Title: On circular operators (Prospects of non-commutative analysis in operator theory)

Author(s): Ota, Schoichi

Citation: 数理解析研究所講究録 (2010), 1678: 128-133

Issue Date: 2010-04

URL: http://hdl.handle.net/2433/141295

Type: Departmental Bulletin Paper

Textversion: publisher

Kyoto University
Circular 作用素について
(On circular operators)
九州大学 大学院芸術工学研究院 太田 昇一 (Schöichi Ōta)
Faculty of Design, Kyushu University

1 Circularity

A densely defined operator T in a Hilbert space \mathcal{H} is said to be circular if T is unitarily equivalent to $e^{it}T$ for all $t \in \mathbb{R}$. Clearly the spectrum of a circular operator is circularly symmetric at origin.

Example 1 Let S be a closed densely defined operator in a separable Hilbert space \mathcal{H}. If there are an orthonormal basis $\{e_n\} (n \in \mathbb{Z})$ and a sequence $\{w_n\} (w_n \neq 0, n \in \mathbb{Z})$ of complex numbers such that

$$\mathcal{D}(S) = \left\{ \sum_{n=-\infty}^{\infty} \alpha_n e_n \in \mathcal{H} : \sum_{n=-\infty}^{\infty} |\alpha_n|^2 |w_n|^2 < \infty \right\}$$

and

$$Se_n = w_n e_{n+1}$$

for all $n \in \mathbb{Z}$, then S is called a bilateral (injective) weighted shift with weights $\{w_n\}$ (with respect to $\{e_n\}$). A unilateral weighted shift is defined by the replacement \mathbb{Z} with \mathbb{N} analogously.

Every bilateral or unilateral, weighted shift is circular.

Let us recall irreducibility for a possibly unbounded operator in \mathcal{H}. Let T be a closed densely defined operator in \mathcal{H}. A closed subspace \mathcal{M} of \mathcal{H} is said to reduce T if the following two conditions are satisfied:
1. $P_{\mathcal{M}}D(T) \subseteq D(T)$.

2. $T(\mathcal{M} \cap D(T)) \subseteq \mathcal{M}$ and $T(\mathcal{M}^\perp \cap D(T)) \subseteq \mathcal{M}^\perp$.

Here $P_{\mathcal{M}}$ denotes the orthogonal projection onto \mathcal{M}. If there is no non-trivial reducing subspace of T, then T is said to be irreducible.

Lemma 2 Let T be an irreducible, closed densely defined operator in a separable Hilbert space \mathcal{H}. If T is circular, then there are a family $\{U_t\}_{t \in \mathbb{R}}$ of unitary operators on \mathcal{H} and a mapping $m(\cdot, \cdot): \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{T}$ such that

1. $U_t T = e^{it} T U_t$ for all $t \in \mathbb{R}$.

2. $U_s U_t = m(s, t) U_{s+t}$, $U_0 = I$ (identity operator) for all $s, t \in \mathbb{R}$.

3. the map $m(\cdot, \cdot)$ satisfies

$$m(s, 0) = m(0, s) = 1 \quad \text{and} \quad m(s + t, u) m(s, t) = m(s, t + u) m(t, u)$$

for $s, t \in \mathbb{R}$.

Here, \mathbb{T} is the multiplicative group of complex numbers with modulus 1.

Moreover, if the above $\{U_t\}$ is so chosen that $t \mapsto U_t$ is measurable, there exists a strongly continuous one-parameter unitary group $\{V_t\}$ satisfying the above condition 1, that is, $V_t T = e^{it} T V_t$ for all $t \in \mathbb{R}$.

2 Strong circularity

Let T be a closed densely defined operator in a Hilbert space \mathcal{H}. If there is a strongly continuous one-parameter unitary group $\{U_t\}_{t \in \mathbb{R}}$ such that

$$U_t T = e^{it} T U_t \quad (t \in \mathbb{R}),$$

then T is said to be **strongly circular** and $\{U_t\}_{t \in \mathbb{R}}$ is called a unitary group associated with T.

Example 3 (Mlak) If S is the creation operator in a separable Hilbert space, that is, the unilateral weighted shift with weights $\{w_n\}$ given by $w_n = \sqrt{n+1}$ $(n \in \mathbb{N})$, then S is strongly circular.
Let S be a unilateral or bilateral weighted shift in a separable Hilbert space \mathcal{H}. Then S is strongly circular.

In fact, let S be a bilateral weighted shift in \mathcal{H} with weights $\{w_n\}$ with respect to $\{e_n\}$. Define a closed densely defined operator by

$$\mathcal{D}(N) = \left\{ \sum_{n=-\infty}^{\infty} \alpha_n e_n \in \mathcal{H} : \sum_{n=-\infty}^{\infty} |\alpha_n|^2 |n|^2 < \infty \right\}$$

and

$$Ne_n = ne_n \ (n \in \mathbb{Z}).$$

Then N is self-adjoint, and

$$e^{itN} S e_n = e^{it} S e^{itN} e_n$$

for all $n \in \mathbb{Z}$. It follows that S is a strongly circular operator with the associated unitary group $\{e^{itN}\}$.

For a bounded operator B and a densely defined operator T, $BT \subseteq TB$ means that

$$BD(T) \subseteq D(T) \text{ and } BT \eta = TB \eta \ (\eta \in D(T)).$$

Lemma 4 Let S be a densely defined operator in a Hilbert space \mathcal{H} and T be a closed densely defined operator in \mathcal{H}. Let $\{U_t\}_{t \in \mathbb{R}}$ and $\{V_t\}_{t \in \mathbb{R}}$ be strongly continuous one-parameter unitary groups on \mathcal{H} with infinitesimal generators A and B respectively, that is, $U_t = e^{itA}$, $V_t = e^{itB}$. Then the following conditions are equivalent:

1. For all $t \in \mathbb{R}$,
 $$U_t S \subseteq TV_t.$$

2. For all $\lambda \in \mathbb{C}$ with $\Im \lambda \neq 0$,
 $$(\lambda - A)^{-1} S \subseteq T(\lambda - B)^{-1}.$$

Theorem 5 Let T be a closed densely defined operator in a Hilbert space \mathcal{H}. Then T is strongly circular if and only if there is a self-adjoint operator A in \mathcal{H} such that

$$(\lambda - A)^{-1} T \subseteq T(\lambda - I - A)^{-1}$$

for all $\lambda \in \mathbb{C}$ with $\Im \lambda \neq 0$.

130
Proof. Suppose T is strongly circular. Then there is a strongly continuous one-parameter unitary group $\{U_t\}_{t \in \mathbb{R}}$ such that $U_t T = e^{it} T U_t$ for all $t \in \mathbb{R}$. Set

$$V_t = e^{it} U_t$$

for each $t \in \mathbb{R}$.

Then, $\{V_t\}_{t \in \mathbb{R}}$ is a strongly continuous one-parameter unitary group on \mathcal{H}. Let A be the infinitesimal generator of $\{U_t\}_{t \in \mathbb{R}}$. Then it follows from the semigroup theory that the infinitesimal generator of $\{V_t\}_{t \in \mathbb{R}}$ is $I + A$. Putting $T = S$ in the above, A satisfies relation (1).

Conversely, suppose A is a self-adjoint operator satisfying relation (1). Put

$$U_t = e^{itA} \quad \text{and} \quad V_t = e^{it} e^{itA}$$

for $t \in \mathbb{R}$. Then we obtain $U_t T \subseteq e^{it} T U_t$ for all $t \in \mathbb{R}$. Since each U_t is unitary, $U_t \mathcal{D}(T) = \mathcal{D}(T)$. Hence, $U_t T = e^{it} T U_t$ for all $t \in \mathbb{R}$.

3 q-deformed circularity

Let T be a densely defined operator in a Hilbert space \mathcal{H}. If there is a positive real number q with $q \neq 1$ such that T is unitarily equivalent to qT, then we say that T has property Q.

Proposition 6. Suppose that a nontrivial closed densely defined operator T has property Q. Then,

1. T is unbounded.
2. The spectrum contains zero.
3. The absolute value $|T|$ has also property Q.

Example 7. Let T be a closed densely defined operator in \mathcal{H}. If T satisfies

$$TT^* = q T^* T \quad (q > 0, q \neq 1),$$

then T is called a q-normal operator. It should be noticed that elements satisfying this relation in a formal algebraic sense appear at various circumstances in the theory of quantum group theory. A non-trivial q-normal operator T is always unbounded and has sufficient large spectrum in the sense of the planar Lebesgue measure. Especially, every q-normal operator T is unitarily equivalent to qT. Thus the class of operators possessing property Q contains all q-normal operators.
Definition 8 Let T be a densely defined operator in \mathcal{H}. If there is a positive real number q with $q \neq 1$ such that T is unitarily equivalent to $qe^{it}T$ for all $t \in \mathbb{R}$, then T is called a q-deformed circular (simply, q-circular) operator.

Circularity may be considered as q tends to 1 in the above. Clearly, a q-circular operator has property Q.

Example 9 (q-circular weighted shifts) If a bilateral weighted shift has property Q, then it is q-circular. Hence, a q-normal bilateral weighted shift is q-circular. Moreover the spectrum of a q-circular weighted shift is equal to the whole complex plain.

Theorem 10 Let T be a closed densely defined operator in a Hilbert space \mathcal{H}. Then T is q-circular if and only if T is circular and has property Q.

Proof. Suppose T is q-circular. Then there is a family $\{U_t\}_{t\in \mathbb{R}}$ of unitary operators on \mathcal{H} such that

$$U_t T = q e^{it} T U_t .$$ \hfill (2)

for all $t \in \mathbb{R}$. It is clear that T has property Q. Put

$$V_t = U_t U_0^{-1} .$$ \hfill (3)

for all $t \in \mathbb{R}$. We have by above relation (2)

$$V_t T = q U_t U_0^{-1} T = U_t T U_0$$

$$= q e^{it} U_t U_0^{-1} = e^{it} T V_t .$$

Thus T is circular. The converse is easily proved by a simple calculation.

Theorem 11 Let T be a closed densely defined operator in \mathcal{H} with the polar decomposition $T = U |T|$. Then T is q-circular if and only if the following statements hold:

1. There is a unitary operator U_0 on \mathcal{H} that commutes with U and satisfies

$$U_0 |T| = q |T| U_0 .$$ \hfill (4)

2. There is a family $\{V_t\}_{t\in \mathbb{R}}$ of unitary operators on \mathcal{H} such that

$$V_t U = e^{it} U V_t$$

and

$$V_t |T| = |T| V_t$$ \hfill (5)

for all $t \in \mathbb{R}$.

Especially, if this is the case, U is circular.
参考文献

