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1 Introduction
Among the optimal stopping problems, a lot of generalizations of secretary problem have

been considered. The problem dealt with generalization of duration and utility related to
duration is introduced in this paper. In Section 2, we consider the simple problem where the
utility is the total work done by the accepted applicant, which is related to a kind of duration.
The objective is to find the stopping rule maximizing the total work. In this problem, we
assume that the decision maker can observe the value (work rate) of the applicants, which is
called full-information case.

In Ferguson, Hardwick and Tamaki (1993), the problem of maximizing the duration of owning
the relatively best object is solved for various settings in both no-information case and full-
information case. Tamaki, Pearce and Szajowski (1998) shows the optimal strategy for multiple
stopping duration problem. In their problems, the duration is defined as the time period when
the selected relatively best object remains to be relatively best, that is just before it becomes
second-best. In other words, the decision maker is interested in the object only when it is a
relatively best, and when the next relatively best arrives, the former relatively best is useless.
Further generalization for no-information case is solved in Szajowski and Tamaki (2006). They
call the problem shelf life problem, where the objective is to maximize the time period owning
the relatively best or second-best. Our second problem introduced in Section 3 is a special
case of the shelf life problem. We consider the generalization of the duration, which is defined
as the time period of owning the relatively best or second-best object. However, the class of
the stopping rule is restricted in stopping only at the relatively best applicant. We treat the
problem in full-information case, and we have got the OLA (one-stage look-ahead) stopping
rule. In order to show that the OLA stopping rule is optimal, we have to show two statements
as sufficient condition. Now we could show one of the statements, the other remains unsolved,
so we describe a part of the proof, and the conjecture.

2 Work Maximization Problem: Full-Information Case
Here we consider a simple utility maximization problem as a generalization of full-information

secretary problem. Assume that the titility is the total work of the applicant. The work is
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defined as a product of value and time period.
The problem is described as follows: Fixed $n$ applicants arrive sequentially in a random

order. The decision maker (DM) has to decide whether to accept or reject the applicant after
the interview. DM can observe the value of the applicant, which has uniform distribution,
$U(O, 1)$ . The objective of DM is to maximizing the work that the accepted applicant will
accomplish by the time $n+1$ .

The optimal policy is solved by backward induction. Let $u_{i}$ and $w_{i}$ denote the value and the
work of ith applicant, respectively. The total work of ith applicant is defined as the product
of his/her value and time period, that is,

$u\prime_{i}(x)=u_{i}\cross(n-i+1)$ . (1)

Let $V_{j}$ denote the expected duration when there are $j$ stages to go and DM acts optimally.
When $X_{j}$ is observed with $j$ stages to go, DM stops if $jX_{j}>V_{j-1}$ .

$V_{j}=E \max(jX_{j}, V_{j-1})=\int_{0}^{V_{j-1}’ V_{j}}V_{j-1}dx+\int_{V_{j-1}/V_{j}}^{1}$ $jxdx= \frac{1}{2}(j+\frac{V_{j-1}^{2}}{j})$ (2)

with initial condition $V_{0}=0$ . If we let $A_{j}=V_{j-1}/j$ , then we have

$A_{j+1}= \frac{j}{j+1}(\frac{1+A_{j}^{2}}{2})$ (3)

with initial condition $A_{1}=0$ .

Theorem 1 Assume that $n$ applicants arrive in random order. $DM$ can observe the value
of each applicant, which has uniform density between $0$ and 1, $U(O, 1)$ . The objective is to
maximize the total work of the accepted applicant. Then the optimal stopping time is given by

$\tau=\min\{j:X_{j}\geq A_{j}\}$ ,

where $X_{j}$ is the value of the applicant who arrives when there remain $j$ stages to go.

The numerical values of $A_{j}$ is shown in Table 1.

Table 1: The numerical values of $A_{j}$

3 An Extension of Duration Problem
In this section, full-information case of the duration problem is generalized. The objective is

to maximize the time period of owning the relatively best and the relatively second-best. Here
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we consider the class of the stopping rule restricted in that of only stopping at the relatively
best object. The value of the applicants has the uniform distribution $U(0,1)$ . Let $X_{i}$ denote
the value of the itli applicant.

Let $U_{n}(x)$ denote the expected duration of the relatively best whose rank remains within
two when the time to go is $n$ and DM accepts the relatively best applicant whose value $x$ is the
maximum value among that of the applicants arrived so far, that is $X_{n}=x$ . $U_{n}(x)$ is given by

$U_{n}(x)$ $=$ $\sum_{k=2}^{n-1}k(k-1)(1-x^{2})^{2}x^{k-2}+nx^{n-1}+n(n-1)(1-x)x^{n-2}$

$=$ 2 $\sum_{k=1}^{n-1}x^{k-1}-nx^{n-1}$ .

The expected duration when DM does not accept the relatively best applicant whose value
$X_{n}=x$ is the maximum value among that of the applicants arrived so far and accepts the next
first relatively best applicant hereafter is given by

$\sum_{k=1}^{n-1}x^{k-1}\int_{x}^{1}U_{n-k}(y)dy=2\sum_{k=1}^{n-1}x^{k-1}\sum_{j=1}^{n-k-1}\frac{1-x^{j}}{j}-\sum_{k=1}^{n-1}x^{k-1}+(n-1)x^{n}$一 1.

Let $G_{n}(x)$ define

$G_{n}(x)=U_{n}(x)- \sum_{k=1}^{n-1}x^{k-1}\int_{x}^{1}U_{n-k}(y)dy$ ,

then we got

$G_{n}(x)$ $=$ 3 $\sum_{k=1}^{n}x^{k}$

一 1
$-2nx^{n-1}-2 \sum_{k=1}^{n-1}x^{k-1}\sum_{j=1}^{n-k}\frac{1-x^{j}}{j}$

$=$ 3 $\sum_{k=1}^{n}x^{k-1}-2nx^{n-1}-2\sum_{k=1}^{n-1}x^{k-1}\sum_{j=1}^{n-k-1}\frac{1}{j}+2\sum_{k=1}^{n-1}x^{k}\sum_{j=1}^{k}\frac{1}{j}$ .

Then OLA stopping region $B$ is described as

$B=\{(n, x):G_{n}(x)\geq 0\}$ ,

where $(n, x)$ is represented the state when when the time to go is $n$ and the present applicant
is the relatively best one whose value $x$ is the maximum value among that of the applicants
arrived so far, that is $X_{n}=x$ . To show that the OLA stopping rule is optimal, it is sufficient
to show the next two statements: (i) $G_{n}(x)\geq 0\Rightarrow G_{n-k}(x)\geq 0,$ $k=1,2,$ $\ldots$ , and (ii)
$G_{n}(x)\geq 0\Rightarrow G_{n}(y)\geq 0,$ $y\geq x$ . If both (i) and (ii) are shown, then it follows that
$G_{n}(x)\geq 0\Rightarrow G_{n-k}(y)\geq 0$ for $k=1,2,$ $\ldots$ ,, $y\geq x$ .

Here we have shown only the first statement.

Lemma 1 $G_{n+1}(x)\geq 0\Rightarrow G_{n}(x)\geq 0,$ $k=1,2,$ $\ldots$ ,

Proof. $G_{n}(x)$ can be rewritten by

$G_{n}(x)= \sum_{j_{=0}}^{n-1}a_{j}^{(n)}x^{j}-2nx^{n-1}$ ,
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where

$a_{j}^{(n)}=3-2 \sum_{l=1}^{n-j-1}\frac{1}{l}+2\sum_{l=1}^{j}\frac{1}{l}$ .

It is easily shown that $a_{j}^{(n)}$ is increasing in $j$ , and it follows that

$a_{j}^{(n+1)}=a_{j}^{(n)}- \frac{2}{n-j}$ .

Then $G_{n}(x)$ has recursive expression as

$G_{n+1}(x)$ $=$ $\sum_{j_{=0}}^{n}a_{j}^{(n+1)}x^{j}-2(n+1)x^{n}$

$=$ $\sum_{j=0}^{n-1}(a_{j}^{(n)}-\frac{2}{n-j})x^{j}+a_{n}^{(n+1)}x^{n}-2(n+1)x^{n}$

$=$ $G_{n}(x)+2nx^{n-1}- \sum_{j=0}^{n-1}\frac{2}{n-j}x^{j}+(3+\sum_{l=1}^{n}\frac{2}{l})x^{n}-2(n+1)x^{n}$

$\equiv$ $G_{n}(x)-f_{n}(x)$ ,

$G_{n+1}(x)\geq 0$ is equivalent to $G_{n}(x)\geq f_{n}(x)$ . So it is sufficient to show $f_{n}(x)\geq 0$ for

$0<x<1$ . The proof is made by induction. Since

$f_{n}(x)= \sum_{j=0}^{n-1}\frac{2}{n-j}x^{j}-(3+\sum_{l=1}^{n}\frac{2}{l})x^{n}+2(n+1)x^{n}-2nx^{n-1}$ ,

it is clear that
$f_{3}(x)= \frac{4}{3}x^{3}-4x^{2}+x+\frac{2}{3}\geq 0$

for $0<x<1$ So when $n=3,$ $f_{3}(x)\geq 0$ for $0<x<1$ .
Next, assume that $f_{n}(x)\geq 0(0<x<1)$ . Then

$f_{n+1}(x)$ $=$ $xf_{n}(x)+2 \{\frac{1-x^{j+1}}{j+1}+(x^{j+1}-x^{j})\}$

$\geq$ $xf_{n}(x)+2\{x^{j}-x^{j+1}+(x^{j+1}-x^{j})\}$

$\geq$ $xf_{n}(x)$

$\geq$ $0$ .

Therefore, if $f_{n}(x)\geq 0$ , then $f_{n+1}(x)\geq 0$ .
By induction, we can show that $f_{n}(x)\geq 0$ for all $n(\geq 3)$ and $0<x<1$ ,

Finally, it follows that if $G_{n+1}(x)\geq 0$ , then $G_{n}(x)\geq f_{n}(x)\geq 0$ , that is,

$G_{n+1}(x)\geq 0\Rightarrow G_{n}(x)\geq 0$ .

The proof is completed. ロ

It is necessary to show the second statement (ii) $G_{n}(x)\geq 0\Rightarrow G_{n}(y)\geq 0,$ $y\geq x$ for the
optimality of the OLA stopping rule. It remains unsolved, so we would like to conclude the
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paper with the conjecture about the optimal stopping rule.

Conjecture For the full-information case of the duration problem where the objective is to
maximize the duration of owning the relatively best or second-best, we assume that the class
of stopping rule is restntcted to that of stopping only at the relatively best. Then the optimal
stopping rule is to accept the first applicant who has the maximum $X_{n}=x\geq s_{n}$ among the
observed objects so far when the remaining time is $n$ , where $s_{1}=1$ and $s_{n},$ $n\geq 2$ is the unique
root of the equation

3 $\sum_{k=1}^{n}x^{k-1}-2nx^{n-1}-2\sum_{k=1}^{n-1}x^{k-1}\sum_{j=1}^{n-k-1}\frac{1}{j}+2\sum_{k=1}^{n-1}x^{k}\sum_{j=1}^{k}\frac{1}{j}=0$.
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