Probabilistic Interpretation Beyond Completely Monotone Capacities

Motoya Machida and Alexander Shibakov Department of Mathematics, Tennessee Technological University Cookeville, TN 38505, USA

Abstract

A family H of subsets is called increasing if $B \in H$ whenever $A \subseteq B$ for some $A \in H$. The fundamental theorem of random sets, known as Choquet theorem, will be discussed in the light of random increasing family \mathbf{H} of subsets. The distribution of \mathbf{H} is determined by the completely monotone capacity $\varphi(A) = \mathbb{P}(A \in \mathbf{H})$ if $\mathbb{P}(A, B \in \mathbf{H}) = \mathbb{P}(A \cap B \in \mathbf{H})$ for every pair (A, B). Similarly the completely alternating capacity φ characterizes \mathbf{H} for which $\mathbb{P}(A, B \in \mathbf{H}) = \mathbb{P}(A \in \mathbf{H}) + \mathbb{P}(B \in \mathbf{H}) - \mathbb{P}(A \cup B \in \mathbf{H})$. This paper presents our ongoing investigation in an effort of searching an extension of probabilistic interpretation of Choquet capacities.

1 Probabilistic interpretation of capacities

By \mathcal{B} we denote the Boolean algebra of a finite set S, and introduce a natural partial ordering by the inclusion \subseteq . This poset \mathcal{B} has the minimum element \emptyset and the maximum element S, denoted respectively by $\hat{0}$ and $\hat{1}$. We call a nonnegative function φ on \mathcal{B} a capacity if $a \subseteq b$ implies $\varphi(a) \leq \varphi(b)$ with $\varphi(\hat{0}) = 0$ and $\varphi(\hat{1}) = 1$ [i.e., $\varphi(\emptyset) = 0$ and $\varphi(S) = 1$].

Here we introduce successive difference functionals on capacities. For any $a \in \mathcal{B}$ and any sequence b_1, b_2, \ldots of \mathcal{B} , we can define the following functionals recursively by

$$\nabla_{b_1}^a \varphi = \varphi(a) - \varphi(a \cap b_1)$$

$$\nabla_{b_1,\dots,b_{n+1}}^a \varphi = \left(\nabla_{b_1,\dots,b_n}^a - \nabla_{b_1,\dots,b_n}^{a \cap b_{n+1}}\right) \varphi, \quad n = 1, 2, \dots$$

The definition above does not depend on the order of b_i 's, and $\nabla^a_{b_1,\dots,b_{n+1}} = \nabla^a_{b_1,\dots,b_n}$ if $b_i = b_{n+1}$ for some $i \leq n$. Therefore, we can only define a distinct successive difference functional for every nonempty subset $B = \{b_1, \dots, b_n\}$ of \mathcal{B} , and denote it simply by ∇^a_B . We call a capacity φ completely monotone if $\nabla^a_B \varphi \geq 0$ for any

 $a \in \mathcal{B}$ and any nonempty subset B of \mathcal{B} . Let $\mathcal{B}_0 = \mathcal{B} \setminus \{\hat{0}\}$. Choquet [1] showed that if φ is completely monotone then a \mathcal{B}_0 -valued random variable X satisfies

(1.1)
$$\varphi(a) = \mathbb{P}(X \subseteq a) = \sum_{b \subseteq a} f(b) \quad \text{for } a \in \mathcal{B},$$

where $f(b) = \mathbb{P}(X = b)$ is the probability mass function of X. This representation is unique up to the probability mass function, and also suffices the property of complete monotonicity.

A subset H of \mathcal{B} is called an up-set (or a hereditary set to the right) if $a \subseteq b$ and $a \in H$ imply $b \in H$. By \mathcal{H}_0 we denote the class of nonempty up-sets which do not contain the minimum element $\hat{0}$ of \mathcal{B} ; that is, \mathcal{H}_0 is the class of all up-sets except for \emptyset nor \mathcal{B} . We define the capacity χ_H by

$$\chi_H(a) = \begin{cases} 1 & \text{if } a \in H; \\ 0 & \text{if } a \notin H, \end{cases}$$

with $H \in \mathcal{H}_0$, and call it an extreme capacity. The entire class of capacities is a convex polytope (i.e., a bounded polyhedron) on the vector space of real-valued functions on \mathcal{B} , and that it consists of extreme points of the form χ_H (see [1]). Therefore, for any capacity φ we can find the representation

(1.2)
$$\varphi(a) = \sum_{H \in \mathcal{H}_0} g(H) \chi_H(a), \quad a \in \mathcal{B}$$

where g is a probability mass function on \mathcal{H}_0 .

Murofushi [2] pioneered the following greedy algorithm to construct the weight g in (1.2). Define a map $H(t) = \{a \in \mathcal{B} : \varphi(a) > t\}$ from [0,1) to \mathcal{H}_0 , and observe that $H(t) = H_i$ for $t \in [r_{i-1}, r_i)$ for $i = 1, \ldots, m$ with an increasing sequence $0 = r_0 < r_1 < \cdots < r_m = 1$ and a decreasing sequence $H_1 \supset \cdots \supset H_m$. Then set $g(H_i) = r_i - r_{i-1}$ for $i = 1, \ldots, m$, and g(K) = 0 for every other $K \in \mathcal{H}_0$. It is easily checked that g satisfies (1.2).

We introduce an \mathcal{H}_0 -valued random variable \mathbf{H} , and call it a random up-set. We can restate (1.2) by

(1.3)
$$\varphi(a) = \mathbb{P}(a \in \mathbf{H}), \quad a \in \mathcal{B}$$

where **H** has the probability mass function $g(K) = \mathbb{P}(\mathbf{H} = K)$. However, as the following example shows, such a probabilistic interpretation is no longer unique in general.

Example 1.1. Let $\mathcal{B} = \{\hat{0}, \alpha, \beta, \gamma, \alpha\beta, \alpha\gamma, \beta\gamma, \hat{1}\}$ be the Boolean algebra with $\hat{0} = \emptyset$ and $\hat{1} = \alpha\beta\gamma$, and let φ be a capacity on \mathcal{B} with $\varphi(\alpha\beta) = \varphi(\alpha\gamma) = \varphi(\beta\gamma) = \frac{1}{3}$ and $\varphi(\alpha) = \varphi(\beta) = \varphi(\gamma) = 0$; here we write $\alpha\beta$ for a subset $\{\alpha, \beta\}$. Then φ is completely monotone, and (1.1) holds for $f(\alpha\beta) = f(\alpha\gamma) = f(\beta\gamma) = \frac{1}{3}$. Let

$$\langle B \rangle = \{ a \in \mathcal{B} : b \subseteq a \text{ for some } b \in B \ \}$$

be the up-set generated by a subset B of \mathcal{B} . The probability mass function g on \mathcal{H}_0 with $g(\langle \alpha \beta \rangle) = g(\langle \alpha \gamma \rangle) = g(\langle \beta \gamma \rangle) = \frac{1}{3}$ satisfies (1.3). On the other hand, the Murofushi's greedy algorithm determines $g(\langle \hat{1} \rangle) = \frac{1}{3}$ and $g(\langle \{\alpha \beta, \alpha \gamma, \beta \gamma \} \rangle) = \frac{2}{3}$ for which (1.3) also holds.

2 Möbius functions and successive differences

Let \mathcal{P} be a finite poset. The Möbius function $\mu_{\mathcal{P}}$ is the unique function defined for every pair (a,b) such that $a \leq b$, and satisfies $\mu_{\mathcal{P}}(a,a) = 1$ and $\sum_{b \leq a} \mu_{\mathcal{P}}(b,a) = 0$ for each $a \in \mathcal{P}$. Then we have

(2.4)
$$f(a) = \sum_{b \le a} \varphi(b) \mu_{\mathcal{P}}(b, a)$$

if and only if $\varphi(a) = \sum_{b \leq a} f(b)$. Here f is called the Möbius inversion of φ .

Example 2.1. The results here and other arguments of this section are either taken from or inspired by Stanley [3]. Let \mathcal{B} be a Boolean algebra of a finite set S. For $a \subseteq b$ we obtain the Möbius function $\mu_{\mathcal{B}}(a,b) = (-1)^{|b\setminus a|}$, where $|b\setminus a|$ denotes the number of elements in the set difference $b\setminus a$.

Let $a \in \mathcal{B}$ and a nonempty subset $B \subseteq \mathcal{B}$ be fixed. Then we can introduce the subposet

$$\mathcal{P}^a_B = \{ \cap B' \cap a : B' \subseteq B \}$$

with the partial order \leq by inclusion, where

$$\cap B' = \begin{cases} \bigcap_{b \in B'} b & \text{if } B' \neq \emptyset; \\ \hat{1} & \text{if } B' = \emptyset. \end{cases}$$

In what follows we simply write \mathcal{P} for \mathcal{P}_B^a if there is no confusion with other posets in discussion. It is not difficult to see (e.g., Stanley [3]) that

$$\sum_{b \le a} \varphi(b) \mu_{\mathcal{P}}(b, a) = \sum_{B' \subseteq B} (-1)^{|B'|} \varphi(\cap B' \cap a) = \nabla_B^a \varphi$$

Here the element a is the maximum of \mathcal{P} .

Let φ be a capacity, and let f be the Möbius inversion of φ . We can argue the following interesting connection to the Möbius inversion from the successive difference ∇_B^a (or equivalently from the Möbius function μ_P). For $b \in \mathcal{P}$ we set F(b) to be the summation of f(x) over all x's satisfying $x \subseteq b$ and $x \not\subseteq b'$ for all b' < b in \mathcal{P} . Then we have

$$\sum_{b' \le b} F(b') = \sum_{x \subseteq b} f(x) = \varphi(b)$$

and therefore,

(2.5)
$$F(a) = \sum_{b < a} \varphi(b) \mu_{\mathcal{P}}(b, a) = \nabla_B^a \varphi$$

As a special case of (2.5) we obtain $f(a) = \nabla_B^a \varphi$ when $a = \{\alpha_1, \ldots, \alpha_k\}$ and $B = \{S \setminus \{\alpha_1\}, \ldots, S \setminus \{\alpha_k\}\}$. Hence we have shown the result of Choquet.

Proposition 2.2. A capacity φ is completely monotone if and only if the Möbius inversion f is nonnegative.

The Möbius inversion f of a capacity φ satisfies $f(\hat{0}) = 0$ and $\sum_{a \subseteq \hat{1}} f(a) = 1$, and it can be viewed as a probability mass function on \mathcal{B}_0 when f is nonnegative.

For any capacity φ we can define the dual capacity φ^* by $\varphi^*(a) = 1 - \varphi(\hat{1} \setminus a)$ for $a \in \mathcal{B}$. Then we can introduce the functional Δ_a^B by

(2.6)
$$\Delta_a^B \varphi = -\nabla_{R^*}^{\hat{1} \setminus a} \varphi^*$$

where $B^* = \{\hat{1} \setminus b : b \in B\}$. We can formulate it recursively by

$$\Delta_a^{b_1} \varphi = \varphi(a) - \varphi(a \cup b_1)$$

$$\Delta_a^{b_1, \dots, b_{n+1}} \varphi = \left(\Delta_a^{b_1, \dots, b_n} - \Delta_{a \cup b_{n+1}}^{b_1, \dots, b_n}\right) \varphi, \quad n = 1, 2, \dots$$

We call φ completely alternating if $\Delta_a^B \varphi \leq 0$ for any $a \in \mathcal{B}$ and any nonempty subset $B \subseteq \mathcal{B}$. It is clear from (2.6) that φ is completely alternating if and only if φ^* is completely monotone. By Proposition 2.2 we can see that if φ is completely alternating then a \mathcal{B}_0 -valued random variable X satisfies

(2.7)
$$\varphi(a) = \mathbb{P}(X \cap a \neq \hat{0}) = \sum_{b \cap a \neq \hat{0}} f^*(b)$$

where $f^*(b) = \mathbb{P}(X = b)$ is the Möbius inversion of φ^* .

3 An extension of probabilistic interpretation

We introduce a partial order \leq on the class \mathcal{H} of nonempty up-sets H as follows: For $K, H \in \mathcal{H}$ we define $K \leq H$ if and only if $K \supseteq H$. Recall that a subset A of \mathcal{B} is an antichain if none of pairs of A are comparable. We can obtain the Möbius function on \mathcal{H} as follows; see Stanley [3]. For $K \leq H$ we have

$$\mu_{\mathcal{H}}(K,H) = \begin{cases} (-1)^{|K\backslash H|} & \text{if } K \setminus H \text{ is an antichain;} \\ 0 & \text{otherwise.} \end{cases}$$

Let φ be a capacity. A nonempty up-set H is called *feasible* with respect to φ if $\Delta_{b\cap b'}^{\{b,b'\}}\varphi < 0$ for every pair (b,b') of H satisfying $b\cap b' \notin H$.

Definition 3.1. If a nonempty up-set H is not feasible, we can find a feasible up-set $K \leq H$ greedily. First, set K = H, and repeat the following steps until K becomes feasible.

- 1. Choose a pair (b, b') of K such that $b \cap b' \notin K$ and $\Delta_{b \cap b'}^{\{b, b'\}} \varphi \geq 0$.
- 2. Set $K = \langle b \cap b' \rangle \cup K$. Here $\langle b \rangle = \{a \in \mathcal{B} : b \subseteq a\}$ is the up-set generated by $b \in \mathcal{B}$. Thus, $\langle b \cap b' \rangle \cup K$ is also an up-set.

Lemma 3.2. For any nonempty up-set H Definition 3.1 generates the maximum feasible up-set K (in the poset H) satisfying $K \leq H$.

Let H° denote the antichain of all the minimal elements of the unique feasible up-set $K \leq H$ generated via Definition 3.1. For $H \in \mathcal{H}$ we define $\Phi(H) = -\Delta_{\hat{0}}^{H^{\circ}} \varphi$, and introduce the Möbius inversion g of Φ by

(3.8)
$$g(H) = \sum_{K \prec H} \Phi(K) \mu_{\mathcal{H}}(K, H)$$

If g is nonnegative then the probability mass function $\mathbb{P}(\mathbf{H} = K) = g(K)$ on \mathcal{H}_0 satisfies

(3.9)
$$\mathbb{P}(a, b \in \mathbf{H}) = \varphi(a \cap b) - [\Delta_{a \cap b}^{a,b} \varphi]_{-} \quad \text{for } a, b \in \mathcal{B}_0,$$
where $[x]_{-} = \min\{x, 0\}.$

Theorem 3.3. If an \mathcal{H}_0 -valued random up-set \mathbf{H} satisfies (3.9) with some capacity φ then the Möbius inversion g in (3.8) is nonnegative and uniquely determines the probability mass function of \mathbf{H} .

If φ is completely monotone and satisfies (1.1) with some \mathcal{B}_0 -valued random variable, then $\mathbf{H} = \langle X \rangle$ satisfies (3.9). If φ is completely alternating and satisfies (2.7) then $\mathbf{H} = \{a \in \mathcal{B} : X \cap a \neq \emptyset\}$ satisfies (3.9). Theorem 3.3 indicates that the random up-set \mathbf{H} can be directly constructed via (3.8).

Theorem 3.3 also implies that there is a class of capacities capable of characterizing **H** uniquely in a way to extend Choquet theorem. Due to the nature of our research in progress we omit the proofs for Lemma 3.2 and Theorem 3.3.

References

- [1] Choquet, G. (1954). Theory of capacities. Annales de l'institut Fourier 5, 131-295.
- [2] Murofushi, T. (1987). Two Approaches to Fuzzy Measure Theory. Ph.D. dissertation, Tokyo Institute of Technology.
- [3] Stanley, R. P. (1997). *Enumerative Combinatorics*. Volume 1. Cambridge University Press, Cambridge.