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Abstract

A family H of subsets is called increasing if B € H whenever A C B for
some A € H. The fundamental theorem of random sets, known as Choquet
theorem, will be discussed in the light of random increasing family H of
subsets. The distribution of H is determined by the completely monotone
capacity p(A) = P(A € H) if P(A,B € H) = P(AN B € H) for every pair
(A, B). Similarly the completely alternating capacity ¢ characterizes H for
which P(A,B € H) =P(A € H) + P(B € H) — P(AU B € H). This paper
presents our ongoing investigation in an effort of searching an extension of
probabilistic interpretation of Choquet capacities.

1 Probabilistic interpretation of capacities

By B we denote the Boolean algebra of a finite set S, and introduce a natural
partial ordering by the inclusion C. This poset B has the minimum element () and
the maximum element S, denoted respectively by 0 and 1. We call a nonnegative
function ¢ on B a capacity if a C b implies p(a) < o(b) with »(0) = 0 and
(1) =1 [ie., p(@) = 0 and ¢(S) = 1].

Here we introduce successive difference functionals on capacities. For any
a € B and any sequence by, b, ... of B, we can define the following functionals
recursively by

50 = 0(a) — p(anby)
Nb,,
g’ly~~~;bn+lt‘0 = ( glr“abn - vgls;ltr];) <p’ n= 1’ 2’ Tttt
The definition above does not depend on the order of b;’s, and Vg, =~ =Vg
if b; = b4 for some ¢ < n. Therefore, we can only define a distinct successive

difference functional for every nonempty subset B = {by,...,b,} of B, and denote
it simply by V4. We call a capacity ¢ completely monotone if Vo > 0 for any



a € B and any nonempty subset B of B. Let By = B\ {0}. Choquet [1] showed
that if ¢ is completely monotone then a By-valued random variable X satisfies

(1.1) pla) =P(X Ca)=>_ f(b) forach,

bCa

where f(b) = P(X = b) is the probability mass function of X. This representation
is unique up to the probability mass function, and also suffices the property of
complete monotonicity.

A subset H of B is called an up-set (or a hereditary set to the right) if a C b
and a € H imply b € H. By H, we denote the class of nonempty up-sets which
do not contain the minimum element 0 of B; that is, H, is the class of all up-sets
except for () nor B. We define the capacity xg by

(a) = 1 ifae H;
XY =30 ifeg H,

with H € Ho, and call it an extreme capacity. The entire class of capacities is a
convex polytope (i.e., a bounded polyhedron) on the vector space of real-valued
functions on B, and that it consists of extreme points of the form xy (see [1]).
Therefore, for any capacity ¢ we can find the representation

(1.2) o(a)= 3" g(H)xu(a), acB

HeHo

where g is a probability mass function on Ho.

Murofushi [2] pioneered the following greedy algorithm to construct the weight
g in (1.2). Define a map H(t) = {a € B : ¢(a) > t} from [0,1) to H,, and observe
that H(t) = H; for t € [r;_;,m;) for i = 1,...,m with an increasing sequence
O=ryp<r; <--- <7y, =1and a decreasing sequence H; D --- D H,,. Then set
g(H;) =ri —ri_y for i = 1,...,m, and g(K) = O for every other K € Ho. It is
easily checked that g satisfies (1.2).

We introduce an Hy-valued random variable H, and call it a random up-set.
We can restate (1.2) by

(1.3) v(a) =Plaec H), a€B

where H has the probability mass function g(K) = P(H = K). However, as the
following example shows, such a probabilistic interpretation is no longer unique
in general.

Example 1.1. Let B = {0,0, 8,7, a8, av, 57, 1} be the Boolean algebra with

0=0and 1= a8y, and let ¢ be a capacity on B with p(af8) = ¢p(ay) = p(By) =
% and ¢(a) = ¢(B) = ¢(v) = 0; here we write af for a subset {c, 8}. Then ¢ is

completely monotone, and (1.1) holds for f(afB) = f(ay) = f(By) = 3. Let
(By={a€eB:bCaforsomebe B}
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be the up-set generated by a subset B of B. The probability mass function g on
Ho with g({(af)) = g({av)) = g({B7)) = } satisfies (1.3). On the other hand, the
Murofushi’s greedy algorithm determines g({1)) = 1 and g({{aB,av,B7})) = 2
for which (1.3) also holds.

2 Mobius functions and successive differences

Let P be a finite poset. The Mobius function up is the unique function defined for
every pair (a,b) such that a < b, and satisfies up(a,a) = 1 and 3, ., pp(b,a) =0
for each a € P. Then we have

(2.4) @)= 3" e(®)up(b,a)

b<a
if and only if p(a) = 3_,, f(b). Here f is called the M&bius inversion of .

Example 2.1. The results here and other arguments of this section are either
taken from or inspired by Stanley [3]. Let B be a Boolean algebra of a finite set
S. For a C b we obtain the Mdbius function ug(a,b) = (—1)\al, where |b\ a]
denotes the number of elements in the set difference b\ a.

Let a € B and a nonempty subset B C B be fixed. Then we can introduce the
subposet
Pg={nB'Na: B C B}

with the partial order < by inclusion, where

ﬁbeB'b if BI 75 @,
NB' = (.
e el

In what follows we simply write P for Pg if there is no confusion with other posets
in discussion. It is not difficult to see (e.g., Stanley [3]) that

S e®up(b,a) = 3 (-1)F1p(NB' Na) = Ve

b<a B'CB

Here the element a is the maximum of P.

Let ¢ be a capacity, and let f be the Mobius inversion of ¢. We can argue
the following interesting connection to the Mdbius inversion from the successive
difference V% (or equivalently from the Mdbius function up). For b € P we set
F(b) to be the summation of f(z) over all x’s satisfying £ C b and =z € V' for all
b < bin P. Then we have

N F@E) =) f(z)=p(b)

v <b zCb
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and therefore,

(2.5) F(a) =Y o(b)up(b,a) = Vp
b<a
As a special case of (2.5) we obtain f(a) = V%4 when a = {ay,...,ax} and

B = {S\ {a1},...,5\ {ar}}. Hence we have shown the result of Choquet.

Proposition 2.2. A capacity ¢ is completely monotone if and only if the Mdbius
wnversion f is nonnegative.

The Mébius inversion f of a capacity ¢ satisfies f(0) = 0 and D ouci fla) =1,
and it can be viewed as a probability mass function on By, when f is nonnegative.

For any capacity ¢ we can define the dual capacity ¢* by ¢*(a) =1 —¢(1\ a)
for a € B. Then we can introduce the functional AZ by

(2:6) APy = -Vpry
where B* = {1\ b:b € B}. We can formulate it recursively by

AZlgp = gp(a) —p(aU b1)
Abrbnt ) — (AZI,...,bn _ Abl,...,bn) 0, n=12....

ann+ 1

We call ¢ completely alternating if AZp < 0 for any a € B and any nonempty
subset B C B. It is clear from (2.6) that ¢ is completely alternating if and only if
©* is completely monotone. By Proposition 2.2 we can see that if ¢ is completely
alternating then a By-valued random variable X satisfies

(2.7) pla) =P(XNa#0)= D f(b)
bNa£0

where f*(b) = P(X = b) is the Mébius inversion of ¢*.

3 An extension of probabilistic interpretation

We introduce a partial order < on the class H of nonempty up-sets H as follows:
For K, H € 'H we define K < H if and only if K D H. Recall that a subset A of
B is an antichain if none of pairs of A are comparable. We can obtain the Mdbius
function on H as follows; see Stanley [3]. For K < H we have

(—1)E\Hl if K\ H is an antichain;
0 otherwise.

.U’H(K>H) = {

Let ¢ be a capacity. A nonempty up-set H is called feasible with respect to ¢
if A;rli,’;,}cp < 0 for every pair (b,b') of H satisfying bNd & H.
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Definition 3.1. If a nonempty up-set H is not feasible, we can find a feasible
up-set K = H greedily. First, set K = H, and repeat the following steps until K
becomes feasible.

1. Choose a pair (b,b') of K such that bN¥ & K and A,Eg’g}go > 0.

2. Set K = (bNV) UK. Here (b) = {a € B: b C a} is the up-set generated by
b € B. Thus, (bN¥') U K is also an up-set.

Lemma 3.2. For any nonempty up-set H Definition 3.1 generates the mazximum
feasible up-set K (in the poset H) satisfying K < H.

Let H° denote the antichain of all the minimal elements of the unique feasible
up-set K X H generated via Definition 3.1. For H € H we define ®(H) = —Agc’go,
and introduce the Mobius inversion g of ® by

(3.8) g(H) = ) ®(K)uw(K, H)
K<H

If g is nonnegative then the probability mass function P(H = K) = g(K) on H,
satisfies

(3.9) P(a,be€ H) = p(anb) — [A% ¢]_  for a,b € By,
where [z]_- = min{z,0}.

Theorem 3.3. If an Hy-valued random up-set H satisfies (3.9) with some capacity
@ then the Mobius inversion g in (3.8) is nonnegative and uniquely determines
the probability mass function of H.

If  is completely monotone and satisfies (1.1) with some By-valued random
variable, then H = (X) satisfies (3.9). If o is completely alternating and satisfies
(2.7) then H = {a € B : X Na # 0} satisfies (3.9). Theorem 3.3 indicates that
the random up-set H can be directly constructed via (3.8).

Theorem 3.3 also implies that there is a class of capacities capable of charac-
terizing H uniquely in a way to extend Choquet theorem. Due to the nature of
our research in progress we omit the proofs for Lemma 3.2 and Theorem 3.3.
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