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Abstract. In this article, we first consider new classes of nonlinear mappings containing the
class of firmly nonexpansive mappings which can be deduced from an equilibrium problem in
a Hilbert space. Further, we deal with fixed point theorems and ergodic theorems for these
nonlinear mappings.

1 Introduction

Let H be a real Hilbert space and let C be a nonempty closed convex subset of H. Then a
mapping T : C — H is said to be nonexpansive if || Tz — Ty|| < ||z — y|| for all z,y € C. We
know that if C is a bounded closed convex subset of H and T : C — C is nonexpansive, then
the set F(T) of fixed points of T is nonempty. Further, from Baillon [1] we know the first
nonlinear ergodic theorem in a Hilbert space: Let C be a nonempty bounded closed convex
subset of H and let T : C — C be nonexpansive. Then, for any « € C,

1 n—1
Sn:L' = '7; kZHOTk.’E

converges weakly to an element 2 € F(T). An important example of nonexpansive mappings
in a Hilbert space is a firmly nonexpansive mapping. A mapping T is said to be firmly
nonexpansive if

|Tz — Ty|> < (z —y, Tz — Ty), Vz,ye€C;

see, for instance, Goebel and Kirk [8]. It is also known that a firmly nonexpansive mapping
T can be deduced from an equilibrium problem in a Hilbert space as follows: Let C be a
nonempty closed convex subset of H and let f : C x C — R be a bifunction satisfying the
following conditions:

(A1) f(z,z) =0, VzeC;

(A2) f is monotone, i.e., f(z,y) + f(y,z) <0, Vz,ye€ C;

(A3) limyjo f(tz+ (1 —t)z,y) < f(z,y), Vz,y,z€C;

(A4) for each z € C, y — f(x,y) is convex and lower semicontinuous.

We know the following lemma; see, for instance, [2] and [7].
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Lemma 1.1. Let C be a nonempty closed convex subset of H and let f be a bifunction from
C x C into R satisfying (A1), (A2), (A3) and (A4). Then, for any r > 0 and x € H, there
exists z € C such that

1
f(Z,y)"{_;(y—‘Z,Z—ID)ZO, VyEC

Further, if Trx = {z € C : f(z,y) + Xy — 2,2 — ) > 0, Yy € C} for all x € H, then the
following hold:

(1) T, is single-valued;
(2) T, is firmly nonezpansive, i.e.,

| Tz — Try||? < (Trz — Try,z — y), Va,y € H.

Recently, Kohsaka and Takahashi [12] introduced the following nonlinear mapping: Let E
be a smooth, strictly convex and reflexive Banach space, let J be the duality mapping of E
and let C be a nonempty closed convex subset of E. Then, a mapping S : C — E is said to
be nonspreading if

¢(Sz, Sy) + ¢(Sy, Sz) < ¢(Sz,y) + ¢(Sy,z), Vz,ye€ C,

where ¢(z,y) = ||z||2 — 2(z, Jy) + ||y||? for all z,y € E. They considered such a mapping to
study the resolvents of a maximal monotone operator in the Banach space. In the case when
E is a Hilbert space, we know that ¢(z,y) = ||z — y“2 for all z,y € FE. So, a nonspreading
mapping S in a Hilbert space is defined as follows:

2\1Sz — Sy|I> < 1Sz — y||* + ||Sy — z||>, Vz,y€C.

On the other hand, Takahashi [29] found another new nonlinear mapping called a hybrid
mapping which is also deduced from a firmly nonexpansive mapping.

In this paper, we first discuss new classes of nonlinear mappings containing the class of
firmly nonexpansive mappings which can be deduced from a firmly nonexpansive mapping in
a Hilbert space. Further, we deal with fixed point theorems and ergodic theorems for these
nonlinear mappings.

2 Preliminaries

Throughout this paper, we denote by N the set of positive integers and by R the set of real
numbers. Let H be a real Hilbert space with inner product (-,-) and norm || - ||, respectively.
In a Hilbert space, it is known that for all z,y € H and «a € R,

2 2 2
oz + (1 - yll* = allzli® + (1 — o) |yll* - (1 - a) |l — yI|*; (2.1)
see, for instance, [28]. Further, in a Hilbert space, we have that for all z,y, z,w € H,
Az —y,z —w) = llz —w|® + |ly — 2l1> - Iz — z||> - |ly — wl)*. (2.2)

Let C be a nonempty subset of H and let T' be a mapping of C into H. We denote by F(T)
the set of all fixed points of T', that is, F(T) = {z € C : Tz = z}. We denote the strong
convergence and the weak convergence of {z,} to z € H by z,, — z and =, — z, respectively.
The following lemma. is in [20].



Lemma 2.1. Let C be a nonempty closed convex subset of H and let f : C — (—o0,00] be
a proper conver lower semicontinuous function such that f(zm,) — oo as |zml| — co. Then
there exists an element zy € C such that

f(20) = min{f(z) : 2 € C}.

Let N be the set of positive integers and let {°° be the Banach space of bounded sequences
with supremum norm. Let u be an element of (I%°)* (the dual space of [*°). Then, we denote
by pu(f) the value of p at f = (21, 22, 3, . .. ) € I°°. Sometimes, we denote by tn(Zr) the value
#(f). A linear functional 4 on [* is called a mean if p(e) = |lull = 1, where e = (1,1,1,...).
A mean p is called a Banach limit on 1°° if y, (Tn+1) = pn(zn). We know that there exists a
Banach limit on [°°; see [20] for more details.

3 Nonlinear Mappings

Let H be a Hilbert space. Let C be a nonempty closed convex subset of H and let T be a
mapping of C' into H. Then, from [29], we have the following equality:

1Tz = Tyll* = |z — y ~ (Tz — Ty)|I* - |z — y|® + 2(z — y, Tz — Ty) (3.1)
for all z,y € C. We have also from (2.2) that
2z ~y, Tz — Ty) = ||z — Ty||® + |ly — Tz||® - ]z — Tz||? — ||ly — Ty|2. (3.2)
Further, we have that
Iz —y = (Tz = Ty)II* = llz ~ Tz||* + lly - Tyl — 2(z — T2,y — Ty). (3:3)
IfT:C— H is firmly nonexpansive, then |
ITz — Ty||® < (x —y, Tz — Ty), Vz,ycC.
So, we have from (3.1) that for all z,y € C,
2Tz - Ty|* < 2(z — y, Tz — Ty)
=Tz~ Tyl* - [lz —y — (Tz — Ty)||* + ||z — y|?
< Tz - Tyl + |z — yl|°.

Then, we have [Tz — Ty||? < ||z — y||? and hence ||Tz — Ty|| < ||z — y||. Such a mapping is
nonexpansive. We know that 7' : C — H is nonexpansive if and only if

2Tz = Tyl* < lle = Tyll® + lly — Ts|* - 2(z — Tz,y ~ Ty), Vz,y € C;

see [29]. Thus, we can get new classes of nonlinear operators which contain the class of firmly
nonexpansive mappings in a Hilbert space. For example, Kohsaka and Takahahi [12] obtained
a nonspreading mapping. Let T : C — H be a firmly nonexpansive mapping. Then, we have
that for all z,y € C,

2Tz - Ty||* < 2(x — y, Tz — Ty).
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From (3.2), we obtain
2Tz — Tyl? < llz — Tyl + ly — Tz|® — |z — Tz||” - lly - Tyl)?
< lle — Tyl + lly — Tz
So, we have
2Tz — Tyl|? < lle — Tyl + lly — Tz||>.

This is a nonspreading mapping. From Iemoto and Takahashi [10], we know the following
lemma.

Lemma 3.1. Let C be a nonempty closed conver subset of H. Then a mapping S : C — H
is nonspreading if and only if

ISz — Sy||* < ll& — ylI* + 2(z — Sz,y — Sy)
forall z,y € C.
Further, from a firmly nonexpansive mapping, i.e.,
Tz — Tyl|* < (Tz — Ty,z —y), Vz,y€C,

we have
| Tz — Ty||2 <2(Tzx -Ty,z—vy), Vz,yeC.

Such a mapping T : C — H is called %—inverse strongly monotone. Takahashi [29] also defined
the following hybrid mapping, i.e.,

31Tz — Tyl < llz — yll* + lly — Tzl* + llz - Ty||*, Vz,y€C.

From Takahashi [29], we know the following lemma.

Lemma 3.2. Let H be a Hilbert space and let C be a nonempty closed conver subset of H.
" Then a mapping T : C — H is hybrid if and only if

Tz — Tyl|? < ||z — y||* + (z — Tz,y — Ty), Vz,yeC.

So, a hybrid mapping T : C — H is different from a nonspreading mapping. Further, we
define a new nonlinear operator from a firmly nonexpansive mapping. We have that for any
z,y € C,

2| Tz—Ty||* < 2(z — y, Tz — Ty)
= |ITz — Ty)|? + |1 T<|l? + | Ty|1? — 2(Te, Ty) < 2z — y, Tz — Ty)
= ||Tz — Ty||? — 2(Tz,Ty) < 2{(x —y,Tx — Ty)
< ||Tz — Tyl|® < 2(Tz,Ty) +2(z — y, Tz — Ty).

So, we can define a new mapping called a metric mapping, i.e.,

Tz — Ty||* < 2(Tz,Ty) + 2(x —y, Tz — Ty), Vz,yeC.



181

Let T: C — H be a nonexpansive mapping and put A = I —T. Then, we have from (28] that
A is 1/2-inverse strongly monotone, i.e.,

% |Az — Ay||®> < (z — y, Az — Ay), Vz,y € C.

Let T': C — H be a nonspreading mapping and put A = I — 7. Then, we have from Lemma
3.1 and (3.1) that for any z,y € C,

Az — Ay||* = ]z — y — (Az — AY)||® — ||z — y® + 2(z — y, Az — Ay)
= 1Tz — Ty|* - [l — yl|* + 2(z — y, Az — Ay)
< lle = ylI? + 2(z — Tz,y — Ty) — |l — yl|I> + 2(z — y, Az — Ay)
= 2(Azx, Ay) + 2(z — y, Az — Ay).

This implies that A is a metric mapping.

4 Generalized Fixed Point Theorem and its Applications

In this section, we obtain a generalized fixed point theorem in a Hilbert space. Before
proving the theorem, we can obtain the following lemma from Lemma 2.1.

Lemma 4.1. Let C be a nonempty closed convez subset of a Hilbert space H, let {zn} be a
bounded sequence in H and let u be a Banach limit. If g: C — R is defined by

9(2) = pnllzn — 2|2, VzeC,
then there exists a unique zg € C such that
9(20) = min{g(2) : z € C}.

Using Lemma 4.1, we can prove the following generalized fixed point theorem [31].

Theorem 4.2. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and
let T be a mapping of C into itself. Suppose that there exists an element x € C such that
{T™x} is bounded and

pnllT e — Ty||* < pnl|T™z — y||?, VyeC

for some Banach limit yu. Then, T has a fized point in C.

Proof. Using a Banach limit 4 on {*°, we can define g : C' — R as follows:
9(2) = pn||T"z — z||?, VzeC.
From Lemma 4.1, there exists a unique 2y € C such that
9(z0) = min{g(z) : z € C}.

So, we have
9(T20) = pnllT"z — T20||? < pnl|T™z — 20|* = g(20).
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Since T'zg is in C and zg € C is a unique element such that
9(20) = min{g(z) : z € C},
we have Tzg = 2zg. This completes the proof. O

Using Theorem 4.2, we can obtain some fixed point theorems. The following is the well-
known fixed point theorem for nonexpansive mappings in a Hilbert space; see, for instance,
[28].

Theorem 4.3. Let H be a Hilbert space and let C be a nonempty closed conver subset of H.
Let T : C — C be a nonexpansive mapping, i.e.,

ITz — Tyl| < |z —yll, VYz,yeC.

Suppose that there exists an element © € C such that {T"z} is bounded. Then, T has a fized
point in C.

Proof. Let pu be a Banach limit on [°°. For any n € N and y € C, we have
1Tz — Ty||? < || Tz — y|1*.

So, we have
pnllTz — Ty||? = pnl|T 'z — Ty||? < pal|T™z — y||?

for all y € C. By Theorem 4.2, T has a fixed point in C. O
The following is a fixed point theorem for nonspreading mappings in a Hilbert space.

Theorem 4.4 ([12]). Let H be a Hilbert space and let C be a nonempty closed conver subset
of H. Let T : C — C be a nonspreading mapping, i.e.,

2Tz — Ty||® < [Tz — yl|® + | Ty — z||?, Vx,yeC.

Suppose that there exists an element x € C such that {T™xz} is bounded. Then, T has a fized
point in C.

Proof. Let p be a Banach limit on {*°. For any n € N and y € C, we have
20T e — Ty|? < |IT™ e — y|® + IT "z — Tyl
So, we have
2un||IT 2 — Ty||* = 2pn || T 2 — Tyl
< pnll Tz — yl|? + pn| Tz — Tyl|?
= pnlT"z — y|I? + pnl| T2 — Ty||?

and hence
pnl| Tz — Ty|* < pal|T™z — y||2.

By Theorem 4.2, T has a fixed point in C. a
The following is a fixed point theorem for hybrid mappings in a Hilbert space.
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Theorem 4.5 ([29]). Let H be a Hilbert space and let C' be a nonempty closed convex subset
of H. Let T : C — C be a hybrid mapping, i.e.,

”113 - Tyllz < “:E - y”2 + <$ - T"E’y - Ty>, Va:,y €C.

Suppose that there exists an element x € C such that {T"z} is bounded. Then, T has a fived
point in C.

Proof. Let p1 be a Banach limit on {*°. We know from Lemma 3.2 that a mapping T : C — C
is hybrid if and only if

31Tz — Tyl* < llz ~ yl® + Tz — y|* + |Ty - =?, Vz,yeC.
So, for any n € N and y € C, we have
BTz — Ty|? < 1Tz — ylI* + |77 e — y||? + | Tz — Ty
So, we have
BunllT"z — Ty||? = 3un (T 'z — Ty|?
< 2un|[ T2 — yll* + pall Tz — Ty||?

and hence
pnl| Tz — Ty||* < pa || Tz — y|2.

By Theorem 4.2, T has a fixed point in C. O
We can also prove the following two fixed point theorems in a Hilbert space.

Theorem 4.6. Let H be a Hilbert space and let C be a nonempty closed convexr subset of H.
Let T : C — C be a mapping such that

20Tz - Tyl* < |z — ylI*> + | Tz — y||?, Vz,yecC.

Suppose that there ezists an element x € C' such that {T™z} is bounded. Then, T has a fized
point in C.

Proof. Let p be a Banach limit on [*°. For any n € N and y € C, we have
21T e — Ty||” < Tz — y)? + T2 — y||%.
So, we have

2unl|Tz — Ty||? = 2un || T @ — Ty|?
< 24| Tz — y)|?

and hence
pallTe — Ty||® < pall Tz — y||2.

By Theorem 4.2, T has a fixed point in C. O
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Theorem 4.7. Let H be a Hilbert space and let C be a nonempty closed convex subset of H.
Let T : C — C be a mapping such that

3| Tz — Tyl < 2Tz — y||* + ITy — z|?, Vz,yeC.
Suppose that there exists an element x € C such that {T"x} is bounded. Then, T has a fived
point in C.
Proof. Let p be a Banach limit on {*°. For any n € N and y € C, we have

31T e - Tyll* < 20Tz — yl|? + |7z — Ty[|>.

So, we have
Bun||T"z — Tyl < 2pn||T"x — y||? + pnl| Tz — Ty||?

and hence
pall Tz — Ty|* < pallT "z — yl|?.

By Theorem 4.2, T has a fixed point in C. O
We also know the following theorem by Ray [15].

Theorem 4.8. Let H be a Hilbert space and let C be a nonempty closed convex subset of H.
Then, the following are equivalent:

(i) Every nonexpansive mapping of C into itself has a fized point in C;
(it) C is bounded.

Using Ray’s theorem, we can prove the following theorem [29].

Theorem 4.9. Let H be a Hilbert space and let C be a nonempty closed conver subset of H.
Then, the following are equivalent:

(i) Every hybrid mapping of C into itself has a fized point in C;
(ii) C is bounded.

Proof. From Theorem 4.5, we know that (ii) implies (i). Let us show that (i) implies (ii). We
know that every firmly nonexpansive mapping is a hybrid mapping. So, the class of hybrid
mappings of C into itself contains the class of firmly nonexpansive mappings of C into itself.
To show (i) == (ii), it is sufficient to show that if every firmly nonexpansive mapping in C
into itself has a fixed point in C, then every nonexpansive mapping of C into itself has a fixed
point in C. Let T be a nonexpansive mapping of C into itself. Then, S = %I + %T is a firmly
nonexpansive mapping. Further, it is not difficult to show F(T) = F(S). So, every firmly
nonexpansive mapping in C into itself has a fixed point in C if and only if every nonexpansive
mapping of C into itself has a fixed point in C. This completes the proof. O

Similarly, we have the following theorem.

Theorem 4.10. Let H be a Hilbert space and let C be a nonempty closed convexr subset of
H. Then, the following are equivalent:

(i) Every nonspreading mapping of C into itself has a fized point in C;
(ii) C is bounded.
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5 Nonlinear Erdodic Theorems
Baillon [1] proved the first nonlinear ergodic theorem for nonexpansive mappings in a Hilbert
space.

Theorem 5.1. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and
let T be a nonezpansive mapping of C into itself such that F(T) is nonempty. Then, for any

rzel,
1n—1
_ - k
a:-nZTa:
k=0

converges weakly to an element z € F(T).

We can also prove the following nonlinear ergodic theorem [31] for our nonlinear operators
in a Hilbert space. Before proving it, we need, for example, the following result [31].

Lemma 5.2. Let H be a Hilbert space and let C be a nonempty closed convex subset of H.
Let T : C — C be a mapping such that

2Tz - Tyl® < llz — yl? + | Tz — |, Va,yeC.

Then T is demiclosed, i.e., z, = u and z, — Tz, — 0 imply u € F(T).

Proof. Let {z,} C C be a sequence such that x, — u and z,, — Tz, — 0 as n — oo. Then
the sequences {z,} and {Tz,} are bounded. Suppose that u # Tw. From Opial’s theorem
[14], we have

liminf ||z, — u||® < liminf ||z, — Tul|?
n—oo n—oo
= liminf |z, — Txy, + Tz, — Tul®
n—oco
= liminf [Tz, — Tul’?
n—oo

1
< linnlinf —(||:rn —ul® + [Tz, — ul)?)

= hm mf (||mn —ul]® + | Tzp — Tp + Tn — ul|?)

= lim inf Hwn —uf)?
n—oo

This is a contradiction. Hence we get the conclusion. O

Theorem 5.3. Let H be a Hilbert space, let C be a nonempty closed convex subset of H and
let T' be a mapping of C into itself such that F(T) is nonempty. Suppose that T satisfies one
of the following conditions:

(i) T is nonspreading;

(ii) T is hybrid;
(ii) 2| Tz — Ty||? < ||z ~ y||*> + |Tz - y||?, Vz,ye€C;
(i) 3Tz — Ty||* < 2||ITx — y||? + || Ty — z||?, Vz,yeC.
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Then, for any xz € C,
1 n—1
Sp,x = -~ Z Tkz
k=0
converges weakly to an element z € F(T).

Proof. Let us prove the case of (iii) by using Lemma 5.2. We first show that F(T) is closed
and convex. It follows from Lemma 5.2 that F(T) is closed. In fact, let {x,} C F(T) and
T, — z. Then, we have £, — 2z and z,, — Tz, = 0. So, from Lemma 5.2 we have z = Tz.
This implies that F'(T) is closed. Let us show that F(T') is convex. Let z,y € F(T) and let
a € [0,1]. Put z = az + (1 — a)y. Then, we have from (2.1) that
lz = T2||* = laz + (1 — @)y — Tz||?
= allz = T2|* + (1 - a)|ly — Tz||* - a1 - a)ljz - y|?
=a|Tz — T2|? + (1 = )Ty - T2|* - a(1 - o)z — y||?
<a(l-a)’llz~yl? + (1 - a)o®|lz - y|I* — (1 — a)|lz — y|)?
=a(l-a)(l —a+a-1)|z—y|?
=0.
So, we have Tz = 2. This implies that F(T) is convex. Let £ € C and let P be the metric
projection of H onto F(T"). Then, we have

|PT"z — T"z|| < ||PT™ 'z — T"x||
= ||TPT™ 'z — T"z||
<|\PT" 'z —T" 'z|.
This implies that {||PT™z — T™z||} is nonincreasing. We also know that for any v € C and

u e F(T),
(v—Pv,Pv—u)>0

and hence
lv — Pv||® < (v — Pv,v —u).

So, we get
|Pv —u||? = ||Pv— v +v—ul?
= ||Pv — v||2 — 2(Pv — v,u — v) + ||v — ul|?
< v —ull? = | Po — ]|
Let m,n € N with m > n. Putting v = T™z and u = PT"z, we have
|PT™z — PT"z|?> < |T™z — PT"z||? — |PT™z — T™z||?
<|IT"z — PT"z|? — |PT™z — T™z|.

So, {PT"z} is a Cauchy sequence. Since F(T) is closed, {PT"z} converges strongly to an
element p of F(T). Take u € F(T). Then we obtain that for any n € N,

1 n—1
[Snz —ull < ~ DT z —ufl < |z — .
k=0
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So, {Sn,x} is bounded and hence there exists a weakly convergent subsequence {Sn,z} of
{Snz}. If Sy, — v, then we have v € F(T). In fact, for any y € C and k € NU {0}, we have
that

2T e —Ty|? < ||T*z — y||> + | TF+'z — y||?
= T*z — Ty||®> + 2(T*z — Ty, Ty — y) + | Ty — y||?
+ | T* e — Ty||? + 2(T e — Ty, Ty — y) + || Ty ~ yl2.
So, we obtain that
IT** 'z — Ty||? < ||T*z — Ty||* + 2(T*z — Ty, Ty — y)
+ 2Tz — Ty, Ty — y) + 2| Ty — y|°.

Summing these inequalities with respect to k = 0,1,...,n — 1, we have
n—1
1T 2 — Ty||* < ||lo — Tyl® + 20} T*z — nTy, Ty — y)
k=0
n—1
+2(d  T*z — nTy, Ty — y) + 2n||Ty — y||?
k=0
n—1
=lle = Tyl* + 4> _ T*z — nTy, Ty — y)
k=0

+2(T"z — , Ty — y) + 2n[|Ty — y|I°.
Deviding this inequality by n, we have

1
~|T"z — Ty|l? < =|lz — Tyl||* + 4(Spz — Ty, Ty — y)

SINI |+

+ =(T"z -, Ty — y) + 2Ty — yl1?,

where S,z = % Zz;é T*z. Replacing n by n; and letting n; — oo, we obtain from Sn,x —v
that

0<2||Ty —ylI* + 4(v — Ty, Ty — y).
Putting y = v, we have 0 < 2||Tv — v||2 + 4(v — Tv, Tv — v) and hence
0 < ||Tv —v||® +2(v — Tv, Tv — v).

So, we have 0 < —||Tv — v||? and hence Tv = v. To complete the proof of (iii), it is sufficient
to show that if S,z — v and p = lim, . PT™z, then v = p. We have that for any v € F(T),

(T*z — PT*z, PT*z — u) > 0.
Since {||T*z — PT*z||} is nonincreasing, we have
| (u —p,T*z — PT*z) < (PT*z — p, T*x — PT*z)
< ||PT*z — p|| - |T*z — PT*x||
< |PT*z - p|| - [l — Pa||.
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Adding these inequalities from k£ = 0 to kK = n — 1 and dividing n, we have

7 — P.’E” n—1

n—1
1 | -
(u—p,Snz — ;ZPT}CH?) < I_n——ZHPIkW—P“-
k=0 k=0

Since Sp,x — v and PTkz — p, we have
(u—p,v—p) <0.

We know v € F(T). So, putting u = v, we have (v — p,v — p) < 0 and hence ||v — p||? < 0.
So, we obtain v = p. This completes the proof of (iii). See [31] for the proofs of (1), (ii) and
(iv). O
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