<table>
<thead>
<tr>
<th>項目</th>
<th>内容</th>
</tr>
</thead>
<tbody>
<tr>
<td>タイトル</td>
<td>正定値カーネルとマージョライゼーション（非可換解析の展望）</td>
</tr>
<tr>
<td>データ</td>
<td>設計</td>
</tr>
<tr>
<td>数理解析研究所講究録</td>
<td>数理解析研究所講究録</td>
</tr>
<tr>
<td>作者</td>
<td>萩原久</td>
</tr>
<tr>
<td>引用</td>
<td>数理解析研究所講究録 数理解析研究所講究録</td>
</tr>
<tr>
<td>発行年</td>
<td>2010-04</td>
</tr>
<tr>
<td>URL</td>
<td>hdl.handle.net/2433/141298</td>
</tr>
<tr>
<td>属性</td>
<td>部門別誌論文</td>
</tr>
<tr>
<td>版式</td>
<td>出版者</td>
</tr>
</tbody>
</table>

京都大学
Positive Definite Kernels and Majorization

Mitsuru Uchiyama Department of Mathematics
Interdisciplinary Faculty of Science and Engineering
Shimane University

1 Introduction

Definition 1.1 Let $f(t)$ be a real continuous function defined on I, and consider the functional calculus $f(X)$ for a Hermitian matrix X with eigenvalues in I.

- f is called an operator monotone function on I if $f(A) \leqq f(B)$ whenever $A \leqq B$ (of any order n).

- f is said to be operator decreasing if $-f$ is operator monotone.

- f is called an operator convex function on I if $f(sA + (1 - s)B) \leqq sf(A) + (1 - s)f(B)$ $(0 < s < 1)$ for every pair of bounded Hermitian operators A and B whose spectra are both in I.

- An operator concave function is likewise defined.

Definition 1.2 Let $K(t, s)$ be a real, continuous and symmetric function defined on $I \times I$.
$ullet$ $K(t, s)$ is called a positive semi-definite kernel on I if

$$\int_{I \times I} \int K(t, s) \phi(t) \phi(s) dt \, ds \geq 0$$

(1)

for all real continuous functions ϕ with compact support in I.

Remark It is evident that $K(t, s)$ is positive semi-definite on I if and only if for each n and for all n points $t_i \in I$ the $n \times n$ matrices

$$(K(t_i, t_j))_{i,j=1}^{n}$$

are positive semi-definite.

$ullet$ Suppose $K(t, s) \geq 0$ for every t, s in I. Then the kernel $K(t, s)$ is said to be infinitely divisible on I if $K(t, s)^r$ is a positive semi-definite kernel for every $r > 0$, i.e.,

$$\int_{I \times I} \int K(t, s)^r \phi(t) \phi(s) dt \, ds \geq 0$$

$ullet$ A kernel $K(t, s)$ is said to be conditionally positive semi-definite on I if $\int_{I \times I} \int K(t, s) \phi(t) \phi(s) dt \, ds \geq 0$ for ϕ such that the support of ϕ is compact and $\int_I \phi(t) dt = 0$.

$ullet$ A kernel $K(t, s)$ is said to be conditionally negative semi-definite on I if $-K(t, s)$ is conditionally positive semi-definite on I.

(Łöwner) C^1 function f is operator monotone on I if and only if the Łöwner kernel $K_f(t, s)$ defined by

$$K_f(t, s) = \frac{f(t) - f(s)}{t - s} \quad (t \neq s), \quad K_f(t, t) = f'(t),$$
is positive semi-definite on I. (F. Krauss, J. Bendat- S. Sherman)

$g(t)$ is an operator convex function on I if and only if $g(t)$ is of class $C^2(I)$ and for each $t_0 \in I$, the function $f(t)$ defined by

$$f(t) = \frac{g(t) - g(t_0)}{t - t_0} \quad (t \neq t_0), \quad f(t_0) = g'(t_0)$$

is operator monotone on I.

2 Operator convex functions

Proposition 2.1 Let $f(t)$ be an operator monotone (or decreasing) function on I. Then the indefinite integral $\int f(t)dt$ is an operator convex (or concave) function on I.

Example 2.1 $\int \log t dt = t \log t - t$, hence $t \log t$ and $\log \Gamma(t) = \int \frac{\Gamma'(t)}{\Gamma(t)}dt$ are both operator convex on $(0, \infty)$

But the converse is not true; $\frac{1}{t}$ on $(0, \infty)$ is a counter example.

Proposition 2.2 Let $g(t)$ be an operator convex function on $(0, \infty)$. Then $g'(\sqrt{t})$ is operator monotone there.

(Well-known) Let $f(t) \geq 0$ be defined on $[0, \infty)$. Then f is operator monotone $\iff f(t)$ is operator concave.

Theorem 2.3 Let $f(t)$ be defined on (a, ∞) with $a \geq -\infty$. Then

(i) $f(t)$ is operator decreasing $\iff f(t)$ is operator convex and $f(\infty) = \lim_{t \to \infty} f(t) < \infty$;
(ii) $f(t)$ is operator monotone \iff $f(t)$ is operator concave and $f(\infty) > -\infty$.

In (ii) the condition "$f(\infty) > -\infty$" is indispensable; for instance, $f(t) = -t^2$ is operator concave on $(0, \infty)$ but not operator monotone there.

Corollary 2.4 Let $f(t)$ be defined on $(-\infty, b)$, where $b \leq \infty$. Then

(i) $f(t)$ is operator monotone on $(-\infty, b) \iff f(t)$ is operator convex on $(-\infty, b)$ and $f(-\infty) < \infty$

(ii) $f(t)$ is operator decreasing on $(-\infty, b) \iff f(t)$ is operator concave on $(-\infty, b)$ and $f(-\infty) > -\infty$.

Corollary 2.5 *(Well-known)* Let $f(t)$ be defined on $(-\infty, \infty)$. Then $f(t)$ is operator monotone on $(-\infty, \infty)$ $\iff f(t) = at + b$ ($a \geq 0$).

How about the case of finite intervals? $\tan t$ is operator monotone on $(-\pi/2, \pi/2)$.

Proposition 2.6 Let $f(t)$ be an operator monotone function on a finite interval (a, b). Then there is a decomposition of $f(t)$ such that

$$f(t) = f_+(t) + f_-(t) \quad (a < t < b)$$

where $f_+(t)$ and $f_-(t)$ are operator monotone on (a, ∞) and $(-\infty, b)$ respectively.
3 Löwner kernels

(Bhatia and Sano) Let \(f(t) \) be a \(C^2 \) function on \([0, \infty)\) such that \(f(t) \geq 0 \) and \(f(0) = f'(0) = 0 \). Then \(f \) is operator convex on \([0, \infty)\) ⇔ the Löwner kernel \(K_f(t, s) \) is conditionally negative semi-definite on \([0, \infty)\), where

\[
K_f(t, s) = \frac{f(t) - f(s)}{t - s} \quad (t \neq s), \quad K_f(t, t) = f'(t),
\]

Proposition 3.1 Let \(f(t) \) be a \(C^1 \) function on \((a, \infty)\). Then

(i) \(f(t) \) is operator convex on \((a, \infty)\) ⇔

the Löwner kernel \(K_f(t, s) \) is conditionally negative semi-definite
and \(\lim_{t \to \infty} \frac{f(t)}{t} > -\infty \);

(ii) \(f(t) \) is operator concave on \((a, \infty)\) ⇔ the Löwner kernel \(K_f(t, s) \) is

conditionally positive semi-definite and \(\lim_{t \to \infty} \frac{f(t)}{t} < \infty \).

In (i) the condition "\(\lim_{t \to \infty} \frac{f(t)}{t} > -\infty \)" is indispensible: in fact, the Löwner kernel \(K_f(t, s) = -(t^2 + st + s^2) \) of \(f(t) = -t^3 \) is conditionally negative on \((0, \infty)\), but \(f(t) \) is not operator convex there.

Theorem 3.2 Let \(f(t) \) be \(C^1 \) function on \((a, \infty)\). Then the following hold:

(i) the Löwner kernel \(K_f(t, s) \) is positive semi-definite on \((a, \infty)\) if and

only if \(K_f(t, s) \) is conditionally positive semi-definite on \((a, \infty)\),

\[
\lim_{t \to \infty} \frac{f(t)}{t} < \infty, \text{ and } f(\infty) > -\infty;
\]
(ii) $K_f(t, s)$ is negative semi-definite on (a, ∞) if and only if $K_f(t, s)$ is conditionally negative semi-definite on (a, ∞), $\lim_{t \to \infty} \frac{f(t)}{t} > -\infty$, and $f(\infty) < \infty$.

Corollary 3.3 Let $f(t)$ be a C^1 function on $(-\infty, b)$. Then

(i) $f(t)$ is operator convex on $(-\infty, b)$ if and only if the Löwner kernel $K_f(t, s)$ is conditionally positive semi-definite; $\lim_{t \to -\infty} \frac{f(t)}{t} < \infty$.

(ii) $f(t)$ is operator concave on $(-\infty, b)$ if and only if the Löwner kernel $K_f(t, s)$ is conditionally negative semi-definite, and $\lim_{t \to -\infty} \frac{f(t)}{t} > -\infty$.

Corollary 3.4 Let $f(t)$ be C^1 function on $(-\infty, b)$. Then the following hold:

(i) the Löwner kernel $K_f(t, s)$ is positive semi-definite on $(-\infty, b)$ if and only if $K_f(t, s)$ is conditionally positive semi-definite on $(-\infty, b)$, $\lim_{t \to -\infty} \frac{f(t)}{t} < \infty$, and $f(-\infty) < \infty$;

(ii) the Löwner kernel $K_f(t, s)$ is negative semi-definite on $(-\infty, b)$ if and only if $K_f(t, s)$ is conditionally negative semi-definite on $(-\infty, b)$, $\lim_{t \to -\infty} \frac{f(t)}{t} > -\infty$, and $f(-\infty) > -\infty$.

4 Majorization and kernel functions

Definition 4.1 Let $h(t)$ and $g(t)$ be C^1 functions on I, and suppose that $g(t)$ is increasing. Then h is said to be majorized by g and denoted by
$h \preceq g$ on I if

$h(A) \leq h(B)$ whenever $g(A) \leq g(B)$ for A, B whose spectra are both in I.

\[f(t) \preceq t \text{ on } I \iff f(t) \text{ is operator monotone on } I. \]

Definition 4.2 Let $h(t)$ and $g(t)$ be C^1 functions on I, and suppose that $g(t)$ is increasing. Then the kernel $K_{h,g}(t, s)$ defined by

\[
K_{h,g}(t, s) = \frac{h(t) - h(s)}{g(t) - g(s)} \quad (s \neq t), \quad K_{h,g}(t, t) = \frac{h'(t)}{g'(t)}.
\]

is continuous and symmetric.

- A Löwner kernel $K_f(t, s)$ can be written as $K_{f,t}(t, s)$.

Proposition 4.1 The following statements are equivalent:

(i) The kernel $K_{h,g}(t, s)$ is positive semi-definite on I.

(ii) There is an operator monotone function φ defined on $g(I)$ such that

\[
h(t) = (\varphi \circ g)(t) \quad (t \in I).
\]

(iii) $h \preceq g$ on I.

Lemma 4.2 Let $h(t)$ and $g(t)$ be positive C^1 functions on an open interval I. Suppose $h(t)g(t)$ is increasing and its range is $(0, \infty)$. Then the kernel $K_{h,hg}$ is positive semi-definite on I if and only if so is the kernel $K_{g,hg}$.
Theorem 4.3 Let $h(t)$ and $g(t)$ be positive C^1 functions defined on I. Suppose g is increasing and its range is $(0, \infty)$. If the kernel $K_{h,g}$ is positive semi-definite on I, then for $0 \leq i \leq n$, $0 \leq j \leq m$, $1 \leq m$, $i + j + 1 \leq n + m$

$$K_{h^i g^j, h^m g^n}(t, s) = \frac{h^i(t)g^j(t) - h^i(s)g^j(s)}{h^m(t)g^n(t) - h^n(s)g^m(s)}$$

is infinitely divisible.

Moreover, if f is a (not necessarily positive) C^1 function such that the kernel $K_{f,g}(t, s)$ is positive semi-definite, then the kernel

$$K_{g, f^i g^j}(t, s)$$

is infinitely divisible.

Example 4.1 (1). For $f(t) \leq t$ on $(0, \infty)$

$$\frac{f(t)^i t^j - f(s)^i s^j}{f(t)^n t^m - f(s)^n s^m}$$

where $0 \leq i \leq n$, $0 \leq j \leq m$, $1 \leq m$, $i + j + 1 \leq n + m$,

$$1 \leq n + 1 \leq n,$$

$$\frac{1}{t + s} (\text{Cauchy kernel}), \quad \frac{t - s}{te^{-1/t} - se^{-1/s}}$$

are all infinitely divisible kernels on $(0, \infty)$.

(2). Consider a polynomial

$p(t) := \prod_{i=1}^{n}(t - a_i)$ with $a_1 \geq a_2 \geq \cdots \geq a_n$. Then the kernel

$$K_{t, p(t)}(t, s) = \frac{t - s}{p(t) - p(s)}$$

is infinitely divisible on (a_1, ∞).
Theorem 4.4 Let $h(t)$ and $g(t)$ be positive C^1 functions defined on an open interval (a, b), where $-\infty \leq a < b \leq \infty$. Suppose the range of g is $(0, \infty)$. Then the following are equivalent:

(i) the kernel $K_{h,g}$ is conditionally negative;

(ii) there is an operator convex function φ defined on $(0, \infty)$ such that $\varphi(g(t)) = h(t)$ for $t \in (a, b)$.

(iii) $\frac{h(t) - h(a+0)}{g(t)} \preceq g(t)$ \quad ($a < t < b$)