<table>
<thead>
<tr>
<th>Title</th>
<th>On the Glauberman-Watanabe correspondence for p-blocks of a p-nilpotent group with a cyclic defect group</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Tasaka, Fuminori</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1679: 44-48</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-04</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/141321</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
On the Glauberman-Watanabe correspondence for p-blocks of a p-nilpotent group with a cyclic defect group

千葉大学 (Chiba university)
田阪文規 (Fuminori Tasaka)

1

Let p be a prime. Let (K, O, k) be a p-modular system where O is a complete discrete valuation ring having an algebraically closed residue field k of characteristic p and having a quotient field K of characteristic zero which will be assumed to be large enough for any of finite groups we consider in this article. We use the notation $-$ for the reduction modulo $J(O)$. Let $R \in \{K, O, k\}.

Below, for groups H_1 and H_2, an $R[H_1 \times H_2]$-module X and an (RH_1, RH_2)-bimodule X will be identified in the usual way, namely $(h_1, h_2) \cdot x = h_1 \cdot x \cdot h_2^{-1}$ where $h_1 \in H_1$, $h_2 \in H_2$ and $x \in X$. For a common subgroup D of H_1 and H_2, denote by $\Delta D = \{(u, u) | u \in D\}$ a diagonal subgroup of $H_1 \times H_2$. Let $R' \in \{O, k\}$. For a p-group P, an R'-free $R'P$-module T is called an endo-permutation module if $\text{End}_{R'}(T)$ has an P-invariant R'-basis ([1]).

Let q be a prime such that $q \neq p$. Let $S = <s>$ be a cyclic group of order q. Let $\mu \in O$ be a fixed non-trivial q-th root of unity.

Let G be a finite group such that $q \nmid |G|$. Assume that S acts on G. Then with this action, we can consider the semi-direct product of G and S, denoted by GS. Denote by GS the centralizer $C_G(S)$ of S in G. When q is odd, for $\theta \in \text{Irr}(G)^S$, there is a unique extension $\hat{\theta} \in \text{Irr}(GS)$ of θ, a unique character $\pi(G, S)(\theta) \in \text{Irr}(GS)$ and a unique sign ϵ_θ such that $\hat{\theta}(cs) = \epsilon_\theta \pi(G, S)(\theta)(c)$ where $c \in GS$. When $q = 2$, for $\theta \in \text{Irr}(G)^S$ and a chosen sign ϵ_θ, there is a unique extension $\hat{\theta} \in \text{Irr}(GS)$ of θ and a unique character $\pi(G, S)(\theta) \in \text{Irr}(GS)$ such that $\hat{\theta}(cs) = \epsilon_\theta \pi(G, S)(\theta)(c)$ for $c \in GS$. The character $\pi(G, S)(\theta)$ is called the Glauberman correspondence of θ, see [3]. For $t \in \mathbb{Z}$, let $\lambda^t \hat{\theta} \in \text{Irr}(GS)$ be the extension of $\theta \in \text{Irr}(G)^S$ such that $\lambda^t \hat{\theta}(gs) = \mu^t \hat{\theta}(gs)$ where $g \in G$.

Let b be an S-invariant (p-)block of G having an S-centralized defect group D. Denote by $w(b)$ the Glauberman-Watanabe corresponding block of b, that is, the block of GS with a defect group D such that $\text{Irr}(w(b)) = \{\pi(G, S)(\theta) | \theta \in \text{Irr}(b) = \text{Irr}(b)^S\}$. For $t \in \mathbb{Z}$, let b_t be the block of GS such that $\text{Irr}(b_t) = \{\lambda^t \hat{\theta} | \theta \in \text{Irr}(b)\}$ (under appropriate choices of signs ϵ_θ when $q = 2$), and let e_t be the block of S corresponding to the representation of S determined by $s \mapsto \mu^t$. Let
\[b_r = \sum_{t=0}^{q-1} \epsilon_t b_{t+r} \quad \text{for} \quad 0 \leq r \leq q - 1. \] (1)

Then \(b = \sum_{r=0}^{q-1} b_r \) is an orthogonal idempotent decomposition of \(b \) in \(\mathcal{O}G^{s}b \) and so \(b_r \mathcal{O}G \) is a direct summand of the \(\mathcal{O}[G^S \times G] \)-module \(\mathcal{O}Gb \), and the following equation of the generalized characters of \(G^S \times G \) holds, see [6] and [7]:

\[\chi_{b_0} \mathcal{O}G - \chi_{b} \mathcal{O}G = \sum_{\theta \in \text{Irr}(b)} \epsilon_{\theta} \pi(G, S)(\theta) \otimes_{\mathcal{K}} \check{\theta} \quad \text{for} \quad 1 \leq l \leq q - 1, \] (2)

where \(\chi_{b_0} \mathcal{O}G \) is a character corresponding to a \(\mathcal{K}[G^S \times G] \)-module \(b_r \mathcal{K}G \) and \(\check{\theta} \) is a \(\mathcal{K} \)-dual of \(\theta \). (Below, denote by \(\check{b} \) the block containing \(\check{\theta} \) for \(\theta \in \text{Irr}(b) \).)

Equation (2) gives immediately the following Watanabe’s result, see [9]:

The map determined by \(\theta \mapsto \epsilon_{\theta} \pi(G, S)(\theta) \) where \(\theta \in \text{Irr}(b) \), induces a perfect isometry \(Z\text{Irr}(b) \simeq Z\text{Irr}(w(b)) \) between the Glauberman-Watanabe corresponding blocks.

And, as noted by Okuyama in [6], raised the following question:

Is the left hand side of equation (2) is a “shadow” of a complex of \(\mathcal{O}G^{S}w(b), \mathcal{O}Gb \)-bimodule which induces a derived equivalence between \(\mathcal{O}Gb \) and \(\mathcal{O}G^Sw(b) \)?

In fact, we have the following:

Theorem 1.1. With the above notations, moreover assume that \(G \) is \(p \)-nilpotent and \(D \) is cyclic. Then there is a two term complex \(C^\bullet \) of \(\mathcal{O}G^S(w(b), \mathcal{O}Gb) \)-bimodule satisfying the following:

(1) \(b_0 \mathcal{O}G \) is in degree 0 and \(b_1 \mathcal{O}G \) is in degree 1 or \(-1\).

(2) \(C^\bullet \) induces a derived equivalence between \(\mathcal{O}Gb \) and \(\mathcal{O}G^S(w(b)) \).

Further, \(C^\bullet \) is quasi-isomorphic to a one term complex consisting of the bimodule \(M \) satisfying the following \((M \) is in degree 0 if \(\epsilon_b = 1 \) and \(M \) is in degree 1 or \(-1\) if \(\epsilon_b = -1 \) where \(\epsilon_b = \epsilon_\theta \) for \(\theta \in \text{Irr}(b) \), which depends only on \(b \)):

(a) \(M \) induces a Morita equivalence between \(\mathcal{O}Gb \) and \(\mathcal{O}G^S(w(b)) \).

(b) \(M \) has a vertex \(\Delta DD \) and an endo-permutation source.

\(C^\bullet \) in Theorem 1.1 induces above Watanabe’s perfect isometry, see the condition in Theorem 1.1(1) and question (2), and \(M \) in Theorem 1.1 induces the Glauberman correspondence of characters belonging to \(b \) and \(w(b) \). The existence of \(M \) as in Theorem 1.1 is a particular case of the result of Harris-Linckelman for \(p \)-solvable case and of Watanabe for \(p \)-nilpotent blocks, see [5] and [10]. See also [4] for the existence of a derived equivalence between blocks with cyclic defect groups inducing prescribed perfect isometry.
Below, with the assumptions in Section 1, \(G \) and \(b \) are such that:

Condition 2.1. \(G \) is a \(p \)-nilpotent group with an \(S \)-centralized cyclic Sylow \(p \)-subgroup \(P \) of order \(p^\alpha \), that is, \(G = KP = K \times P \) where \(K = O_p'(G) \). \(b \) is a \(P \)-invariant block of \(K \), hence a block of \(G \) with a defect group \(D = P \).

In fact, by the Fong's first reduction as described in [5, Section 5] and Theorem 2.2 and 2.3 below, Theorem 1.1 above can be shown.

Denote by \(P_i \) the unique subgroup of \(P \) with the order \(p^i \) for \(i \) such that \(0 \leq i \leq \alpha \). Recall that the image \(Br_{P_i}(b) \) of the Brauer homomorphism \(Br_{P_i} \) of \(b \) is primitive in \(Z(kC_K(P_i)) \) and hence is a block of \(C_G(P_i) = C_K(P_i)P \), and let \(Br_{P_i}(b) \) be the corresponding block over \(\mathcal{O} \). Note that \(b = Br_{P_0}(b) \). Idempotents \(Br_{P_i}(b_r) \in (\mathcal{O}C_G(P_i)Br_{P_i}(b))^{C_{G^S}(P_i)} \) (see (1) in Section 1) are defined similarly. Denote by \(M^i_j \) the unique trivial source \(\mathcal{O}[C_{G^S}(P_i) \times C_{G}(P_i)] \)-module in \(w(Br_{P_i}(b)) \times Br_{P_i}(b) \) with vertex \(\Delta P_j \) for \(j \) such that \(0 \leq j \leq \alpha \). Let \(M^i_0 = M^i_\alpha \). Let \(\epsilon_{Br_{P_i}(b)} = \epsilon_{\chi_i} \) where \(\chi_i \in \text{Irr}(C_G(P_i) | Br_{P_i}(b)) \). Note that \(\epsilon_{Br_{P_i}(b)} \) depends only on \(Br_{P_i}(b) \).

Theorem 2.2. The following are equivalent for a fixed \(i \) where \(0 \leq i \leq \alpha \):

1. \(\epsilon_{Br_{P_i}(b)} = \epsilon_{Br_{P}(b)} \) for any \(h \) such that \(i \leq h \leq \alpha \).

2. The unique simple \(k(C_K(P_i) \times C_K(P_i))\Delta P \)-module in \(w(Br_{P_i}(b)) \times Br_{P_i}(b) \) is a trivial source module.

3. \(M^i_\alpha \) is a unique indecomposable direct summand of \(\mathcal{O}C_G(P_i)Br_{P_i}(b) \downarrow_{C_{G^S}(P_i) \times C_{G}(P_i)} \mathcal{O}C_{G^S}(P_i) \times C_{G}(P_i) \) with a multiplicity not divisible by \(q \).

4. (a) \(Br_{P_i}(b)_{0} \mathcal{O}C_G(P_i) \simeq M^i_\alpha \oplus Br_{P_i}(b)_{0} \mathcal{O}C_G(P_i) \) if \(\epsilon_{Br_{P}(b)} = 1 \).

 (b) \(Br_{P_i}(b)_{0} \mathcal{O}C_G(P_i) \simeq M^i_\alpha \oplus Br_{P_i}(b)_{0} \mathcal{O}C_G(P_i) \) if \(\epsilon_{Br_{P}(b)} = -1 \).

5. \(M^i_\alpha \) induces a Morita equivalence between \(\mathcal{O}C_G(P_i) Br_{P_i}(b) \) and \(\mathcal{O}C_{G^S}(P_i) \mathcal{O}Br_{P_i}(b) \).

6. \(\mathcal{O}C_G(P_i) Br_{P_i}(b) \) and \(\mathcal{O}C_{G^S}(P_i) \mathcal{O}Br_{P_i}(b) \) are Puig equivalent.

The conditions of Theorem 2.2 above always holds for \(i = \alpha \). If the conditions of Theorem 2.2 holds for \(i = 0 \), that is, \(OGb \) and \(OG^S w(b) \) are Puig equivalent, then, by the conditions of Theorem 2.2(4) and (5), we can construct a desired two term complex \(C^* \) as in Theorem 1.1 with \(M = M^\alpha \).
Below, we consider the case where \(\mathcal{O}Gb \) and \(\mathcal{O}G^{s}w(b) \) are not Puig equivalent. Then there is some \(\beta \) as in Theorem 2.3 below, see, for example, conditions of Theorem 2.2(1) and Theorem 2.3(1).

Since \((K^{s}\times K)\Delta P \) is \(p \)-nilpotent, sources of simple \(k(K^{s}\times K)\Delta P \)-modules are endo-permutation modules (Dade [2]). Since \(\Delta P \) is cyclic, indecomposable endo-permutation \(k\Delta P \)-modules with vertex \(\Delta P \) are the modules of the following form (Dade [2]):

\[
\Omega_{\Delta P}\inf_{\Delta(P/P_{1})}^{\Delta(P/P_{1})}\Omega_{\Delta(P/P_{2})}^{\Delta(P/P_{2})}\cdots\inf_{\Delta(P/P_{\alpha-1})}^{\Delta(P/P_{\alpha-1})}\Omega_{\Delta(P/P_{\alpha-2})}^{\Delta(P/P_{\alpha-2})}(k),
\]

where \(\Omega \) means Heller translate and \(a_{i} \in \{0, 1\} \).

Theorem 2.3. Let \(\beta \) be such that \(0 \leq \beta \leq \alpha - 1 \). The following conditions on \(\beta \) are equivalent:

1. \(e_{\mathfrak{B}r_{P_{h}}(b)} \neq e_{\mathfrak{B}r_{P_{h}}(b)} \) and \(e_{\mathfrak{B}r_{P_{h}}(b)} = e_{\mathfrak{B}r_{P_{h}}(b)} \) for any \(h \) such that \(\beta + 1 \leq h \leq \alpha \).

2. \(a_{h} = 1 \) and \(a_{h} = 0 \) for any \(h \) such that \(\beta + 1 \leq h \leq \alpha \) where \(a_{i} \)'s are 0 or 1 describing a source of the unique simple \(k(K^{s}\times K)\Delta P \)-module in \(w(b) \times \tilde{b} \) as above (when \(p = 2 \), let \(a_{\alpha - 1} = 0 \)).

3. \(\mathcal{O}C_{G}(P_{\beta})\mathfrak{B}r_{P_{\beta}}(b) \) and \(\mathcal{O}C_{G^{s}}(P_{\beta})w(\mathfrak{B}r_{P_{\beta}}(b)) \) are not Puig equivalent and \(\mathcal{O}C_{G}(P_{h})\mathfrak{B}r_{P_{h}}(b) \) and \(\mathcal{O}C_{G^{s}}(P_{h})w(\mathfrak{B}r_{P_{h}}(b)) \) are Puig equivalent for any \(h \) such that \(\beta + 1 \leq h \leq \alpha \).

4. The multiplicity of \(M^{\beta} \) in \(\mathcal{O}Gb \downarrow_{G^{s} \times G} \) is not divisible by \(q \).

5. \(M^{\alpha} \) and \(M^{\beta} \) are only indecomposable direct summands of \(\mathcal{O}Gb \downarrow_{G^{s} \times G} \) with multiplicities not divisible by \(q \).

6. (a) \(b_{1}\mathcal{O}G \oplus M^{\alpha} \simeq b_{0}\mathcal{O}G \oplus M^{\beta} \) if \(e_{\mathfrak{B}r_{P}(b)} = 1 \).

 (b) \(b_{0}\mathcal{O}G \oplus M^{\alpha} \simeq b_{1}\mathcal{O}G \oplus M^{\beta} \) if \(e_{\mathfrak{B}r_{P}(b)} = -1 \).

7. (a) When \(e_{b}e_{\mathfrak{B}r_{P}(b)} = -1 \), there is an epimorphism \(\Phi : M^{\beta} \rightarrow M^{\alpha} \) such that \(N = \text{Ker} \Phi \) induces a Morita equivalence between \(\mathcal{O}Gb \) and \(\mathcal{O}G^{s}w(b) \).

 (b) When \(e_{b}e_{\mathfrak{B}r_{P}(b)} = 1 \), there is an epimorphism \(\Phi : M^{\alpha} \rightarrow M^{\beta} \) such that \(N = \text{Ker} \Phi \) induces a Morita equivalence between \(\mathcal{O}Gb \) and \(\mathcal{O}G^{s}w(b) \).

If \(\mathcal{O}Gb \) and \(\mathcal{O}G^{s}w(b) \) are not Puig equivalent, then, by the conditions of Theorem 2.3(6) and (7), we can construct a desired two term complex \(C^{\bullet} \) as in Theorem 1.1 with \(M = N \). Note that a source of \(\overline{N} \) is a source of the unique simple \(k(K^{s}\times K)\Delta P \)-module in \(w(b) \times \tilde{b} \), and an \(\mathcal{O} \)-lift of an endo-permutation module is an endo-permutation module.
In fact, a source of the module inducing the concerned Morita equivalence between $kG\overline{b}$ and $kG^S w(\overline{b})$ and "signs of the local blocks" $\epsilon_{\mathfrak{B}r_{P_i}(b)}$ are related as follows:

Proposition 2.4. The following conditions on α numbers $a_i \in \{0, 1\}$ $(0 \leq i \leq \alpha - 1)$ are equivalent when p is odd:

1. A source of the unique simple $k(K^S \times K)\Delta P$-module in $w(\overline{b}) \times \tilde{b}$ has the following form:

$$\Omega_{P_0}^{a_0} \text{Inf}_{\Delta(P/P_1)}^{\Delta(P/P_1)} \Omega_{\Delta(P/P_2)}^{a_1} \text{Inf}_{\Delta(P/P_2)}^{\Delta(P/P_2)} \cdots \text{Inf}_{\Delta(P/P_{\alpha-2})}^{\Delta(P/P_{\alpha-2})} \Omega_{\Delta(P/P_{\alpha-2})}^{a_{\alpha-2}}(k).$$

2. $\epsilon_{\mathfrak{B}r_{P_i}(b)} = (-1)^{a_i} \epsilon_{\mathfrak{B}r_{P_{i+1}}(b)}$ for any i such that $0 \leq i \leq \alpha - 1$.

Proposition 2.5. The following conditions on $\alpha - 1$ numbers $a_i \in \{0, 1\}$ $(0 \leq i \leq \alpha - 2)$ are equivalent when $p = 2$:

1. A source of the unique simple $k(K^S \times K)\Delta P$-module in $w(\overline{b}) \times \tilde{b}$ has the following form:

$$\Omega_{P_0}^{a_0} \text{Inf}_{\Delta(P/P_1)}^{\Delta(P/P_1)} \Omega_{\Delta(P/P_2)}^{a_1} \text{Inf}_{\Delta(P/P_2)}^{\Delta(P/P_2)} \cdots \text{Inf}_{\Delta(P/P_{\alpha-2})}^{\Delta(P/P_{\alpha-2})} \Omega_{\Delta(P/P_{\alpha-2})}^{a_{\alpha-2}}(k).$$

2. $\epsilon_{\mathfrak{B}r_{P_i}(b)} = (-1)^{a_i} \epsilon_{\mathfrak{B}r_{P_{i+1}}(b)}$ for any i such that $0 \leq i \leq \alpha - 2$.

References

