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1 Foreword

In the following presentation we will derive analytic properties of so-called smooth mea-
sures and by this complete the theoretical results of [8], [9]. Smooth measures play a
central role in the analytic pctential theory as well as in the calculus of additive function-
als related to (generalized) Dirichlet forms and associated Markov processes. As far as
possible we provide direct and simple proofs, though some of the results (e.g. Lemma 3.3,
Theorem 4.7) may previously have been shown by more sophisticated means. In particular
Theorem 4.7 may also follow from results in [1].

2 Framework

Let E be a Hausdorff space such that its Borel o-algebra B(E) is generated by the set
C(E) of all continuous functions on E. Let m be a o-finite measure on (E, B(E)) such
that H = L?(E,m) is a separable (real) Hilbert space with inner product (-,-). Let
(A, V) be a real valued coercive closed form on H, i.e. V is a dense linear subspace of H,
A:VxV — Ris a positive definite bilinear map, V is a Hilbert space with inner product
Ai(u,v) := 2(A(u,v) + A(v,u)) + (u,v)n, and A satisfies the weak sector condition

| A (u,v)| < K.Al(u,'u,)l/z.Al(v’v)l/Z7
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u,v € V, with sector constant K. Identifying H with its dual H’ we have that V C H C V'
densely and continuously. Since V is a dense linear subspace of M, (V, A;(-,-)"/?) is again
a separable real Hilbert space. Let || - ||, be the corresponding norm.

For a linear operator A defined on a linear subspace D of one of the Hilbert spaces V, ‘H
or V' we will use from now on the notation (A, D). Let (A, D(A,H)) be a linear operator
on H satisfying the following conditions:

D1 (i) (A, D(A,H)) generztes a Cyp-semigroup of contractions (Ut)e>o-
(ii) (Ut)t>o0 can be restricted to a Cp-semigroup on V.

Denote by (A, D(A,V)) the generator corresponding to the restricted semigroup. From
[7, Lemmal.2.3,p.12] we have that if (A, D(A,H)) satisfies D1 then A : DA,H)NY -V
is closable as an operator from V into V'. Let (A, F) denote its closure, then F is a real
Hilbert space with corresponding norm

el = llulfl + NAulf.

By [7,Lemmal.2.4,p.13] the adjoint semigroup (Ut)t>0 of (Ut)t>0 can be extended to a
Co-semigroup on V' and the corresponding generator (A, D(A,V")) is the dual operator of

(A, D(A,V)). Let F = D(A V)N V. Then F is a real Hilbert space with corresponding
norm R
lullz = llulld + I Aulf3..

Let the form £ be given by

£ . { A(u,v) — (Au,v) forue F, veV
(u,v) = | A(u,v) — (Av,u) forueV, ve F

and &,(u,v) 1= E(u,v) + a(u, v)y for o > 0. £ is called the bilinear form associated with
(A, V) and (A, D(A,H)).

Here, (-,-) denotes the dualization between V' and V. Note that (-, -) restricted to H x V
coincides with (-, )¢ and that £ is well-defined. It follows, from [7, Proposition1.3.4.,p.19],
that for all @ > 0 there exist continuous, linear bijections W, : V' — F and W V> F
such that & (Wa f,u) = (f,u) = & (u W,,f) Vf € V', ue V. Furthermore (W,),>0 and

(W )a>o satisfy the resolvent equation
Wo —Ws = (8- )W, W; and 1/17,, — /‘/17/3 = (08— a)I//V\QWg.

Restricting W, to H we get a strongly continuous contraction resolvent (G, )aso on H
satisfying lims oo @G, f = f in V for all f € V. The resolvent (G,)aso is called the
resolvent associated with €. Let (G.)aso be the adjoint of (Ga)a>0 in H. (Ga)aso is called
the coresolvent associated with £.

A bounded linear operator G : H — H is called sub-Markovianif 0 < Gf<1lforall feH
with 0 < f < 1. By (7, Proposition1.4.6, p.24] we have that (G, )as0 is sub-Markovian if
and only if

D2 ueF=u"AleV and Eu,u—utAl)>0

is satisfied.
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Definition 2.1 The bilinear form £ associated with (A,V) and (A, D(A,’H)) is called a
generalized Dirichlet form if D2 holds.

Examples 2.2 (i) Let (A, V) be a Dirichlet form (cf (2], [8]) and A =0. Then F =V =
F. AndE=Aisa generalized Dirichlet form since the resolvent of A is sub-Markovian
and therefore D2 is satisfied.

(ii) Let A= 0 onV := H and (A, D(A)) be a Dirichlet operator (cf. e.g. [3]) generating
a Cy-semigroup of contractions on H. In this case F = D(A), F= D(X) and the corre-
sponding bilinear form £(u,v) = (—Au,v)y if u € D(A), v € H, and E(u,v) = (u, "’K'U)’)-‘
fueH,ve D(K), 1s a generalized Dirichlet form.

An element u of H is called l-excessive (resp. l-coexcessive) if BGgiiu < u (resp.
BGpiu < u) for all 3 > 0. Let P (resp. P) denote the l-excessive (resp. 1-coexcessive)
elements of V. Let C,D C H. We define D¢ := {u € D | 3f € C, u < f}. For an arbitrary
Borel set B € B(E) and an element u € H such that {ve H|v>u-1}NF # 0 (resp.
u € ﬁf) let up := e,.1, be the 1-reduced function (resp. ip := €31, be the 1-coreduced
function) of u- 1g (resp. i - 1) as defined in |7, Definition II1.1.8., p.65|. Here we use the
notation 1z for the characteristic function of B. Note that in general only if B is open our
definition of reduced function coincides with the one of [2, p.92], [3, Exercise I11.3.10(ii),
p.84]. In particular, if B € B(E) is such that m(B) = 0, then up = 0. We will use the
following quite often in the sequel (cf. [7, Proposition I I11.1.6. and proof of Proposition
II1.1.7]): for 4 € ’P}-, B € B(FE) there exists 4§ € F NP such that 2% < 45, 0 < a < B,
u% — U, o — oo, strongly in H and weakly in V, and

E1(v,4%) = a((ug — 4 - 1) ,v)y forany v € V (1)

where f~ denotes the negative part of f. Similarly for u € P there exists ug € F NP
such that ug < ug, 0 <a<8,ug — up, @« — 00, strongly in H and weakly in V and

E1(ug,v) = a((ug —u-1g) ,v)y for any v € V.

Since by [7, Proposition 111.1.7.(ii)] g -1g = @ - 15, ug - 15 = u - 1p we then have for any
a>0

)l-l—I}c}o Ei(up,u) = (}Elgo Ei(u, ug).
Note that then (by our definition of reduced functions for not necessarily open sets) [7,
Lemma III.2. 9] extends to geaeral Borel sets, i.e. & (fs, f) = &1(f, fg) for any f € FNP,
feFnP, Be B(E).
Let A C E. We set A := E'\ A, i.e. the complement of A in E. An increasing sequence of
closed subsets (Fk)x>1 is called an £-nest, if for every function v € P N F it follows that
upe — 0in ‘H and weakly in V. A subset N C E'is called £-exceptional if there is an £-nest
(Fr)k>1 such that N C Mg>1 2\ Fi. A property of points in E holds £-quasi-everywhere
(£-q.e.) if the property holds outside some £-exceptional set. A function f defined up to
some £-exceptional set N C FE is called £-quasi-continuous (£-q.c.)(resp. £-quasi-lower-
semicontinuous (£-q.l.s.c.)) if there exists an E-nest (Fx)gen, such that | J,5, Fx C E\ N
and f|r, is continuous (resp. lower-semicontinuous) for all £. -
We denote by f an £-q.c. m-version of f, conversely f denotes the m-class represented
by an £-q.c. m-version f of J.
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Definition 2.3 The generalized Dirichlet form £ associated with (A, V) and (A, D(A, H))
s called quasi-regular if:

(i) There exists an €-nest (Ex)k>1 consisting of compact sets.

(i) There ezists a dense subset of F whose elements have £-q.c. m-versions.

(i4i) There exist u, € F, n € N, having £-q.c. m-versions u,, n € N, and an £-exceptional
set N C E such that {u, | n € N} separates the points of E\ N.

3 Measures associated to coexcessive functions

Let us first make a remark about a notational convention: in the sequel before each state-
ment we will name the assumptions on the generalized Dirichlet form which we need to
show the statement. We do this in the following way: we define abbreviations for these
assumptions and put the abbreviations in brackets just before the statement (cf e.g. The-
orem 3.1 below).

From now on we assume that we are given a quasi-regular generalized Dirichlet form. We
write QR as an abbreviation for this assumption.

By quasi-regularity every element in F admits an £-q.c. m-version (cf. [7, Proposi-
tionIV.1.8.]). For a subset G C H denote by G all the £-q.c. m-versions of elements
in G. In particular P denotes the set of all £-q.c. m-versions of 1-excessive elements in
V which are dominated by elements of 7. Note that F NP C ﬁf;l and that ﬁ]—‘ —Prisa
linear lattice, that is u A @ € Pr — Px for all « > 0 and all © € Pr — Px. We emphasize
that an element in Px not necessarily admits an £-q.c. m-version.

We denote by B the B(F)-measurable functions on F and by B,, Bt the bounded respec-
tively positive elements in B. We also set By := B, N B*. Let D C H. We denote by D,
D* the bounded respectively positive elements of D. As above we set D, := D, N D+.
We are now in the situation to state an integral representation theorem for elements in
Pz whose proof can be found in [8].

Theorem 3.1 (QR) Letu € ﬁf. Then there exists a unique o-finite and positive measure
e on (E, B(E)) charging no £-exceptional set, such that

x— 00

/fdll,ﬁ = lim 51(f,(r6',,+111) VfePr—"Pr.

Let D C 'H. For a linear operator G on ‘H with domain D(G) D D we set GD := {Gh |
h € D}.

Remark 3.2 In some time dependent cases (cf. e.g. [6]), whereas in the case of classical
Dirichlet forms we have Pr = P and ﬁf = P. More generally this holds for any general-
ized Dirichlet form with F = F and —Af = Af for any f € GiHy UG H,. Indeed, let us
show in this case that Pr = P. Let u € P, h € H . Since (Gos)aso is positivity preserving
by the assumption F = F we have fi= G h € F¥ N GiHy hence 0 < Ei(u, f) by [7,
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PropositionIll.1.4.]. Now

0<&(u, f) = 2A1(u, f) — E(f.u)
= w(@A(y,"), fHv — &S, u)
= &(f,Wi(2A(u,")) — u)
(h, W1 (241 (u, ")) ~ u} — aGar {W1(241(u, ")) — u})n.

implies that W1(2A;(u,-)) —u is I-coezcessive. In particular we have u < Wi(2A(u, ")) €
F and therefore u € Pr. The converse inclusion is trivial and Pz = P can be shown
simalarly.

From now on we fix an m-tight special standard process M = (€2, (F:)t>0, (Yi)t>0, (Pz)zeE4)
with lifetime ¢ and shift operator (6;);>9 such that the resolvent R,f of M is an £-q.c.
m-version of G, f for all @ > 0, f € H N B,. M is then said to be properly associated in
the resolvent sense with £. The exact definition of such a process M can be found in [3].
We always assume that (F;);>¢ is the (universally completed) natural filtration of (¥3):>0
and that any real-valued function u on E is extended to Ea by setting u(A) = 0. We use
the abbreviation M*®* for the assumption that such a process exists.

In addition to quasi-regularity a structural condition on the domain F of the generalized
Dirichlet form is imposed in [7, IV.2,D3] in order to construct explicitly an associated
m-tight special standard process. Since we make no use of this technical assumption and
since it may be subject to some further progress we instead prefer to assume the existence
of M. We will use the resolvent of Ml in the proofs of Lemma 3.3, Lemma 3.4 and Theorem
3.5 below but we remark that the statement of the main result Theorem 3.5 is independent
of M and only depends on the generalized Dirichlet form.

Let P be a probability measure on (§2, ). Let A, B € F, be two events. We say that A
holds P-ass. on B, if P(A;B) := P(AN B) = P(B). An (F;)-stopping time 7 is called a
terminal time provided t + 706, = 7 P,-a.s. on {7 >t} for any z € E. Define for A C Ea

oa:=inf{t >0|Y; € A}, Da:=inf{t >0|Y; € A}.

A terminal time 7 is called ezact provided t, | O implies that t, + 7086, | 7 P,-as. for
every z € E. Note that if A C Ea is such that g4, D4 are (F;)-stopping times, then g4
is an exact terminal time, whereas D4 is in general only a terminal time and may fail to
be exact since limy ot + Dy o6, | 04 P.-as. for every z € E. For (F;)-stopping times o,
T define

T

RO™ f(2) := Ez[/ e " f(Yo)ds]. «>0, 2z€ E, feB".

a

By (p:)i>0 we denote the transition semigroup of M.
Let B € B(F). Then {op = 0} € F, and according to Blumenthal’s 0-1 law we know that
P,(cg =0) =0 or 1. Let us denote the regular points for B by

B™ = {z € E | P,(0p = 0) = 1}.
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From its definition we see that B9 is universally measurable. Also obviously by right-
continuity of the associated process we have B™9 C B where B denotes the closure of B
in E.

Lemma 3.3 (QR, M*®*) Let B € B(E). Then m(B\ B™?) =0 and P,(Dp # o) = 0.

Proof Let ¢ € L3(E;m)NB,0 < ¢ < 1. Then 0 < R?‘Dﬂcp < R;p and therefore
RYPB e L2(E;m)NB; . By strong continuity of (Uy)e>0 we may find a decre%sing sequence
(tn)nen C (0,00) converging to zero such that lim,_. Uy, Ry ?9(2) = RYP5(2) for m-
a.e. z € E. Since ptnR(l)'D By is an m-version of Ut"R(l)‘D By for every n we have also
limy oo pe, RYPEp(2) = RYPEp(2) for m-a.e. z € E. Note that lim;jo Dg o ; +t = op.
Now, using the strong Markov property and Lebesgue’s Theorem we have for any 2 € £

Dpg Dp
im p, B[ e pdslz) = Jim BB, [ e (v, ds]
n—oo O n—00 0

DBogtn+tn
= lim e"‘EZ[/ e *p(Y,) ds]
tn

og
= B[ e
0
It follows that Ez[f;g e *p(Y;)ds] = 0 for m-a.e. z € E. But

B .| =0 for = € B™9 U B°
Ez[ € Lp(}/s)dsl 18 { > 0 fOl' 2z € B\Breg

Dgp

and therefore m(B \ B™9) = 0. Clearly P.(Dp = op) = 1 for all z € B™ U B¢ hence
Pm(DB 7£ O'B) = 0.

O
Given a finite measure p on measurable space (G,G). The completion of G w.r.t. u is
denoted by G*. An element of B*(E) := (\pcp(g) B(E)? where P(E) denotes the family
of all probability measures on (E, B(FE)) is called a universally measurable set. Let B*
denote the B*(E)-measurable functions on E.
Let v > 0. A function f € H N B** is called y-supermedian for (Ra)aso if aRoyrf < f,
a > 0. In particular y-supermedian functions f € H N B** are m-versions of y-excessive
elements in H. f € H N B** is called 7-ezcessive for (Ra)aso if f is 7-supermedian for
(Ra)aso and if lima oo @ Rayr f = f.
We already remarked that u € P not necessarily admits an £-q.c. m—lg\r_sion. By quasi-

regularity however we know that there exists an an £-q.c. m-version aGs41u of aGayiu.
Since aGo41u increases m-a.s. if «v increases we know from [7, CorollaryII1.3.3.] that

—~—

aGai1u increases £-q.e. if a increases. Hence we may define an £-q.1.s.c. m-version of u

by

— N
u = sup aGyiu
a>(0)

T is called an £-q.l.s.c. regularization of u € P. Surely any two £-q.l.s.c. regularizations
of u € P coincide £-q.e. hence any £-q.l.s.c. regularization of u € P coincides £-q.e. with
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the “canonical” regularization % = sup, .o *Ro41u. If not otherwise stated we will always
choose the canonical regularization for u € P.

Let i be a positive measure on (E, B(E)) charging no £-exceptional set. Since by assump-
tion there exists an £-nest consisting of compact sets, the support of o supp(u) is defined.

Lemma 3.4 (QR, M**)

(i) Let T be a terminal time. Let f € L*(E;m) N B;*. Then Ry f is 1-supermedian for
(Ro)aso and RY°f € P N B;. If in addition T is ezact then Ry™ f is 1-excessive for
(Ra)a>0. In this case we have in particular that R7™ f(z) = R f(z) for every z € E.
(ii) Let g € L*(E;m)*, F C E be closed. Then pg,,  (E\ F™9) = 0. In particular

supp(ig, q)) C F-

Proof (i) Since 7 is a terminal time we have T 0 6, +t > 7 P,-as. for any z € E. Hence
the strong Markov property of M implies

PRI = Bl Bl [ e (s
= B[ e i(vads) < RITAG).

'11(9' +t
It follows that R f is 1-supermedian for (R,)a>0 because

aRoy1 Ry®f(2) = /mﬁE[ T e f(V)dsldt < RP£(2).

Tl +t

Furthermore R f < R, f implies R7™f € V N B* by [7, Lemmalll.2.1.(i)]. Note that
R f is finite £-q.e. Then, using the exactness of 7 and Lebesgue’s Theorem we have

a-—00 a— 00

lim aR, R f(z) = lim/ e~ Dty RT f(2)dt
0

a—00

= R} f(z) forevery z€ E.

= lim {/ e*tp_i‘R;’oof(z)dt—/ e~ @+ Dty RT™ f(2)dt}
0 o+t 0

Clearly limg_,o @Rot1 RT™ f(2) = sup,—o *Rat1 Ry f(z) for every z € E hence R}’ R°f =
RY™f.

(ii) Fix ¢ € L*(E;m) N B such that 0 < » < 1. Since op is an exact terminal time we
know from (i) that R{7"* ¢y is 1-excessive for (R,),>0 and R77 ¢ € VN B*. Furthermore
by Lemma 3.3 R{""®¢ = R;p m-as. on F and therefore by [7, Proposition III.1.7.(ii)]
RI*p > (G’ltp)p m-a.e. Hence

(Grp)p = sup nRﬂ+1(le)p<btlp nR, 1 R{7%p = R{"%p E-qe. (2)

n>1
Furthermore

Ryp — RIFZpi

5 >0 E—gqe.on E\ F
=0 on FT9.
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Using (2), and (1) the rest of the proof follows is exactly as in [8, Lemma 2.4].
O

In order to show (see [8]) th= equivalence of (i) and (ii) in Theorem 3.5 below one uses
another equivalent description for £-exceptional sets via a finite Choquet capacity called
the ¢-capacity. To explain this let ¢ € L2(E;m) N B, 0 < ¢ < 1. For U C E, U open let
cap,(U) := ((G1p)v, p)n and for arbitrary A C E let cap,(A) := inf{((G19)v, p)» | U D
A, U open}. It is shown in [7, Proposition111.2.10.] that an increasing sequence (F)en
of closed subsets of F is an &£-nest if and only if limy_,o cap,(F¢) = 0. Hence the &-
exceptional sets are exactly the zero sets of the set function cap,, restricted to B(E).

As a generalization of (2, p.73] we introduce the following class of measures

§00 = {/,Lﬂ | u € ﬁélﬂx and /J.ﬁ(E) < OO}

where GiH; := {G1h | h € H} }.

Theorem 3.5 (QR, M®*) For B € B(E) the following conditions are equivalent:
(i) B is £-exceptional

(i) u(B) = 0 Vi € Spo

Remark 3.6 (i) A C E is called nearly Borel if there exists By, By € B(E) such that
B, C A C B; and B; \ By is E-exceptional. Then Theorem 3.5 extends to nearly Borel
sets. Indeed, we have A C By U (B, \ B)) and

2ap,(A) = cap,(By) = cap,(B2)

hence if cap,(A) > 0 by Theorem 3.5 there exists ju € Soo with w(By) > 0 but then

u(A) = p(By) > 0. The fact that A is in general not B(E)-measurable doesn’t matter
since for convenience only we restricted ourselves to (E,B(E)) in Theorem 3.1. Actually
p € Soo is defined on MNes o(Pr — P£)* (cf. the paragraph before Lemma 3.4 for the
meaning of this) which contains any nearly Borel measurable set. Finally, we can call the
nearly Borel set A £-exceptional if capq,(B )=0.

(i1) Since we may divide each p € Soo \ {O} by its total mass the assertion of Theorem
3.5 remains true if we replace Soo by {y € Soo | 1(E) = 1}. Note also that if (G' Ja>0 1S

sub-Markovian we may replaze Sy by the larger class {ra | lt)le < 00 and pg(E) < oo}
and then our definition coincides with the one of [2. p.78).

4 Smooth measures

In this section similar to [2]. [5] we will define smooth measures and measures of finite
(co-)energy integral and shovs that these measures have properties similar to those in [2],
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[5]. Throughout the whole section we assume that we are given a quasi-regular general-
ized Dirichlet form (QR) and an m-tight special standard process M which is properly
associated in the resolvent sense with £ (M*®*).

Definition 4.1 A positive measure i on (E, B(E)) is said to be of finite 1-order co-energy
integral if there exists Uyu € V, such that

/c’;Thduzsl(Glh,ﬁlu) . (3)
FE

for all h € H and for all £-g.c. m-versions é‘\lﬁ of G1h. The measures of finite 1-order
co-energy integral are denoted by Sp.

Let 4 € P and i be the associated measure of Theorem 3.1. Then Ulp,u = 1. Hence

obviously Soo C So Clearly n € Sp does not charge £-exceptional sets. Furthermore
Uip € P because for any f € H* we have

(F, Oupt = aGasr D = / Gif dp— (aGass fr Dup)rt
E

= /@7‘~GG:J:51fdu20
FE

since é’;? — aGayp1G1f 2 0 £-g.e. hence pi-a.e.
Let Pg, 2y denote the totality of £-q.1s.c. regularizations of the elements in Pg, ;.. Let

T € Pg, w;- Then Jpudp = sup,sp [p @Rog1udp = limgooo E1(u, aGas1Ur ) exists as a

bounded and increasing limit for all T € 736 - Now let @ € P. Since limg oo @ Ray 1V =0
&-q.e. for any £-q.c. function v € By we hcwe E-q.e.

w=supWAn = sup lim aRei1{wWAn)
1

n>1 000

= supsup@R,i1(WAN)
n>1 o>0

= supaR,1w.
a>0

Hence if a function u € Pg, H admits an £-q.c. m-version then this m-version coincides
£-q.e. with its canonical regularization. Thus [ @ du = [, Udu and therefore (3) extends
toall fe ’PG M PG g+ in the sense of Theorem 3.1. Note that PG T~ PG 2 1s also
a vector lattice thch separates the points of £\ N and hence could have also been used
as a space of test functions in Theorem 3.1.

On the other hand only if Uly, € Pf similarly to 4.Step of the proof of Theorem 3.5 in
[8] we can show that (3) extends to all f e F. Also only ifue ’P (and not for all 4 € P
') by Theorem 3.1 we can show the existence of u; € S'o

In the following proof (ii) = (i) of Lemma 4.2 we shall see that p € Sy can be identified
with some L, € (V') i.e. the bidual of V.
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Lemma 4.2 (QR) The following statements are equivalent for a positive measure . on
(E,B(E)):

(i) w is of finite 1-order co-energy integral.

(it) There exists C > 0, such that

| [ Gihdul < ClGihls
E

for all h € H and for all £-q.c. m-versions G1h of G1h.

Proof (cf. [5]) Let us assume that (ii) holds. Clearly 1 then does not charge £-exceptional
sets. Define L,(h) = [ Gihdp, h € H. Since |L,(h)| < CG:1hllz < C||WillLom k|l
where ||W}]|L() denotes the operator norm of W, : V' — F. Since H C V'’ dense we may
extend L, to a continuous linear functional L, on V'. But then by [10, IV.8.Theorem 1]

there exists a unique (71,u € V, such that L,(f) =y (f, Ulu)v for all f in V' and (i) holds.
(i) = (ii) is clear.
O

Definition 4.3 A positive measure j1 on (E, B(E)) charging no € -exceptional set is called
smooth if there exists an &£-nest (Fi)ren of compact subsets of E, such that

w(Fy) < oo for all k€ N.

The smooth measures are denoted by S.

From now on we assume that the coresolvent (@a),»o is sub-Markovian. We abbreviate

this assumption by SUB. The following lemma will be needed as a preparation for Lemma
4.5 below.

Lemma 4.4 (QR, SUB) Leti € F, p € H, 0 < ¢ < 1. Then cap, (|7l > A) <
2455wl
Proof Let U := {u > A}, V := {—u& > A}. Then, since G1¢ < % m-a.e.on U, G1p < ~
m-a.e. on V

cap,({| ©|> A}) < cap,({u > A}) + cap,({—u > A})
E1(Grp. (Gip)u) + E(Crp, (Gro)v)

>ie

i

< 51(-}: (Gro)u) + 51(—;, (e
< BED ol + 1@l ).

By sub-Markovianity of (6’0),»0 we have in particular that (@lap)g < 1 m-a.e. on U,
hence

(Gl < Tm E((Gro)s, (Gi9)3)

< lim 51(;(61@)8)
K+1 A
< T D 1@l
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Therefore ||[(Gio)ully < (K;rl) llull7. Similarly we get H(Gio)vllv < (l(,\Lll“U“}‘ and the
assertion follows.

O
Using the preceding Lemma 4.4 and Lemma 4.2(ii) the following lemma can be shown
exactly as in [2, Lemma 2.2.8.,p.81].

Lemma 4.5 (QR, S/I_JTB) Let p € H, 0 < ¢ < 1. Let v be a finite positive measure on
(E,B(E)) such that there ezists C' > 0 with

v(B) < Ccap,(B) for all B € B(E).

Then v € Sp.

Since cap,, ¢ € H, 0 < ¢ < 1is a Choquet capacity and the proof of [2, Lemma
2.2.9.,p.81] only uses general properties of Choquet capacities the following lemma can be
shown exactly as [2, Lemma 2.2.9.,p.81].

Lemma 4.6 (QR) Let v be a finite positive measure on (E, B(E)) charging no £-exceptional
set (i.e. a finite smooth measure). Let p € H, 0 < ¢ < 1. Then there exists an E-nest
(Fk)keN; such that

v(A) < 2kcap9,(A) for any Borel set A C Fi.

Theorem 4.7 (QR, S/UTZ'») Let 1. be a positive measure on (E, B(E)). Then the following
statements are equivalent:

(i) pesS.
(ii) There exists an E-nest (Fy)ken consisting of compact subsets of E, such that

lp, - € 3‘0 for each k
where 14 - u(B) := (AN B) for AC E, B e B(E).

Proof Let us assume (i). Then there exists an E-nest (Ejg)ren consisting of compact
subsets of E, such that 1g, - pu is a finite positive measure charging no £-exceptional set
for any k. Let p € H, 0 < ¢ < 1. By Lemma 4.6 we can find an £-nest (Ex)ken such that
lg, i, - (A) < 2Fcap,(A) for any k£ and for any Borel set A C E} but then also for for
any k and for any A € B(E). Therefore (ii) follows by Lemma 4.5 with Fy := Ex N E;.
Let us assume (ii). Let ¢ € H, 0 < » < 1. There exits an &-nest (Pk)ken consisting
of compact subsets of £ and an £-q.c. m-version of Glcp of Gip, such that 1g, - p €
S, and such that kGlcp > 1 on Ej for each k. Therefore u(Ex) < k [; Glcplgk du =
81(G1QO,U1(IEk . /,L)) < 0.

(I
In the following we will need some preparations in order establish a relation between the
classes Sgo (which we defined in section 3) and S. The methods in [2], [4] to develop such a
relation rely heavily on the symmetry of the domain of the form, the sector condition and
the invariance of the Dirichlet space under truncation. Since in general none of the above
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mentioned properties are available for generalized Dirichlet forms we have to develop a
different procedure. We remark that this procedure takes advantage of the behaviour of
the associated process in an essential way.

For B € B(FE) let
.= {2€ E| P,(6p- >0)=1}.

If F C F is closed then F© is called the fine interior of F.

In the following Lemma 4.8 we shall not make use of the sub-Markovianity of (50)”0.
Lemma 4.8 (QR, M*®*) Let (Fy)ken be an E-nest. Then

ﬂ(E\F,?) and m(E\F,:eg) is &-exceptional.
k>1 k>1

Proof Let B € B(E). We drst remark that B®, B9 is nearly Borel. To show this let
p€ L*(E;m)NB,0< ¢ <1. Then

{RHO RuBr OOCP > 0} — U{RHP Ragr ,00 o >

nel

}.

S~

Thus, since by Lemma 3.4(1) R7?"® ¢ is £-q.l.s.c. it is easy to see that {Rjp — R7?“ ¢ >
0} is nearly Borel. Since {Rup RaB o > 0} = B° up to an E-exceptional set B is
nearly Borel too. The same is also true for B79 since B™9 = ((B€)?)¢. Now let u € Sgq.
Then

/RZFﬁ‘wwdlL 2 / E‘[/ e *p(Y,) ds) u(dz)
E E\F;’ Up’::

= / Rypdu.
E\F)

By [7, Lemma IV.3.9.] RTF‘ﬁmcp is an £-q.l.s.c. m-version of (G1p)F; and since (Fi)ken is
an £-nest we have limk_.oo(Glcp)p; = 0 weakly in V. Therefore

0 = lim /R wlu >/ Ripdu
ko0 N> (E\FP)

which implies pu(Nk>1(E \ FP)) = 0. By Remark 3.6(i) we then have that Ny (E \ FY) is
E-exceptional. Since B® C B™Y for any B C E we have N> (E\ F{®) C M>1(E\ F)
and then N> (E \ F[%9) is £-exceptional too.

g

Remark 4.9 In contrast to the case of reqular symmetric Dirichlet forms (cf. [2, Theo-
rem4.1.8., p.139]) Fx \ F.% is not polar. In our framework, as it is well known from the
parabolic case, semi-polar sets are not polar in general. This is from the potential theoretic
point of view an important difference to the case of classical Dirichlet forms in the sense
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of [2], [4], [3]. As an example consider the uniform motion to the right on the real line,
ie. H=V = L*R,dz), F = F = H'*R), p.f(z) = f(z +t), z € R,t > 0. Let [a, b] be
the closed interval from a to b. Then [a,b] \ [a,b]™®9 = {b} is semi-polar but surely hit if
we start at ¢ < b. Thus [a,b]\ [a, b]"*? is not polar. Furthermore, since the Dirac measure
8z is in Sy for any T € R we have also that [a,b] \ [a, b]™? is not £-exceptional.

For the rest of the section let us assume that in D1 (ii) the adjoint semigroup (Ut)t>0
of (Ui)i>0 can also be restricted to a Cp-semigroup on V. Let (A, D(A, ’H)) denote the
generator of (Ut)t>0 on H, A(u, v) := A(v,u), u,v € V and let the coform £ be defined as
the bilinear form associated with (.4,V) and (K, D(A,H)). Note that since (Ga)aso Was
assumed to be sub-Markovian the corresponding statement of D2 holds for the coform.
The coform is hence a generalized Dirichlet form too. Let us further assume up to the end
of this section that the coform & is quasi-regular too. We will abbreviate the assumption
that £ is a quasi-regular generalized Dirichlet form by QR

We fix an m-tight special standard process M = ( (.ﬁ)t>o, (Yt)t>0, (P )ZGEA) with life-
time C and shift operator (Ht)t>0 such that the resolvent R f= E f0°° —at f(Yt)dt] is an
£-q.c. m-version of G f for all f € HNDBy. M is then said to be properly coassociated
in the resolvent sense with £. As before we assume that (F;);>o denotes the (universally
completed) natural filtration. Necessary and sufficient conditions for the existence of such

a process are given in [7]. M is in duality to M w.r.t. m. We will use the abbreviation Mex
to express our assumption that such a process exists. Symbols with a superposed hat as

E[], 0B, ﬁg, Ba, B9, g-nest, g—exceptional, g—q.c., ... etc.

correspond to the coassociated process or the coform and are defined analoguous to the
corresponding objects in terms of the associated process M.
We remark that by the discussion right below (1) we have for any open set U that

cap,(U) = E((Grp)u. G19) = E1(Grp, (Grp)u) =: Cap,(U).

But since analoguously to the corresponding statement for £ (cf. paragraph before Theo-
rem 3.5) we have that an increasing sequence of closed sets (Fx)xen is an E-nest if and only

if limy o0 Cap, (F¥) = 0 we can see that E-nests and E-nests coincide hence E-exceptional
sets and £-exceptional sets coincide.

Lemma 4.10 (i) (QR, M®*) Let g € L*(E;m) N B, . Let F C E, F closed. Then there
exists relatively compact subszts (Bpx)ni>1 of E (resp. compact subsets (Bpx)nx>1 of E)
such that Bay1kx C Bryik C Buk C Bokt1, P,,(U,ch ﬂn21 B, x) = P,(F) for any u € Soo
and
DF CX) : : DBT’k’w T : OBT’..k’m < 3 TN
R7F%g(z) = lim lim R, g(2) = lim lim R, g(z) = kllm lim (Gi9)5, ,(2)

k—o00 n—00 k—o0 n—00

for E-q.e. z € E. In particular there exists open subsets (Upk)ni>1 of E such that

RPF™g(z) = lim lim RTU""HOOQ(Z)

k—o00 n—oo
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for E-q.e. z € E.
(ii) (QR, M, QR, Me") Let F C E, F closed. Then

SUPP(LE. sz c-sgivayas)) © F
for any g € L*(E;m) N B*.

Proof (i) By quasi-regularity there exists an £-nest (Fi)ren of compact sets. Let pg,
k > 1 be a metric on F; corapatible with the relative topology on F} inherited from E
(px can be constructed analozous to [3, Remark IV.3.2, p.101]). Define for n,k > 1

— 1
Bnk = {z € F l pk(FﬁFk,z) < } Bn,k = {Z € F; I pk(FﬁFk,z) < -T—L}

Obviously lim, ... Dp,, < Dpnr,- Also note that since Dp_, is increasing in n and
B,y D FNF; for all n we have {lim, .o Dg, , < (} = (,5:{D5,, <¢} D {Drnr, < (}.
Fix z € E. Since M is special standard by quasi-left continuity up to ¢ we have

lim YDB” = Yim, - Ds, , P,-as. on {lim Dp,, < (}.
n—oo : : n—o00

But on {lim,_,. Dp,, < (} we have P;-as. Ypg . € B, and hence lim,_,4 Ypy , =
Yim,—coDs_, € MNp>; Bak = FN F. 1t follows that

lim DBn.k = Dpnpk Pz—a.s. on {llm DBn.,k < C}

n—o0

Since z € E was arbitrary this holds for every z € E. For A € F,,, f Fo-measurable,

<, 00

let E,[f; A] := E.[f14]. Now using that limy_, RYF’*' g =0 &-q.e. and {lim,_,,, Dp
¢} D {DFnF, < ¢} we obtain for £-qe. z € E

n, k <

RP*g(e) = Jim R %g(2)

= lim E,| e *g(Ys)ds; {lim Dg_, < (}]
k=20 Drar, e

= lim E,| e *g(Ys)ds; {lim Dg_ , < (}]
k—o0 DFan /\”F;: n—oo

= hm lim E.| e *g(Yy)ds; {lim Dg_ , <(}]
k— 20 n—00 DB k,\ FA_ n—oo

/\rrpr .00
= lim lim R og(2)

k-—20 n—o0

where the last identity followed since by Lebesgue’s Theorem for £-q.e. z € E

"0

llm lim E,[ e *g(Ys)ds;{ lim Dg_, > (}]
k— 00 N—0C Da,, A7r n—oo .

= lim E,| / e *g(Ys)ds;{ lim Dg_, > (}]
k—oo Jlimg -~ DBn.kA”F;ff nmee ‘

< Jim B[ eg(Yodsi{lim Da,, > ¢} =0.

Upr
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Observe that Upx = B, U F¢ is open in E hence Dpg, , A 0pc = 0p,, N OF: = 0y, ,-
Therefore
/\f)’p(f,OO B,y k.90
lim lim R1 ¥ g(z) = lim lim R1 " g(2)
k— o0 n—o0 k—o00 n—00
= [lim lim R;™F™ g(2)
k—oon—

for £-q.e. z € E. Finally, we also have (recall that the bar over an 1-excessive function de-
notes when not otherwise stated the “canonical” £-q.1.s.c. regularization) (G19)g, +1 (2) <

G9)s,,(2) < (G195, ,(2) and (G19)s, ,ur, (2) < (G0, , (2) + (Ga9) e (2) for E-qe.
z € E. Hence

DB /\Upr oo . .
lim lim R, 9(z) = lim lim (Gig)p ,ure(2)

- klim lim (Gh9)p_,(2)
= klim lim (Gi9)g_,(2)

for £-q.e. z € E and (i) follows.
(ii) Let (Bpk)nk>1, be as in (i). Let p € L2(E;m) N B, 0 < ¢ < 1. By (i) but in terms of
the coassociated process we have

E[ R e*sg(?s)ds] = klg}go ,}E&(élg)ﬁn»k m-a.s.

Dp

Now similar to the proof of Theorem 3.5 (G 19)5, , converges weakly in V (as n — o0o) to
some (6'19)?90 . such that supp(u(@lg)_g ) C F'N Fx. Hence
v > .k

/Rl(pdltg(fgop e—sg()’\"s)d.s) - lin] /ledlt(ély)— k

= lm) /R FFieoe d,u(Glg)F

Define for £ > 1
1
Bli={z€ Fy| pn(FNFgz2) < 7}

Then by (i) and since op; , I, m>1,1s exact we have

Jim /Rl PR vdivg

= lim lim lim lim /(YH(,HRI ' ‘Pdﬂ'(é,g)y
oo,k

k—00 mM—00 l—o0 o0—0oC

.k
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[e=Y] ,00
< lim lim lim lim /(yR,,HRIB""‘ wdug (2 e=g(Va)ds)
UE, A

k—00 m—00 l-—s00 a—00

_ D p,00 ~ -
= /Rl ‘Pdﬂs(fgpe'-sg(y;)ds)

and the assertion follows.

O

We are now in the situation to formulate the main structural theorem.

Theorem 4.11 (QR, M®x, C/)P\l, ﬁe") Let 1 € S. Then there exists an £-nest (Fy)ken
consisting of compact subsets of E such that

lpres - p € Soo for each k> 1.

Proof By Theorem 4.7 we know that there exists an £-nest (E})x>; consisting of compact
subsets of E, such that 1g, - u € Sy for each k. Let p € H,0< ¢ < 1. Let @lcp be an

£-q.c. m-version of Gy, let (71(1}3,r - jt) be an £-q.l.s.c. regularization of ﬁl(lgk - ). By
making E) smaller - if necessary, we may assume that both m-versions are chosen w.r.t.

(Ex)k>1 and that @lcp > % &£-q.e. on E for each k. Observe that ﬁl(lEk ), 6’1cp are
finite £-q.e. and that éﬂp > 0 £-g.e. Define

Cy = {z € Ey | Ul(lgk ) < akélkp} k= p(ERK?, k> 1

Obviously Cy is a family of compact subsets of E. Note that we don’t claim that Cy is
increasing. Furthermore

kli_’r&capw(Cﬁ) = kliglocapkp (E,‘j U {z € E | 01(13k Cp) > a;&?up})
< ljﬂlgocapw(Eif) + ,}Elolocapy, ({z € Ex | Ui(lg, - 1) > u(Ek)k})

< Tmcap, ({Ui(1s, - 10) > u(E)k })

—_ 1 —~
R . .
- kll'nolool—l’lolo k}L(Ek)gl ((GIW){Ul(lsk'#-)>u»(Ek)k},Ul( Ex .U'))
<

1 —1
lim ——— Rigdp < lim — =
kg};ok”(Ek) /Ek 1o dp < lim o 0

k—oo K
Since Cy* C Ci C Ej implies 1o - ju(B) < 1g, - u(B) for any B € B(E) we know
further from Lemma 4.6, Lemma 4.5 that Leves - ju € §0 for each k. Lemma 3.3 im-

D(vk ,OQ

plies that R;“*“p(z) = R, @(z) for m-a.c. 2 € E. Since C, C E) we obtain that

ﬁl(lczeg ) < (71(15,r ) < ak@];p £-quasi-everywhere on Ci. Applying Lemma 4.10(ii)
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we obtain
(0, Ur(deres - ) = /Rlcplc;w dp
= [ B[ eetv sl iope(z) uid2)
ICc,

= lim /(lYR,,+1E. [/OO e *p(Ys) ds](z) 1eres (2) p(dz)

a—00 oc
k

lim | aR,1Ui(leres C 1)) d“E-f{;"c e~ 2¢p(Ys)ds
k

a—00
= / U;(lc;cg . ll,) 7AN akGlip d[LEfBOC e="p(Ys) ds
k

< (e, 6;1(10;"9 1) A akGro)n.

Therefore ﬁl(lc;eg cp) < akélcp for any k£ > 1. Define Fy := Uf‘zl C}, k > 1. Since by the
above lim;_,, cap,(C§) = 0, and FY C Cf, we obtain that (Fi)ren is an E-nest consisting
of compact sets. Since F[® = |Ji_, C7* we obtain

k k
Ul(lp;cg -/J,) = U1(1U;c.=] C;‘r‘g . ;L) S ZUl(lclreg . [1,) S ZalGup.
=1 ) 1=1

This implies the assertion.
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