
R

A solution of (10) is characterized as a critical point of I.. In order to obtain

non-trivia positive solutions of (10), we consider the following Nehari type
manifold M.:

Me={ueH]|u,u #0, I/(u)(u,0) = I/(u)(0,uz) = 0}.



Under the condition 0 < 3 < \/fiy/i2, a critical point of I, is equivalent to a
critical point of I [p,. So, we will find a critical point of 1|4, .
One of difficulties in finding a critical point of I, is that the functional
I. does not satisfy the Palais-Smale condition. Here we say the functional
I satisfies the Palais~Smale condition if for any sequence (u,) C M. which
satisfies
I.(up) — ¢, I(u,)— 0in H",

then (u,) has a strongly convergent subsequence.
Following the ideas in Byeon and Jeanjean (7], we consider the following
sets. For ¢,48,d > 0, we set

85,5={wp(a:—]3/5)|P€K, IP—PI_<_6, WPGSK},
Sia = {wp(z — 15/5) + @(z) | wp(x — P/E) € S.s, € H, |l@|lun < d}.

Remark 2.6. The set type of S%; is introduced in Byeon and Jeanjean [7]
to study the singular perturbation problem for single nonlinear Schrodinger
equations with a general nonlinearity. They proved the existence of solutions
which concentrate to some point without using the uniqueness and nonde-

generacy of the limit problem.

To prove Theorem 1.3, we consider the existence of local minimum point
of I. on M, NSY,, i.e., we consider the following minimizing problem:

me = inf I (u). (11)

uUEM NS,

The set M. N Sgé and the functional I, have the following properties.

Proposition 2.7. There exist dy,d1,e1 > 0 such that for all € € (0,e1), if
(u;) C M. N Sg_}sl satisfies

IEI(’LLJ) —.C, IF/(U7) — 0 in H*,

then (u;) has a strongly convergent subsequence in H and its limit ug is a
critical point of I, and I.(ug) = c.

Proposition 2.8. There ezist dy.d2 > 0 such that if a sequence (¢;),e; — 0
and (u;) C H which satisfy

u; € M, ﬂng‘éz, I (u;) = cog < mg, I (u;) =0 in H*,

€j

then co = mg holds and there exist a subsequence (we still denote (j)), (P;) C
RN, Py e K and wq € Sv](po),\/Z(H)) such that

P; — Py, uj(z+ Pj/e;) — wo strongly in H.
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Proposition 2.7 states that if d.0. s are sufficiently small, then a Palais-
Smale sequence in M, N S%; has a strongly convergent subsequence. On
the other hand Proposition 2.8 states the behavior of non-trivial solutions of
(10). From Proposition 2.8. we can see that if we find a critical point u, in
M. N Sgé for each small ¢, then both components of (u.) concentrate to the
same point Py € RV.

Thus in order to prove Theorem 1.3, we shall show that the minimizing
problem (11) has a minimizer for each small € > 0.

2.3 Solvability of (11) and Proof of Theorem 1.3

In this subsection, we prove that the minimizing problem is solvable for a
small € > 0 and complete a proof of Theorem 1.3.

To ensure the existence of minimizers for (11), the following proposition
is a key.

Proposition 2.9. There exist ds. 3,2 > 0 which satisfies the following. For
any v > 0, there exists an R, > 0 such that for any u € M. N SZ;, there
exists a v € M, N SZ; which satisfies

Ie(v) < I(u), |vllH(e-pPrej>pn) SV
for alld € (0,d3], 6 € (0,83], € € (0,e,). Here P satisfies
u(z) = wp(z — P/e) + p(z), P €K, wp € Svypva(p)-

Let dy = min{d;/2,dy/2,d3/2} and dy = min{dy,d2,d3}. By the aid of
Proposition 2.9, we can prove the following:

Lemma 2.10. For any d € (0,do] and é € (0, dp], lim ig]f me = My.
E'——)

Now we prove that the minimizing problem (11) has a minimizer for small
e > 0.

Proposition 2.11. (i) There exists a py > 0 such that

lim inf inf I.(u) > mg+ po.
e—0 uGMsﬂ'Sg_%U\S’l%gz

<

(11) There exists an €5 > 0 such that for each € € (0,e3), there exist u. €
M N Sg%o which satisfies

I (ue) = inf I (u).

dy
‘ueMsﬁSSy&O



Proof. (i) We argue indirectly and assume that there exist (g;) and (u;) €
M, N Sd"éo\Sd"/i such that

]Ej(uj) — Myo.
By Ekeland’s variational principle and Lemma 2.10, there exist a sequence
(v;) such that
v € Mo, NSZENSU, I (v) < I, (w;), I (v;) = 0in H*.

650

By Proposition 2.8, 'there exist a subsequence (we still denote (j)) (g;), (P}) C
RN, Py € K and wg € Svl(po)’vQ(pO) such that

P, — Py, wvj(zx+ Pj/e;) > wo strongly in H.
Thus (v;) satisfies
lv;(2) — wolz — P;/e;)lln — 0.

Therefore v, € Sd"/ for sufficiently large j. However, this is a contradiction,
which implies that there exists a pg > 0 such that

lim inf inf I.(u) > mg + po.

e—0 d dg/2
ueM:NSZG \S2Y/

(ii) By (i), there exists an £5 > 0 such that if 0 < € < &3, then

1nf I.(w) > mg =+ po. (12)
u€McNSZ \5”0/2

On the other hand, by Lemma 2.10, if 3 is sufficiently small, we can show
that if 0 < e < €3, then m, < mqy + py.
Let 0 < e < e3 and (u,) C M, NS%

£.0y

I (u,) — inf  I.(u).

u€ M, F\SE%O

be a minimizing sequence:

From (12), we can suppose (u,) C M, N S%/?

:60‘

principle, there exists a sequence (v,) C M, N Sg%o such that

I.(v,) » inf I.(uw), I/(v,)—0 inH"
uEMsﬂSg_‘%o

By Ekeland’s variational

By Proposition 2.7, (v,) has a strongly convergent subsequence (v,) and
there exists a critical point v, € M, N Sg‘jso and vg satisfies

I (vg) = inf I (u).
uEMeNSTY

This completes the proof. O

11
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Proof of Theorem 1.3. From Propositions 2.8 and 2.11, there exist a family
of non-trivial solutions (u.). Furthermore for any sequence (g,), there ex-
ist a subsequence (g;) (we still denote (j)), (P;) € RN, Py € RV, wy €
SV](P()),V2(P0) such that

P; — Py, ue, — wy stronglyin H.

Thus ve(z) = u.((z + Pj)/¢;) is a non-trivial solution of the equations of (1)
and after taking a subsequence, both components of (v.) concentrate to the
same point Fy € K. Therefore we only prove that (u.) is a positive function
if € > 0 is sufficiently small.

Now we prove the following proposition and this completes the proof of
Theorem 1.3.

Proposition 2.12. There ezists an g4 > 0 such that if 0 < € < €4, then both
of components of u. are positive.

Proof. We prove indirectly and assume that there exist (¢,) and (u,) such
that e, — 0 and ||u, ||z > 0, where u_;(z) = min{0, u,1(z)}. Moreover
we can assume that

un(I) :wn(x—Pn/gn)"_‘pn(x% P, — P,
wn(z) = wo(x), @n — 0 strongly in H

where
ke K, wn(x - Pn/E-n) € 8511-607 wo € SVl(Po),Vz(Po)‘

Let @,(z) = un(z + P,/e). Then @, satisfies

{ — Aty + Vi(en® + Po)lng = pa@)  + Plniiing (13)

— Ay g + Va(enZ + Py)ly 2 = B2 1lin 2 + 2l ,
and 4,; — wg; in H. Thus by the elliptic regularity theory, we have
Up; — wos in CE(RY)
and there exists Cs, Cg > 0 such that for all z € R" and n, it follows that
[Un1(z)] + |Un2(z)| + |V, 1(2)] + |Va,2(z)| < Csexp(—Cglz|)

Let Ry > 0. We take an ngp, € N such that if n > ng,, then @,(z) > 0
on |z| < Rp. We multiply the fist equation in (13) by @, and integrate on



{|]z| > Ro}. Then there exists an «« > 0 which depends only on V;(x) such
that o i
llvun,llIL2(|x|2Ro) + (l'Hun.lllL?(mzRo)

< IV e gamny + / Vi(enz + B)(iis,)da

|z]> Ro
= ,U-IHQ;JHL}J::(WZRU) + /3”’&;_1ﬂn,2H%z(]szl?.o)
< Crexp(—2Cs Ro) ||, 11122 (jai ko)

Thus if Ry > 0 and ng, are sufficiently large, we can conclude that if n > ng,,
then 4, ,; = 0 = u, ;. However, this contradicts to ||u,,[[zz > 0, which
completes the proof. O

By Proposition 2.12, we can prove the positivity of the minimizer (u.).
Thus we complete the proof of Theorem 1.3.
O

3 Observation of concentrating points

In this section, we discuss points to which non-trivial solution of (1) concen-
trate. We begin with the following definition.

Definition 3.1. Let (u.) be a family of solution of (1). We say that P, € RY
is a concentrating point of (u.) if and only if there exist a subsequence (&, ),
(P,) € R" and a limit function wy = (wp.1,wo2) such that

P, — P, u,(enz+ Pj) — wy strongly in H.
Here wyp is a non-trivial positive solution of
—Avy + Vi(Py)v; = 11103 + prv? in RY,
—Avy + Vo(Py)vy = Prdvg + pgvd in RY.

Remark 3.2. A family of solution we found in Theorem 1.3 satisfies the above
condition.

Now we prove the following characterization of concentrating points,
which is related to Proposition 1.5.

Proposition 3.3. Let 7 € R and Py € RY be a concentrating point of (ue,,).
Furthermore, suppose that Vy,Vy € CY(RY) satisfy Assumption 1 and there
exist Cg, @ > 0 such that

|IVVi(2)| + |VVa(z)] < Cs(|z|* + 1) for all z € RV,

13
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Then P, satisfies

VVl(PO)/

w} dz + VVQ(PO)/ w}pdz = 0. (14)
RN

RN
Here wy is a limit function of (u., ).

Remark 3.4. The conclusion of Proposition 3.3 is still valid if Vi(z), Va(z) are
unbounded and satisfy some growth conditions as |z| — oo. In that case, we
replace the function space H by

H={ue H| / Vi(z)uldz < oo, / Va(z)uidz < oo}.
RN RN

Proof. We set v,(z) = u,,(e,z + P,). Then v, satisfies

{ —Avp 1 + Vi(enz + By)vpy = ,u.lv;?1 + /3'2'71,1”721,2 in RV, (15)

—AVp o+ ValenT + Py)Uns = 32 jUno + v, in RV,
\ , n,1 n,2

By the assumption about V;,V, and the elliptic regularity theory, we can
assume that there exist Cy,Ci9 > 0 such that for all n and z € RY, it
follows

Un1(Z) + vn2(x) < Coexp(—Cholzl).

Moreover, we can show that v,1, vn2 € H*(R"). We multiply dv,1/0z; by
the first equation in (15) and integrate over RY, we obtain

Ovy,, v,
/ —Avy, 2L gy +/ Vi(enz + Po)vn 1 ot gy
RN 0x; RN 0x; (16)
/ 3 Ovn L 4 Bu, Ovn, ldz
== 1V, fn )n :
L G
In a similar way, we can obtain
v, Ovn,,
/ —A'Un?_LQ_dx +/ Va(enx + Po)vna v i
RN ! ax] RN 813] (17)
/ 302 v Ovn2 + 1103 Ovn 2dx
= Yy n, 5 n.
RN/ m.1 e 8.73] a 2 8
Direct calculations show that
OUp, 5 OUy, 5 1
— | A, Sdr = | V.,V ( - J) de=L [ 2 |vu, 2dz =0
RN axj RN ) 8.'L'j 2 RN 833]

(18)



In a similar way, it follows that

/ (9 (9’0 . a'l)n,g + ’US c%n,gd
AN ulvnl 8 n2 8 nl n2 827‘7 [25) n,2 8il7j (19>
0 (i1 4 B2 s M2 4
— i dx = 0.
/RNBQJ'(Zl n1+2 nlvn.2+ 41)712 T
By the assumption about V;(z), we have
i 1 0
/ Vi(énz + P, )vmav dr = —/ Vi(enz + B) =02 ,dx
RN 31‘7 2 RN (9.’171' ’
£ oV; (20)
=_ -2 " Pv: .d
2 RN 6.’1:1 (6 z + )vn 2 xX.
Combining (16)—(20), we have
oV, oV,
/ 1(€n$+Pn) vl + (5n:c+P) n2da::O.
RN a’l:J 8.’1:]
Let n — o0, then it follows that
8V1 aVZ
8_x‘;(P(]) /R wo dz + —= E):L“] (Py) /RN wgyzdat = 0.
Thus we complete the proof. O

In particular, in the case /3 = 0, we have the following corollary by the
above proof.

Corollary 3.5. Let # = 0 and Py, Vi(x), Va(z) satisfy the same assumptions
. Proposition 8.3. Then P,y satisfies

VVi(Py) = VVo(Py) = 0.

Now we discuss the relationships between (14) and the function m(P).
At first we consider the single nonlinear Schrodinger case, that is

—’Ay; + Vi(z)pi = 1id9? in RV, (21)

In this case, the least energy level d;(P) for constant coefficients case has the

following form:
Vi (PYA-N)/2
apy= LT (22)
. M
where dj is the least energy level for —Ag; + ¢; = ¢3 in RY. From (22),
we can see that Py € R" is a critical point of V;(P) if and only if Py is the

15
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one of d;(P) and if P, € RY is a strictly local minimum point or maximum
point of V;, P, is the one of d;.

Concerning concentration points, we can show the following: If P, € RV
is a concentration point of (21), then Vd;(FPy) = 0, namely it holds VV;(FP) =
0. Thus in the single nonlinear Schrodinger case, any concentrating point
must be a critical point of V.

On the other hand, if a critical point P, of V; has some nondegeneracy,
then we can construct a family of solution of the single nonlinear Schrodinger
equation which concentrates to Fy. See Ambrosetti, Badiale and Cingolani
[1], Ambrosetti and Malchiodi [3], Byeon and Jeanjean [7], Byeon, Jeanjean
and Tanaka [9], del Pino and Felmer [11], Floer and Weinstein [13], Jeanjean
and Tanaka [17], Oh [23, 24] and references therein.

Now, we consider system case. In the system case, the function m(P)
plays an important role to characterize concentration points. In fact, in the
case where 3 > 0 is sufficiently small, then we can prove that the function
m(P) is of class C! using the arguments in [15]. Furthermore, we can show
that any concentrating point P, satisfies

V’H’L(P()) =0

and Vm(P,) = 0 is equivalent to the equation (14). In the single case, we
see that a concentration point P, is a critical point of the potential function
and characterized the location explicitly, i.e., the local maximum point or
minimum point and so on. However, in the system case, we do not know
the explicit formula of the function m(P) with using potential functions
Vi(z), Va(z). Therefore, we do not have the specific location of concentration
points except for the equation (14). Furthermore, in general, we do not know
the regularity of the function m(P). In using the Liapunov-Schmidt reduc-
tion method, it is important that it holds the uniqueness and nondegeneracy
of non-trivial positive solution of (3). However, except for special cases, we
do not know the uniqueness and nondegeneracy. Thus it seems difficult to
apply the Liapunov--Schmidt reduction method for obtaining the solutions
of (1) which has the properties in Theorem 1.3.
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