<table>
<thead>
<tr>
<th>Title</th>
<th>On circular operators (Prospects of non-commutative analysis in operator theory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Ota, Schoichi</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (数理科学) (2010), 1678: 128-133</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/141295</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Circular 作用素について
(On circular operators)
九州大学 大学院芸術工学研究院 太田 昇一 (Shôichi Ōta)
Faculty of Design, Kyushu University

1 Circularity

A densely defined operator T in a Hilbert space \mathcal{H} is said to be circular if T is unitarily equivalent to $e^{it}T$ for all $t \in \mathbb{R}$. Clearly the spectrum of a circular operator is circularly symmetric at origin.

Example 1 Let S be a closed densely defined operator in a separable Hilbert space \mathcal{H}. If there are an orthonormal basis $\{e_n\} (n \in \mathbb{Z})$ and a sequence $\{w_n\} (w_n \neq 0, n \in \mathbb{Z})$ of complex numbers such that

$$\mathcal{D}(S) = \left\{ \sum_{n=-\infty}^{\infty} \alpha_n e_n \in \mathcal{H} : \sum_{n=-\infty}^{\infty} |\alpha_n|^2 |w_n|^2 < \infty \right\}$$

and

$$Se_n = w_n e_{n+1}$$

for all $n \in \mathbb{Z}$, then S is called a bilateral (injective) weighted shift with weights $\{w_n\}$ (with respect to $\{e_n\}$). A unilateral weighted shift is defined by the replacement \mathbb{Z} with \mathbb{N} analogously.

Every bilateral or unilateral, weighted shift is circular.

Let us recall irreducibility for a possibly unbounded operator in \mathcal{H}. Let T be a closed densely defined operator in \mathcal{H}. A closed subspace \mathcal{M} of \mathcal{H} is said to reduce T if the following two conditions are satisfied:
1. \(P_{\mathcal{M}} \mathcal{D}(T) \subseteq \mathcal{D}(T) \).

2. \(T(\mathcal{M} \cap \mathcal{D}(T)) \subseteq \mathcal{M} \) and \(T(\mathcal{M}^\perp \cap \mathcal{D}(T)) \subseteq \mathcal{M}^\perp \).

Here \(P_{\mathcal{M}} \) denotes the orthogonal projection onto \(\mathcal{M} \). If there is no non-trivial reducing subspace of \(T \), then \(T \) is said to be irreducible.

Lemma 2 Let \(T \) be an irreducible, closed densely defined operator in a separable Hilbert space \(\mathcal{H} \). If \(T \) is circular, then there are a family \(\{U_t\}_{t \in \mathbb{R}} \) of unitary operators on \(\mathcal{H} \) and a mapping \(m(\cdot, \cdot) : \mathbb{R} \times \mathbb{R} \to \mathbb{T} \) such that

1. \(U_t T = e^{it} T U_t \) for all \(t \in \mathbb{R} \).

2. \(U_s U_t = m(s, t) U_{s+t} \), \(U_0 = I \) (identity operator) for all \(s, t \in \mathbb{R} \).

3. the map \(m(\cdot, \cdot) \) satisfies

\[
m(s, 0) = m(0, s) = 1 \quad \text{and} \quad m(s + t, u) m(s, t) = m(s, t + u) m(t, u)
\]

for \(s, t \in \mathbb{R} \).

Here, \(\mathbb{T} \) is the multiplicative group of complex numbers with modulus 1.

Moreover, if the above \(\{U_t\} \) is so chosen that \(t \to U_t \) is measurable, there exists a strongly continuous one-parameter unitary group \(\{V_t\} \) satisfying the above condition 1, that is, \(V_t T = e^{it} TV_t \) for all \(t \in \mathbb{R} \).

2 Strong circularity

Let \(T \) be a closed densely defined operator in a Hilbert space \(\mathcal{H} \). If there is a strongly continuous one-prameter unitary group \(\{U_t\}_{t \in \mathbb{R}} \) such that

\[
U_t T = e^{it} T U_t \quad (t \in \mathbb{R})
\]

then \(T \) is said to be strongly circular and \(\{U_t\}_{t \in \mathbb{R}} \) is called a unitary group associated with \(T \).

Example 3 (Mlak) If \(S \) is the creation operator in a separable Hilbert space, that is, the unilateral weighted shift with weights \(\{w_n\} \) given by \(w_n = \sqrt{n+1} \) \((n \in \mathbb{N}) \), then \(S \) is strongly circular.
Let S be a unilateral or bilateral weighted shift in a separable Hilbert space \mathcal{H}. Then S is strongly circular. In fact, let S be a bilateral weighted shift in \mathcal{H} with weights $\{w_{n}\}$ with respect to $\{e_{n}\}$. Define a closed densely defined operator by

$$D(N) = \left\{ \sum_{n=-\infty}^{\infty} \alpha_{n}e_{n} \in \mathcal{H} : \sum_{n=-\infty}^{\infty} |\alpha_{n}|^{2}|n|^{2} < \infty \right\}$$

and

$$Ne_{n} = ne_{n} \quad (n \in \mathbb{Z}).$$

Then N is self-adjoint, and

$$e^{itN}Se_{n} = e^{it}Se^{itN}e_{n}$$

for all $n \in \mathbb{Z}$. It follows that S is a strongly circular operator with the associated unitary group $\{e^{itN}\}$.

For a bounded operator B and a densely defined operator T,

$$BT \subseteq TB$$

means that

$$BD(T) \subseteq D(T) \text{ and } BT\eta = TB\eta \quad (\eta \in D(T)).$$

Lemma 4 Let S be a densely defined operator in a Hilbert space \mathcal{H} and T be a closed densely defined operator in \mathcal{H}. Let $\{U_{t}\}_{t \in \mathbb{R}}$ and $\{V_{t}\}_{t \in \mathbb{R}}$ be strongly continuous one-parameter unitary groups on \mathcal{H} with infinitesimal generators A and B respectively, that is, $U_{t} = e^{itA}$, $V_{t} = e^{itB}$. Then the following conditions are equivalent:

1. For all $t \in \mathbb{R}$,

 $$U_{t}S \subseteq TV_{t}.$$

2. For all $\lambda \in \mathbb{C}$ with $\Re \lambda \neq 0$,

 $$(\lambda - A)^{-1}S \subseteq T(\lambda - B)^{-1}.$$

Theorem 5 Let T be a closed densely defined operator in a Hilbert space \mathcal{H}. Then T is strongly circular if and only if there is a self-adjoint operator A in \mathcal{H} such that

$$ (\lambda - A)^{-1}T \subseteq T(\lambda - I - A)^{-1}$$

(1)

for all $\lambda \in \mathbb{C}$ with $\Re \lambda \neq 0$.

Proof. Suppose T is strongly circular. Then there is a strongly continuous one-parameter unitary group $\{U_t\}_{t \in \mathbb{R}}$ such that $U_t T = e^{it} T U_t$ for all $t \in \mathbb{R}$. Set

$$V_t = e^{it} U_t$$

for each $t \in \mathbb{R}$. Then, $\{V_t\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group on \mathcal{H}. Let A be the infinitesimal generator of $\{U_t\}_{t \in \mathbb{R}}$. Then it follows from the semigroup theory that the infinitesimal generator of $\{V_t\}_{t \in \mathbb{R}}$ is $I + A$. Putting $T = S$ in the above, A satisfies relation (1).

Conversely, suppose A is a self-adjoint operator satisfying relation (1). Put

$$U_t = e^{it A} \quad \text{and} \quad V_t = e^{it} e^{it A}$$

for $t \in \mathbb{R}$. Then we obtain $U_t T \subseteq e^{it} T U_t$ for all $t \in \mathbb{R}$. Since each U_t is unitary, $U_t \mathcal{D}(T) = \mathcal{D}(T)$. Hence, $U_t T = e^{it} T U_t$ for all $t \in \mathbb{R}$.

3 q-deformed circularity

Let T be a densely defined operator in a Hilbert space \mathcal{H}. If there is a positive real number q with $q \neq 1$ such that T is unitarily equivalent to $q T$, then we say that T has property Q.

Proposition 6. Suppose that a nontrivial closed densely defined operator T has property Q. Then,

1. T is unbounded.
2. The spectrum contains zero.
3. The absolute value $|T|$ has also property Q.

Example 7. Let T be a closed densely defined operator in \mathcal{H}. If T satisfies

$$TT^* = q T^* T \quad (q > 0, \ q \neq 1),$$

then T is called a q-normal operator. It should be noticed that elements satisfying this relation in a formal algebraic sense appear at various circumstances in the theory of quantum group theory. A non-trivial q-normal operator T is always unbounded and has sufficient large spectrum in the sense of the planar Lebesgue measure. Especially, every q-normal operator T is unitarily equivalent to $q T$. Thus the class of operators possessing property Q contains all q-normal operators.
Definition 8 Let T be a densely defined operator in \mathcal{H}. If there is a positive real number q with $q \neq 1$ such that T is unitarily equivalent to $q e^{it} T$ for all $t \in \mathbb{R}$, then T is called a q-deformed circular (simply, q-circular) operator.

Circularity may be considered as q tends to 1 in the above. Clearly, a q-circular operator has property Q.

Example 9 (q-circular weighted shifts) If a bilateral weighted shift has property Q, then it is q-circular. Hence, a q-normal bilateral weighted shift is q-circular. Moreover the spectrum of a q-circular weighted shift is equal to the whole complex plane.

Theorem 10 Let T be a closed densely defined operator in a Hilbert space \mathcal{H}. Then T is q-circular if and only if T is circular and has property Q.

Proof. Suppose T is q-circular. Then there is a family $\{U_t\}_{t \in \mathbb{R}}$ of unitary operators on \mathcal{H} such that

$$ U_t T = q e^{it} T U_t \quad (2) $$

for all $t \in \mathbb{R}$. It is clear that T has property Q. Put

$$ V_t = U_t U_0^{-1} \quad (3) $$

for all $t \in \mathbb{R}$. We have by above relation (2)

$$ V_t T = q U_t U_0^{-1} T = U_t T U_0 = q e^{it} T U_t U_0^{-1} = e^{it} T V_t. $$

Thus T is circular. The converse is easily proved by a simple calculation.

Theorem 11 Let T be a closed densely defined operator in \mathcal{H} with the polar decomposition $T = U |T|$. Then T is q-circular if and only if the following statements hold:

1. There is a unitary operator U_0 on \mathcal{H} that commutes with U and satisfies

$$ U_0 |T| = q |T| U_0 \quad (4) $$

2. There is a family $\{V_t\}_{t \in \mathbb{R}}$ of unitary operators on \mathcal{H} such that

$$ V_t U = e^{it} U V_t \quad \text{and} \quad V_t |T| = |T| V_t \quad (5) $$

for all $t \in \mathbb{R}$.

Especially, if this is the case, U is circular.
参考文献

