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Abstract

In this note, we show that the theorems in Z. Balogh [2] proved there
under Axiom $R$ are already provable under Fodor-type Reflection Princi-
ple (FRP) introduced in [9] or under a slight extension of FRP still much
weaker than Axiom R.

1 Introduction

The purpose of this note is to show that the theorems in [2] proved there under
Axiom $R$ are already provable under Fodor-type Reflection Principle (FRP)
introduced in [9] or a slight extension of it still much weaker than Axiom R.

In Section 2, we begin with checking the proof of a slight extension of Dow’s
theorem mentioned in [2]. This is used in Section 3 to show that Balogh’s
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theorem on reflection of metrizability (Theorem 2.2 in [2]) is a consequence of
the reflection theorem on metrizability proved under FRP by Fuchino, Juh\’asz,
Soukup, Szentmik16ssy and Usuba (Theorem 4.3 in [9]).

In Section 4, we prove that Balogh’s reflection theorem on paracompactness
$($ Theorem 1.6 in $[$ 2 $])$ holds under FRP.

In Section 5, we consider another reflection theorem on paracompactness by
Balogh (Theorem 1.4 in [2]) for which we need a slight strengthening of FRP
which is provable from Axiom R. The status of the axiom we use here is still
largely unknown (see Problems 2, 3) except that it is still much weaker than
Axiom R.

In the following, we consider the topology of a space $X$ as given either by an
open base $\tau$ of $X$ or by the family $\mathcal{O}$ of all open sets of $X$ . We write $X=(X, \tau)$

or $X=(X, \mathcal{O})$ . If $\mathcal{O}$ is generated from the open base $\tau$ we write $\mathcal{O}=\mathcal{O}_{\tau}$ .

The approach $X=(X, \tau)$ with an open base $\tau$ is convenient in connection
with the method of elementary submodels. This is because, for an open basis $\tau$

of a topological space $X,$ $\tau\cap M$ is also an open basis of $X\cap M$ for an elementary
submodel $M$ of $\mathcal{H}(\theta)$ for a sufficiently large cardinal $\theta$ with $(X, \tau)\in M$ while
$\mathcal{O}\cap M$ for such $M$ does not build in general the set of all open sets of a topology
on $X\cap M$ .

Here, we call a cardinal $\theta$ sufficiently large if it is regular and $2^{|X|},$ $2^{2^{|X|}}$ ,
. . . $<\theta$ for all (small) sets $X$ relevant in the context following the declaration
of $\theta$ being “sufficiently large”

A set $M$ of cardinality $\aleph_{1}$ is internally approachable if $M$ is the union of a
continuously increasing chain $\langle M_{\alpha}$ : $\alpha<\omega_{1}\}$ of countable subsets of $M$ such
that $M_{\alpha}\in M_{\alpha+1}$ for all $\alpha<\omega_{1}$ . If we consider $M$ as an $\in$-structure, we assume
also that each $M_{\alpha}$ is an elementary submodel of $M=\langle M,$ $\in\}$ . For an internally
approachable $M$ , the sequence $\langle M_{\alpha}$ : $\alpha<\omega_{1}\}$ as above is called intemally
approachable filtration of $M$ .

A set $M$ is $\omega$ -bounding if $[M]^{\aleph_{0}}\cap M$ is cofinal in $[M]^{\aleph_{0}}$ with respect to $\subseteq$ . For
a regular uncountable $\theta$ any internally approachable $M\prec \mathcal{H}(\theta)$ is $\omega$-bounding.
It follows that there are cofinally may $\omega$-bounding $M\prec \mathcal{H}(\theta)$ of cardinality $\aleph_{1}$ .

A space is said to be (countably) compact here if it is Hausdorff and satisfies
the usual (countably) compactness condition. So a compact space is normal.
Note also that

(1.1) a first countable and countably compact space is regular.

Following the definition in Engelking [6], a Lindel\"of space is a regular topo-
logical space $X$ with the Lindel\"of property:
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every open cover of $X$ has a countable subcover.

Similarly to the case of compact spaces, Lindel\"of spaces are normal ([6, Theorem
3.8.2] $)$ .

For a property $P$ of a topological space and a cardinal $\kappa$ , we say that a given
topological space $X$ is $\leq\kappa- P$ ( $<\kappa- P$ , respectively) if every subspace $Y$ of $X$ of
cardinality $\leq\kappa$ ( $<\kappa$ , respectively) has the property $P$ . In this notation, we
shall always put (

$\leq$ or (
$<$ to the cardinal $\kappa$ since very often $((\kappa P$” or $((\kappa- P$”

is already used for some other notions (this is e.g. the case with (
$(\aleph_{1}$ meta-

Lindel\"of’’ $)$ . $X$ is said to be almost $P$ if $X$ is $<|X|- P$ , that is, if every subspace
of $X$ of cardinality $<|X|$ has the property $P$ .

The following notation and the lemma have been introduced in [9].
For a family $\mathcal{F}$ of sets, let $\sim \mathcal{F}$ be the intersection relation on $\mathcal{F}$ , i.e. let $F\sim \mathcal{F}$

$G$ if and only if $F\cap G\neq\emptyset$ for $F,$ $G\in \mathcal{F}$ , and let $\approx \mathcal{F}$ be the transitive closure
of $\sim \mathcal{F}$ . An argument in elementary cardinal arithmetic shows the following:

Lemma 1.1. Let $\mu$ be an uncountable regular cardinal and $\mathcal{F}$ a family of sets
such that, for all $F\in \mathcal{F}_{f}$ we have $|\{G\in \mathcal{F}$ : $F\sim \mathcal{F}G\}|<\mu$ . Then every
equivalence class $of\approx \mathcal{F}$ has cardinality $<\mu$ . $\square$

2 Dow’s theorem

A. Dow [4] proved (in ZFC) that every countably compact $\leq\aleph_{1}$ -metrizable
space is metrizable. Z. Balogh [1] noted that practically the same proof of
Dow’s theorem as stated in [4] shows that every countably compact $\leq\aleph_{1^{-}}P$

space is metrizable where $P$ here is the property: there exists a point countable
base. In this section we will check the details of the proof of this assertion
$($Theorem 2.8 $)$ .

Dow gives an elegant proof of the following Proposition as an application of
the method of elementary submodels (see [4, Proposition 3.2]).

Proposition 2.1 (Juh\’asz [11]). For any space $X$ if every subspace of $X$ of
cardinality $\leq\aleph_{1}$ has countable weight then $X$ itself has countable weight. $\square$

Bing metrization theorem implies the following.

Lemma 2.2. A countably compact space $X$ is metrizable if and only if $X$ has
countable weight. $\square$

The following is trivial.
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Lemma 2.3. For a space $X$ and $Y\subseteq X,$ $w(X)\leq\kappa$ for a cardinal $\kappa$ implies
$w(Y)\leq\kappa$ . $\square$

Lemma 2.4. Suppose that $X=(X,$ $\tau),$ $Y\subseteq X$ and $x\in Y.$ If $X$ is regular at
$x$ and $\mathcal{B}$ is a neighborhood base for $x$ in (the subspace topology of) $Y$ , then $\mathcal{B}$

is a neighborhood base for $x$ in $\overline{Y}$ as well. Thus, for such $x$ , we have $\chi(x,$ $Y)=$

$\chi(x, \overline{Y})$ .

Proof. Suppose that $0\in \mathcal{O}_{\tau}$ with $y\in O$ . We have to show that there is $U\in \mathcal{B}$

such that $U\cap\overline{Y}\subseteq O\cap\overline{Y}$.
Now, since $X$ is regular at $x$ , there is $0’\in \mathcal{O}_{\tau}$ such that $y\in O$ ’ and $\overline{O}‘\subseteq 0$ .

Let $U\in \mathcal{B}$ be such that $U\cap Y\subseteq O’\cap Y$ . Then we have

$U\cap\overline{Y}\subseteq\overline{U}\cap\overline{Y}=\overline{U\cap Y}\subseteq\overline{O’\cap Y}=\overline{O’}\cap\overline{Y}\subseteq O\cap\overline{Y}$.

This shows that $\mathcal{B}$ is also a neighborhood base of $x$ in Y. $\chi(x, Y)=\chi(x,\overline{Y})$

follows from this by Lemma 2.3. $\square$ (Lemma 2.4)

Lemma 2.5 (Proposition 2.3 in [4]). If a space $X=(X, \tau)$ has a point countable
base then, for a sufficiently large $\theta$ and $M\prec \mathcal{H}(\theta)$ with $\langle$X, $\tau\rangle\in M,$ $\tau\cap M$ is
a base for (each point of) $\overline{X\cap M}$ .

Proof. Suppose that $X=(X, \tau),$ $\theta$ and $M$ are as above. By elementarity, there
is a point countable base $\mathcal{B}$ of $X$ with $\mathcal{B}\in M$ .

Suppose that

(2.1) $x\in\overline{X\cap M}$

and $B_{0}\in \mathcal{B}$ is a neighborhood of $x$ . Let $O_{0}\in\tau$ and $C_{0}\in \mathcal{B}$ be such that
$x\in C_{0}\subseteq O_{0}\subseteq B_{0}$ . By $($ 2.1), there is $y\in C_{0}\cap(X\cap M)=C_{0}\cap M$ . Since
there are only countably many $B\in \mathcal{B}$ with $y\in B$ , all such $B$ ’s are in $M$ . In
particular, we have $C_{0},$ $B_{0}\in M$ .

Again by elementarity, we have $M\models\exists O\in\tau(C_{0}\subseteq O\subseteq B_{0})$ . Hence there
is an $O_{1}\in\tau\cap M$ such that $x\in C_{0}\subseteq O_{1}\subseteq B_{0}$ . This shows that $\tau\cap M$ is a
local base for $x$ . $\square$ $($ Lemma 2.5 $)$

Lemma 2.6 $($ Proposition 2.4 in $[$4$])$ . Suppose that $X=(X,$ $\tau)$ is a countably
compact space. If $M\prec \mathcal{H}(\theta)$ is countable with $\langle$ X, $\tau\rangle\in M$ and $\tau\cap M$ is not a
base for $(X, \tau)$ then there is $z\in\overline{X\cap M}$ such that $\tau\cap M$ is not a base at $z$ .

Proof. If $\overline{X\cap M}=X$ then the assertion is just trivial. So assume that there
is $x\in X\backslash \overline{X\cap M}$. Suppose, toward a contradiction, that $\tau\cap M$ is a base at
each $z\in\overline{X\cap M}$ . Then we can choose $O_{z}\in\tau\cap M$ such that $z\in O_{z}$ and
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(2.2) $x\not\in O_{z}$

for each $z\in\overline{X\cap M}$ . Since $\overline{X\cap M}$ is countably compact and $\{O_{z}$ : $z\in$

$\overline{X\cap M}\}\subseteq\tau\cap M$ is a countable open covering of $\overline{X\cap M}$ , there are $z_{1},\ldots,$ $z_{n}\in$

$\overline{X\cap M}$ for some $n\in\omega$ such that $\overline{X\cap M}\subseteq O_{z_{1}}\cup\cdots\cup O_{z_{n}}$ . It follows that
$M\models(O_{z_{1}},$

$\ldots,$
$O_{z_{n}}$ covers $X$ ” By elementarity it follows that $O_{z_{1}},$

$\ldots,$
$O_{z_{n}}$ really

covers $X$ . But this is a contradiction to (2.2). $\square$ (Lemma 2.6)

Using the lemmas above, we can prove the following theorem of Mi\v{s}\v{c}enko:

Theorem 2.7 $(Mi\check{s}\check{c}enko).$ A countably compact space with a point countable
base has a countable base $(i.e$ . it is metrizable$)$ . $\square$

We can even prove the following. Note that a countably compact space with
a point countable base is regular as noted before. Thus the following Theorem
2.8 indeed generalizes Mi\v{s}\v{c}enko’s Theorem.

Theorem 2.8 $($ A variant of Theorem 3.1 in Dow $[$4$]$ . See also $[$2$])$ . If $X$ is
a regular countably compact space such that every subspace of $X$ of cardinality
$\leq\aleph_{1}$ has a point countable base, then $X$ is metrizable.

Proof. Suppose, for contradiction, that $X=(X, \tau)$ is a countably compact
space such that every subspace of $X$ of cardinality $\leq\aleph_{1}$ has a point countable
base but $X$ is not metrizable.

Let $\theta$ be sufficiently large and let $M$ be an internally approachable elemen-
tary submodel of $\mathcal{H}(\theta)$ and $\langle$ X, $\tau\rangle\in M$ .

Since $w(X)>\aleph_{0}$ $($by Lemma 2.2 $)$ , there is a $Z\in[X]^{\aleph_{1}}$ such that $w(Z)>\aleph_{0}$

by Proposition 2.1. By elementarity, there is such a $Z\in M$ .
We have $w(\overline{Z})>\aleph_{0}$ by Lemma 2.3. Since $\overline{Z}$ is countably compact, $\overline{Z}$ is

non metrizable by Lemma 2.2. Thus we may assume without loss of generality
$X=\overline{Z}$ . For each $x\in X\cap M,$ $Z\cup\{x\}$ has cardinality $\aleph_{1}$ and hence it has a
point countable base. In particular $\chi(x, Z\cup\{x\})=\aleph_{0}$ by Lemma 2.4. It follows
that $\tau\cap M$ is a base of $(X\cap M,$ $\tau)$ . Thus

$($ 2.3 $)$ $(X\cap M,$ $\tau\cap M)$ has a point countable base.

Let $\langle M_{\alpha}$ : $\alpha<\omega_{1}\rangle$ be an internally approachable filtration of $M$ such that $Z$ ,
$\langle$ X, $\tau\rangle\in M_{0}$ .

Since $w(X)>\aleph_{0}$ and $M_{\alpha}$ is countable $\tau\cap M_{\alpha}$ is not a base of $($X, $\tau)$ for any
$\alpha<\omega_{1}$ . Thus, by Lemma 2.6, there is $z\in X\cap M_{\alpha}$ such that$\tau\cap M_{\alpha}$ is not a
base at $z$ . Since $M_{\alpha}\in M_{\alpha+1}$ , there is such $z$ in $M_{\alpha+1}$ by elementarity.

Let $N$ be a countable elementary submodel of $\mathcal{H}(\theta)$ such that
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$($ 2.4 $)$ $X,$ $Z,$ $M,$ $\langle M_{\alpha}$ : $\alpha<\omega_{1}\rangle\in N$ .

Let $\alpha^{*}=\omega_{1}\cap N$ . By the remark above there is $z^{*}\in M_{\alpha^{*}+1}$ such that

(2.5) $z^{*}\in\overline{X\cap M_{\alpha^{*}}}$ and $\tau\cap M_{\alpha^{*}}$ is not a neighborhood base at $z^{*}$ .

On the other hand, by (2.4), we have

$(\tau\cap M)\cap N=\cup\{\tau\cap M_{\beta}:\beta<\alpha^{*}\}=\tau\cap M_{\alpha^{*}}$ .

Hence by (2.3) and by Lemma 2.5, $\tau\cap M_{\alpha^{*}}$ is a neighborhood base for any
$z\in X\cap M_{\alpha}*$ . This is a contradiction. $\square$ (Theorem 2.8)

3 Balogh’s metrization theorem under FRP

The following two theorems were proved in S. Fuchino, I. Juhasz, L. Soukup,
Z. Szentmik16ssy and T. Usuba $[$9 $]$ .

Theorem 3.1 (Fuchino, Juh\’asz, Soukup, Szentmikl\’ossy and Usuba, [9, The-
orem 4.2] $)$ . Suppose that $X$ is a locally countably compact and meta-Lindelof
space. If $X$ $is\leq\aleph_{1}$ -metrizable then it is actually metrtzable. $\square$

Theorem 3.2 (Fuchino, Juhasz, Soukup, Szentmik16ssy and Usuba $[$9, Theorem
4.3] $)$ . (1) Assume that FRP $(\kappa)$ holds for every regular cardinal $\kappa$ with $\omega_{1}<$

$\kappa\leq\lambda$ and $X$ is a locally separable, countably tight space with $L(X)\leq\lambda$ . If $X$

$is\leq\aleph_{1}$ -meta-Lindelof then $X$ is actually meta-Lindelof
(2) Under FRP every locally separable, countably tight $and\leq\aleph_{1^{-}}meta-$

Lindelof space is meta-Lindelof. $\square$

Here, for a regular cardinal $\kappa\geq\omega_{1}$ , FRP $(\kappa)$ (The Fodor-type Reflection
Principle for $\kappa$ ) is the following statement:

FRP $(\kappa)$ : For any stationary $S\subseteq E_{\omega}^{\kappa}=\{\alpha<\kappa$ : cf $(\alpha)=\omega\}$ and mapping
$g:Sarrow[\kappa]\leq\aleph_{0}$ there is $I\in[\kappa]^{\aleph_{1}}$ such that

(3.1) cf(I) $=\omega_{1}$ ;

(3.2) $g(\alpha)\subseteq I$ for all $\alpha\in I\cap S$ ;

(3.3) for any regressive $f$ : $S\cap Iarrow\kappa$ such that $f(\alpha)\in g(\alpha)$ for all
$\alpha\in S\cap I$ , there is $\xi^{*}<\kappa$ such that $f^{-1}$ ”

$\{\xi^{*}\}$ is stationary in
$\sup(I)$ .
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FRP is the axiom which asserts that FRP $(\kappa)$ holds for all regular cardinal
$\kappa\geq\aleph_{2}$ . Note that we can only demand FRP $(\kappa)$ for a regular $\kappa$ since FRP $(\kappa)$

for a singular $\kappa$ is easily shown to be inconsistent (see Lemma 2.2 in [9]).
In $[$9 $]$ , it is shown that FRP $(\kappa)$ for a regular cardinal $\kappa$ follows from RP $(\kappa)$

which is a weakening of of Axiom $R$ for $\kappa$ . Thus FRP is a consequence of
Axiom R. On the other hand, it is also proved in [9] that FRP $(\kappa)$ is preserved
by $c.c.c$ .-extension of the universe. Thus FRP is strictly weaker than Axiom R.

Here, the Reflection Principle RP $(\kappa)$ and Axiom $R$ for $\kappa$ $($ Notation: AR$(\kappa))$

are defined as follows:

RP $(\kappa)$ : For any stationary $S\subseteq[\kappa]^{\aleph_{0}}$ , there is an $I\in[\kappa]^{\aleph_{1}}$ such that

(3.4) $\omega_{1}\subseteq I$ ;

(3.5) cf(I) $=\omega_{1}$ ;

(3.6) $S\cap[I]^{\aleph_{0}}$ is stationary in $[I]^{\aleph_{0}}$ .

AR$(\kappa)$ : For any stationary $S\subseteq[\kappa]^{\aleph_{0}}$ and $\omega_{1}$ -club $\mathcal{T}\subseteq[\kappa]^{\aleph_{1}}$ , there is $I\in \mathcal{T}$

such that $S\cap[I]^{\aleph_{0}}$ is stationary in $[I]^{\aleph_{0}}$

where $\mathcal{T}\subseteq[X]^{\aleph_{1}}$ for an uncountable set $X$ is said to be $\omega_{1}$ -club (or tight and
unbounded in Fleissner’s terminology in [7] $)$ if

(3.7) $\mathcal{T}$ is cofinal in $[X]^{\aleph_{1}}$ with respect to $\subseteq$ and

(3.8) for any increasing chain $\langle I_{\alpha}$ : $\alpha<\omega_{1})$ in $\mathcal{T}$ of length $\omega_{1}$ , we have
$\bigcup_{\alpha<\omega_{1}}I_{\alpha}\in \mathcal{T}$ .

Axiom $R$ is the assertion that AR$(\kappa)$ holds for all cardinals $\kappa\geq\aleph_{2}$ and RP
is the assertion that RP $(\kappa)$ holds for all cardinals $\kappa$ with $\kappa\geq\aleph_{2}$ .

It is easy to see that AR$(\kappa)$ implies RP $(\kappa)$ . R.E. Beaudoin $[$3 $]$ proved that
Axiom $R$ follows from MA$+(\sigma$-closed$)$ ,

By the theorems above and by Theorem 2.8, we can prove the following
improvement of Theorem 2.2 in Z. Balogh [2] where the assertion (2) of the
following theorem was proved under Axiom R.

Theorem 3.3. (1) Let $\lambda$ be a cardinal such that for each regular cardinal $\kappa$

with $\omega_{1}<\kappa\leq\lambda$ we have FRP $(\kappa)$ . If $X$ is a regular locally countably compact
space with $L(X)\leq\lambda$ and

(3.9) every subspace of $X$ of cardinality $\leq\aleph_{1}$ has a point countable base,
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then $X\iota s$ metrlzable.
(2) Assume FRP. If $X$ is a regular locally countably compact space satis-

fying (3.9), then $X$ is metrizable.

Proof. We prove only (1) since (2) clearly follows from (1).
Let $X$ be as in (1). Then every point of $X$ has a countably compact neigh-

borhood, and this neighborhood is compact metrizable by Theorem 2.8. By
Lemma 2.2, it follows that $X$ is both locally separable and countably tight.
Also $X$ is $\leq\aleph_{1}$ -meta-Lindel\"of by $($ 3.9 $)$ . Hence $X$ is meta-Lindel\"of by Theorem
3.2 (1). By Theorem 3.1, it follows that $X$ is metrizable. $\square$ $($Theorem 3.3$)$

Theorem 3.3 implies the following theorem which can be also derived directly
form Theorem 3.2:

Theorem 3.4 (Fuchino, Juh\’asz, Soukup, Szentmik16ssy and Usuba [9]). (1) Let
$\lambda$ be a cardinal such that for each regular cardinal $\kappa$ with $\omega_{1}<\kappa\leq\lambda$ we
have FRP $(\kappa)$ . If $X$ is a locally countably compact and $\aleph_{1}$ -metrizable space with
$L(X)\leq\lambda$ then $X$ is metnzable.

(2) Assume FRP. Then $ever^{v}y$ locally countably compact and $\aleph_{1}$ -metrizable
space is metrizable. $\square$

In S. Fuchino, H. Sakai, L. Soukup and T. Usuba [10], it is proved that the
assertion of Theorem 3.2, (1) as well as Theorem 3.4, (1) are equivalent to:

FRP $(\leq\lambda)$ : FRP $(\kappa)$ holds for each regular cardinal $\kappa$ with $\omega_{1}<\kappa\leq\lambda$

over ZFC. Thus also we obtain the following:

Theorem 3.5. The assertion of Theorem 3.3, (1) is equivalent to FRP
$(\leq\lambda)\square$

over ZFC.

4 Reflection of paracompactness in countably tight lo-
cally Lindel\"of spaces

In this section we prove that Theorem 1.6 in Balogh [2] is already provable
under FRP $($Theorem 4.5 $)$ .

Recall that a space $X$ is locally Lindelof if every point $x$ of $X$ has an open
neighborhood $O$ such that $\overline{O}$ is a Lindel\"of subspace of $X$ .

Lemma 4.1. For a topological space $X=(X,$ $\mathcal{O})$ , if $\mathcal{F}\subset \mathcal{P}(X)$ is locally finite,
then we $have\cup\{\overline{Y}$ : $Y\in \mathcal{F}\}=\overline{\cup \mathcal{F}}$ .
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Proof. The inclusion ((
$\subseteq$ is clear. To show the other inclusion (

$(\supseteq$ , suppose
$x\in\overline{\cup \mathcal{F}}$ . Let $0\in \mathcal{O}$ be such that $x\in 0$ and $\mathcal{F}_{0}=\{Y\in \mathcal{F}$ : $O\cap Y\neq\emptyset\}$ is
finite. Then we have $x\in\overline{\cup \mathcal{F}_{0}}=\cup\{\overline{Y}$ : $Y\in \mathcal{F}_{0}\}$ . Thus $x\in\cup\{\overline{Y}$ : $Y\in \mathcal{F}\}$ .

$\square$ $($ Lemma 4.1 $)$

Lemma 4.2. For a topological space $X=(X, \mathcal{O})$ , if $\mathcal{F}\subseteq \mathcal{P}(X)$ is locally finite,
then $\overline{\mathcal{F}}=\{\overline{Y} : Y\in \mathcal{F}\}$ is also locally finite.
Proof. For $x\in X$ , let $0\in \mathcal{O}$ be such that $x\in 0$ and $\mathcal{F}_{0}=\{Y\in \mathcal{F}$ : $O\cap Y\neq$

$\emptyset\}$ is finite. For any $y\in 0$ if $y\in\overline{Y}$ for some $Y\in \mathcal{F}$ then $O\cap Y\neq\emptyset$ , i.e.
$Y\in \mathcal{F}_{0}$ . So we have $\{Y\in \mathcal{F}$ : $O\cap\overline{Y}\neq\emptyset\}=\mathcal{F}_{0}$ . $\square$ $($ Lemma 4.2 $)$

The following characterization of paracompactness of locally Lindel\"of spaces
was already mentioned in [2]. In the proof of Theorem 4.5 we actually only use
the trivial direction of this characterization. Nevertheless the characterization
explains the need to look at open partitions of a given locally Lindel\"of space to
prove the paracompactness of the space.

Lemma 4.3. A regular locally Lindelof space $X$ is pamcompact if and only if
it is partitioned into clopen Lindelof subspaces.

Proof. Suppose first that $X$ is partitioned into clopen Lindel\"of subspaces. By
Morita’s theorem each subspace in the partition is paracompact. Hence it fol-
lows that $X$ itself is also paracompact,

Suppose now that $X$ is a locally Lindel\"of paracompact space. We show that
there is a partition of $X$ into clopen Lindel\"of subspaces. Let $\mathcal{A}\subseteq \mathcal{O}$ be an open
covering of $X$ such that $\overline{Y}$ is Lindel\"of for all $Y\in \mathcal{A}$ . Let $\mathcal{B}$ be a locally finite
open refinement of $\mathcal{A}$ . Then elements of $\mathcal{B}’=\{\overline{Y}$ : $Y\in \mathcal{B}\}$ are Lindel\"of and $\mathcal{B}’$

is still locally finite by Lemma 4.2.

Claim 4.3.1. For any $Y\in \mathcal{B}_{j}\{Z\in \mathcal{B}$
’ : $Y\cap Z\neq\emptyset\}$ is countable.

$\vdash$ Suppose $Y\in \mathcal{B}’$ . Let $S=\{Z\in \mathcal{B}$
’ : $Y\cap Z\neq\emptyset\}$ . For each $y\in Y$ , let

$O_{y}\in \mathcal{O}$ be such that $y\in O_{y}$ and $\{Z\in \mathcal{B}$
’ : $O_{y}\cap Z\neq\emptyset\}$ is finite. Note that

we can find such $O_{y}$ since $\mathcal{B}’$ is locally finite. Since $Y$ is Lindel\"of, there is a
countable $Y_{0}\subseteq Y$ such that $\{O_{y}$ : $y\in Y_{0}\}$ is a cover of $Y$ . Then we have
$S\subseteq\{Z\in \mathcal{B}$

’ : $O_{y}\cap Z\neq\emptyset$ for some $y\in Y_{0}\}$ and the right side of the inclusion
is easily seen to be countable. $\dashv$ $($ Claim 4.3.1 $)$

Let $\sim \mathcal{B}’$ be the intersection relation on $\mathcal{B}$
’ and $\approx B’$ be its transitive closure.

Let $E$ be the set of all equivalence classes of $\approx \mathcal{B}’$ . By the claim above and by
Lemma 1.1, each $e\in E$ is countable. It follows that $\cup e$ is Lindel\"of and $\cup e$
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is closed by Lemma 4.1. Thus $\{\cup e : e\in E\}$ is a partition of $X$ as desired.
$\square$ $($ Lemma 4.3 $)$

Lemma 4.4 $($ Proposition 1.1 in Balogh $[$ 2$])$ . If a topological space $X=(X,$ $\mathcal{O})$

is locally Lindelof, then $\mathcal{B}=$ { $V\subseteq X$ : $V\iota s$ an open $Lmdel\dot{0}f$ subspace of $X$ }
forms a base of $X$ .

Proof. Note that a closed subspace of a Lindel\"of space is also Lindel\"of. Hence,
for $x\in X$ and $x\in 0\in \mathcal{O}$ , there is a $U\in \mathcal{O}$ such that $x\in U\subseteq 0$ and $\overline{U}$

is Lindel\"of. Since $\overline{U}$ is a Lindel\"of space and thus normal, we can construct a
sequence $\langle O_{i}$ : $i\in\omega\}$ of open sets such that

$($ 4.1 $)$ $x\in O_{0}\subseteq\overline{O_{0}}\subseteq O_{1}\subseteq\overline{O_{1}}\subseteq\cdots\subseteq U$ .

Let $0^{*}= \bigcup_{t\in\omega}O_{i}$ . Then 0$*$ is open neighborhood of $x$ and $0^{*}\subseteq 0$ . $0^{*}$

is Lindel\"of since we can also represent 0$*$ as the countable union of Lindel\"of
spaces, namely as $O^{*}= \bigcup_{i\in\omega}\overline{O_{i}}$ . $\square$ $($Lemma 4.4 $)$

S. Balogh $[$2$]$ proved the following theorem under Axiom R.

Theorem 4.5 $($ FRP). Suppose that $X$ is locally Lindelof and countably tight.

If every open subspace $Y$ of $X$ with $L(Y)\leq\aleph_{1}$ is paracompact then $X$ itself is
paracompact,

Proof. A variation of the proof of Theorem 4.3 in S. Fuchino, I. Juhasz, L.
Soukup, Z. Szentmik16ssy and T. Usuba $[$9$]$ will do.

It is enough to prove that the following $($4.2 $)$
$\kappa$ holds for all cardinal $\kappa$ by

induction on $\kappa$ :

$($ 4.2 $)$
$\kappa$ For any countably tight and locally Lindel\"of space $X$ with $L(X)\leq\kappa$ , if

every open subspace of $X$ of Lindel\"of degree $\leq\aleph_{1}$ is paracompact then
$X$ itself is also paracompact.

For $\kappa\leq\aleph_{1},$ $(4.2)_{\kappa}$ trivially holds. So assume that $\kappa>\aleph_{1}$ and that $($4.2 $)$
$\lambda$ holds

for all $\lambda<\kappa$ . Let $X$ be as in (4.2) $\kappa$ . We have to show that $X$ is paracompact.

Case 1. $\kappa$ is regular.
Let $\{L_{\alpha} : \alpha<\kappa\}$ be a cover of $X$ consisting of Lindel\"of subspaces of

X. By Lemma 4.4, we may assume that each $L_{\alpha}$ is open. For $\beta<\kappa$ , let
$X_{\beta}=\cup\{L_{\alpha}$ : $\alpha<\beta\}$ . By $L(X)=\kappa$ , we have $X\neq X_{\beta}$ for every $\beta<\kappa$ . We
may also assume that the continuously increasing sequence $\langle X_{\beta}$ : $\beta<\kappa\rangle$ of
open set in $X$ is strictly increasing.

Let $S=\{\alpha<\kappa$ : $X_{\alpha}\neq\overline{X_{\alpha}}\}$ .
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Claim 4.5.1. $S$ is $non- stat\iota onary$ in $\kappa$ .

$\vdash$ We prove first the following weakening of the claim:

Subclaim 4.5.1.1. $S\cap E_{\omega}^{\kappa}$ is non-stationary $m\kappa$ .

$\vdash$ For a contradiction, suppose that $S\cap E_{\omega}^{\kappa}$ were stationary. For each $\alpha\in$

$S\cap E_{\omega}^{\kappa}$ , let $p_{\alpha}\in\overline{X_{\alpha}}\backslash X_{\alpha}$ and let $h(\alpha)\in\kappa$ be such that $p_{\alpha}\in L_{h(\alpha)}$ . Since $X$ is
countably tight, there is $c_{\alpha}\in[\alpha]^{\aleph_{0}}$ such that $p_{\alpha} \in\bigcup_{\beta\in c_{\alpha}}L_{\beta}$ .

Now, by FRP, there is $I\in[\kappa]^{\aleph_{1}}$ such that

(4.3) cf(I) $=\omega_{1}$ ;

(4.4) $h(\alpha)\in I$ for all $\alpha\in S\cap E_{\omega}^{\kappa}\cap I$ ;

(4.5) $c_{\alpha}\subseteq I$ for all $\alpha\in S\cap E_{\omega}^{\kappa}\cap I$ ;
$($4.6 $)$ if $f$ : $S\cap E_{\omega}^{\kappa}\cap Iarrow\kappa$ is such that $f(\alpha)\in c_{\alpha}$ for all $\alpha\in S\cap E_{\omega}^{\kappa}\cap I$ , then

there is $\xi^{*}\in I$ with $\sup(f^{-1}(\{\xi^{*}\}))=\sup(I)$ .

Let $Y= \bigcup_{\beta\in I}L_{\beta}$ . Note that, by (4.4), $p_{\alpha}\in Y$ for all $\alpha\in S\cap E_{\omega}^{\kappa}\cap I$ .
By $|I|=\aleph_{1}$ and since each $L_{\beta}$ is open Lindel\"of subspace of $X$ , it follows that

$Y$ is open and $L(Y)\leq\aleph_{1}$ . Hence, by the assumption on $X,$ $Y$ is a paracompact
subspace of $X$ . Thus the open cover $\mathcal{L}=\{L_{\beta} : \beta\in I\}$ of $Y$ has a locally finite
open refinement $\mathcal{E}$ . Since each $L_{\beta}(\beta\in I)$ is Lindel\"of, it follows that, for each
$\beta\in I$ ,

(4.7) $\{E\in \mathcal{E}$ : $E\cap L_{\beta}\neq\emptyset\}$ is countable.

Now, for each $\alpha\in S\cap E_{\omega}^{\kappa}\cap I$ , let $E_{\alpha}\in \mathcal{E}$ be such that $p_{\alpha}\in E_{\alpha}$ . Since
$p_{\alpha}\in\overline{\cup\{L_{\beta}}$: $\beta\in c_{\alpha}\}$ , there is $f(\alpha)\in c_{\alpha}$ such that $E_{\alpha}\cap L_{f(\alpha)}\neq\emptyset$ . Thus, by

$($4.6 $)$ , there is a $\xi^{*}\in I$ such that $\sup(f^{-1\prime}\{\xi^{*}\})=\sup(I)$ . By $($4.7$)$ , we have
$E\subseteq X_{\eta}$ for all $E\in \mathcal{E}$ such that $E\cap L_{\xi^{*}}\neq\emptyset$ for some large enough $\eta\in S\cap E_{\omega}^{\kappa}\cap I$

with $f(\eta)=\xi^{*}$ . But, since $\emptyset\neq E_{\eta}\cap L_{f(\eta)}=E_{\eta}\cap L_{\xi^{*}}$ we have $p_{\eta}\in E_{\eta}\subseteq X_{\eta}$ .
This is a contradiction to the choice of $p_{\eta}$ . $\dashv$ $($Subclaim 4.5.1.1 $)$

Let $C$ be a club subset of $\kappa$ consisting of limit ordinals such that $S\cap E_{\omega}^{\kappa}\cap C=$

$\emptyset$ and let

$($ 4.8 $)$ $D=\{\alpha\in C$ : $\alpha\backslash S$ is cofinal in $\alpha\}$ .

Clearly $D$ is also a club subset of $\kappa$ . So the following subclaim proves the claim.

Subclaim 4.5.1.2. $S\cap D=\emptyset$ .

51



$\vdash$ For $\alpha\in D\cap E_{\omega}^{\kappa}$ , we have $\alpha\not\in S$ by $D\subseteq C$ .

For $\alpha\in D\cap E_{>\omega}^{\kappa}$ , suppose $p\in X_{\alpha}$ . By the countable tightness of $X$ there
is $\beta<\alpha$ such that $p\in\overline{X_{\beta}}$ . By (4.8), we may assume that $\beta\in E_{\omega}^{\kappa}\backslash S$ . Thus we
have $p\in\overline{X_{\beta}}=X_{\beta}\subseteq X_{\alpha}$ . This shows that $X_{\alpha}=\overline{X_{\alpha}}$ and hence $\alpha\not\in S$ .

$\dashv$ (Subclaim 4.5.1.2)
$\dashv$ (Claim 4.5.1)

Now let $D$ be a club subset of $\kappa$ such that $D\cap S=\emptyset$ and let $\langle\xi_{\alpha}$ : $\alpha<\kappa\rangle$

be an increasing enumeration of $D\cup\{0\}$ . Let $Y_{\alpha}=X_{\xi_{\alpha+1}}\backslash X_{\xi_{\alpha}}$ for $\alpha<\kappa$ .
Then $\{Y_{\alpha} : \alpha<\kappa\}$ is a partition of $X$ into clopen subspaces. Since each $Y_{\alpha}$

is the union of $<\kappa$ many Lindel\"of spaces, namely $L_{\delta}\backslash X_{\xi_{\alpha}},$ $\xi_{\alpha}\leq\delta<\xi_{\alpha+1}$ ,
we have $L(Y_{\alpha})<\kappa$ . It follows from the induction hypothesis that each $Y_{\alpha}$ is
paracompact. Hence $X$ itself is also paracompact.

Case 2. $\kappa$ is singular.
Similarly to Case 1., let $\{L_{\alpha} : \alpha<\kappa\}$ be a cover of $X$ consisting of open

Lindel\"of subspaces of $X$ . Let $\langle\kappa_{i}$ : $i<$ cf $(\kappa)\}$ be a continuously and strictly
increasing sequence of cardinals cofinal in $\kappa$ . For $i<$ cf $(\kappa)$ , let $X_{i}=\cup\{L_{\alpha}$ :
$\alpha<\kappa_{i}\}$ . By the induction hypothesis, there is a locally finite open refinement
$C_{i}$ of the open cover $\{L_{\alpha}$ : $\alpha<\kappa_{i}\}$ of $X_{i}$ for each $i<$ cf $(\kappa)$ . Let $C= \bigcup_{i<cf(\kappa)}C_{i}$ .

Let $\sim c$ be the intersection relation on $C$ and $\approx c$ be its transitive closure.
Since each $C_{i}$ is locally finite and each $C\in C_{i}$ is Lindel\"of, we have $|\{C’\in C$ :
$C\approx c^{C’\}}|\leq cf(\kappa)<\kappa$ for all $C\in C$ .

Let $E$ be the set of all equivalence classes of $\approx c$ . Then, by Lemma 1.1, each
$e\in E$ has cardinality $\leq$ cf $(\kappa)$ .

$\mathcal{P}=\{\cup e : e\in E\}$ is a partition of $X$ into clopen subspaces. Since each $Y\in$

$\mathcal{P}$ is the union of $\leq$ cf $(\kappa)$ many Lindel\"of subspaces, we have $L(Y)\leq$ cf $(\kappa)<\kappa$ .
It follows that each $Y\in \mathcal{P}$ is paracompact by the induction hypothesis and
hence $X$ is also paracompact. $\square$ (Theorem 4.5)

In contrast to reflection theorem in the last section, the following is still
open:

Problem 1. Is the assertion of Theorem 4.5 equivalent to FRP ?

5 Axiom R-like extension of FRP and a stronger reflec-
tion property of paracompactness

Similarly to the extension of RP to Axiom $R$ , FRP $(\kappa)$ for a regular cardinal
$\kappa\geq\aleph_{2}$ can be enhanced with the additional requirement that the reflection
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point $I$ be an element of a given $\omega_{1}$ -club family $\subseteq[\kappa]^{\aleph_{1}}$ :

FRP $R(\kappa)$ : For any $\omega_{1}$ -club $\mathcal{T}\subseteq[\kappa]^{\aleph_{1}}$ , stationary $S\subseteq E_{\omega}^{\kappa}$ and mapping $g$ :
$Sarrow[\kappa]\leq\aleph_{0}$ there is $I\in \mathcal{T}$ such that

(5.1) for any regressive $f$ : $S\cap Iarrow\kappa$ such that $f(\alpha)\in g(\alpha)$ for all
$\alpha\in S\cap I$ , there is $\xi^{*}<\kappa$ such that $f^{-1\prime}’\{\xi^{*}\}$ is stationary in
$\sup(I)$ .

Similarly to FRP, let FR$P^{}$ be the axiom asserting that FRP$R(\kappa)$ holds for all
regular $\kappa\geq\aleph_{2}$ .

Note that we can put the constraints (3.1) and (3.2) on $I$ by thinning out
the $\omega_{1}$-club family $C$ . Thus FRP$R(\kappa)$ implies FRP $(\kappa)$ for all regular $\kappa\geq\aleph_{2}$ .
The proof of the implication $RP(\kappa)\Rightarrow$ FRP $(\kappa)$

” in [9] can be slightly modified
to show the implication $AR(\kappa)\Rightarrow$ FRP$R(\kappa)$ ”

A straight forward modification of Theorem 3.4 in [9] shows also that FRP$R(\kappa)$

is preserved in generic extensions by c.c. $c$ . forcing.
Shelah proved that SCH follows from a weakening of RP ([16]). Since RP

also implies $2^{\aleph_{0}}\leq\aleph_{2}$ (Todorcevic, see [12]), it follows that, under RP, we have
cf $([\kappa]^{\aleph_{0}}, \subseteq)=\kappa^{+}$ for all cardinal $\kappa$ with $cf(\kappa)=\omega$ . Thus the assumption FRP$R$

$+(5.2)$ of Theorem 5.1 below is a consequence of Axiom R. This assumption
is also still much weaker than Axiom $R$ , since it is easy to see that this is still
preserved in extensions by c.c. $c$ . forcing.

Balogh proved the following theorem under Axiom $R$ (Theorem 1.4 in [2]).

Theorem 5.1. Assume FRP$R$ and

(5.2) $\{\kappa<\lambda : cf([\kappa]^{\aleph_{0}})=\kappa\}$ is cofinal in $\lambda$ for any singular cardinal $\lambda$ .

Suppose that $X$ is a countably tight locally Lindelof space such that

(5.3) for all open subspaces $Y$ of $X$ with $L(Y)\leq\aleph_{1}$ , we have $L(\overline{Y})\leq\aleph_{1}$ and

(5.4) every clopen subspace $Y$ of $X$ with $L(Y)\leq\aleph_{1}$ is pamcompact.

Then $X$ itself is paracompact.

Proof of Theorem 5.1: The proof is a modification of the proof of Theorem
4.5.

It is enough to prove that the following (5.5) $\kappa$ holds for all cardinal $\kappa$ by
induction on $\kappa$ :

(5.5) $\kappa$ For any countably tight and locally Lindel\"of space $X$ with $L(X)=\kappa$ ,
if $X$ satisfies (5.3) and (5.4), then $X$ is paracompact.
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For $\kappa\leq\aleph_{1},$ $(5.5)_{\kappa}$ trivially holds. So assume that $\kappa>\aleph_{1}$ and that (5.5) $\lambda$

holds for all $\lambda<\kappa$ . Let $X$ be a countably tight and locally Lindel\"of space
with $L(X)=\kappa$ such that $X$ satisfies (5.3) and (5.4). We have to show that
$X$ is paracompact. Let $\{L_{\alpha} : \alpha<\kappa\}$ be a cover of $X$ consisting of Lindel\"of

subspaces of $X$ . By Lemma 4.4, we may assume that each $L_{\alpha}$ is open. Let

$\mathcal{T}=$ { $I\in[\kappa]^{\aleph_{1}}$ : $\bigcup_{\alpha\in I}L_{\alpha}$ is a clopen subspace of $X$ }.

By (5.3) and since $X$ is countably tight, it is easy to see that $\mathcal{T}$ is $\omega_{1}$ -club.

Case 1. $\kappa$ is regular.
For $\beta<\kappa$ , let $X_{\beta}=\cup\{L_{\alpha} : \alpha<\beta\}$ . By induction hypothesis we may also

assume that $X\neq X_{\beta}$ for every $\beta<\kappa$ and that the sequence $\langle X_{\beta}$ : $\beta<\kappa\}$ is
strictly increasing.

Let $S=\{\alpha<\kappa : X_{\alpha}\neq\overline{X_{\alpha}}\}$ .

Claim 5.1.1. $S$ is non-stationary in $\kappa$ .

$\vdash$ We prove first the following weakening of the claim:

Subclaim 5.1.1.1. $S\cap E_{\omega}^{\kappa}$ is non-stationary in $\kappa$ .

$\vdash$ For a contradiction, suppose that $S\cap E_{\omega}^{\kappa}$ were stationary. For each $\alpha\in$

$S\cap E_{\omega}^{\kappa}$ , let $p_{\alpha}\in\overline{X_{\alpha}}\backslash X_{\alpha}$ and let $h(\alpha)\in\kappa$ be such that $p_{\alpha}\in L_{h(\alpha)}$ . Since $X$ is
countably tight, there is $c_{\alpha}\in[\alpha]^{\aleph_{0}}$ such that $p_{\alpha} \in\bigcup_{\beta\in c_{\alpha}}L_{\beta}$ .

Now, by FRP$R$

, there is $I\in \mathcal{T}$ such that

(5.6) cf(I) $=\omega_{1}$ ;

(5.7) $h(\alpha)\in I$ for all $\alpha\in S\cap E_{\omega}^{\kappa}\cap I$ ;

(5.8) $c_{\alpha}\subseteq I$ for all $\alpha\in S\cap E_{\omega}^{\kappa}\cap I$ ;

(5.9) if $f$ : $S\cap E_{\omega}^{\kappa}\cap Iarrow\kappa$ is such that $f(\alpha)\in c_{\alpha}$ for all $\alpha\in S\cap E_{\omega}^{\kappa}\cap I$ , then
there is $\xi^{*}\in I$ with $\sup(f^{-1\prime}’\{\xi^{*}\})=\sup(I)$ .

Let $Y= \bigcup_{\beta\in I}L_{\beta}$ . Note that, by (5.7), $p_{\alpha}\in Y$ for all $\alpha\in S\cap E_{\omega}^{\kappa}\cap I$ .
By $I\in \mathcal{T}$ and since each $L_{\beta}$ is open Lindel\"of subspace of $X$ , it follows that

$Y$ is clopen and $L(Y)\leq\aleph_{1}$ . Hence, by (5.4), $Y$ is a paracompact subspace of
X. The rest of this case can be treated exactly as the Case 1 in the proof of
Theorem 4.5.

Case 2. $\kappa$ is singular.
Let $\theta$ be a sufficiently large cardinal. Let $\mathcal{L}=\{L_{\alpha} : \alpha<\kappa\}$ . The singularity

of $\kappa$ is not yet necessary in the following claim:
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Claim 5.1.2. If $M\prec \mathcal{H}(\theta)$ is such that

(5.10) $\omega_{1}\subseteq M$ ;

(5.11) $X_{\rangle}\mathcal{L}\in M$ ;
$($ 5.12 $)$ $M$ is $\omega- bounding\rangle$

then $Z=\cup(\mathcal{L}\cap M)$ is a clopen subspace of $X$ .

$\vdash$ $Z$ is an open subspace of $X$ as the union of open subspaces $\mathcal{L}\cap M$ . Thus
it is enough to show that $X$ is closed. Suppose $x\in\overline{Z}$. By the countable
tightness of $X$ , there is $c\in[\mathcal{L}\cap M]^{\aleph_{0}}$ such that $x\in\overline{\cup c}$ . By (5.12), there is
$c’\in[\mathcal{L}\cap M]^{\aleph_{0}}\cap M$ such that $c\subseteq c’$ . By (5.3) and by the elementarity of $M$ ,
we have

$M\models\exists d\in[\mathcal{L}]^{\aleph_{1}}(\overline{\cup c’}\subseteq\cup d)$.

Let $d\in[\mathcal{L}]^{\aleph_{1}}\cap M$ be such that $\overline{\cup c’}\subseteq\cup d$ . By (5.10), we have $d\subseteq M$ . Thus
there is an $L^{*}\in d=d\cap M$ such that $x\in L^{*}\subseteq\cup d\subseteq\cup(\mathcal{L}\cap M)$ .

$\dashv$ (Claim 5.1.2)

Let $\langle M_{i}$ : $i<$ cf $(\kappa)\rangle$ be an increasing sequence of elementary submodels of
$\mathcal{H}(\theta)$ such that, for $i<$ cf $(\kappa)$ ,

(5.13) $|M_{i}|<\kappa$ ;

(5.14) $\omega_{1}\subseteq M_{i}$ ;

(5.15) $X,$ $\mathcal{L}\in M_{i}$ ;

(5.16) $M_{i}$ is $\omega$-bounding and

(5.17) $\kappa\subseteq\bigcup_{\iota<cf(\kappa)}M_{i}$ .

We can construct such a sequence in particular with the property (5.16) by the
assumption on the cardinal arithmetic.

Let $X_{i}=\cup(\mathcal{L}\cap M_{i})$ for $i<$ cf $(\kappa)$ . By Claim 5.1.2, each $X_{i}$ is a clopen
subspace of $X$ . Since $L(X_{i})\leq|M_{i}|<\kappa$ , each $X_{i}$ is paracompact by induction
hypothesis. Note that we need here the closedness of $X_{i}$ so that (5.3) holds for
$X_{i}$ .

$\mathcal{L}\cap M_{i}$ has a locally finite open refinement $C_{i}$ for each $i<$ cf $(\kappa)$ . Let
$C= \bigcup_{i<cf(\kappa)}C_{t}$ .

Let $\sim c$ be the intersection relation on $C$ and $\approx c$ be its transitive closure.
Since each $C_{i}$ is locally finite and each $C\in C_{i}$ is Lindel\"of, $|\{C’\in C_{i}$ : $C’\approx c$.
$C\}|\leq\aleph_{0}$ for all $i<$ cf $(\kappa)$ . Hence $|\{C’\in C : C\approx cC’\}|\leq$ cf$(\kappa)<\kappa$ for all
$C\in C$ .
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Let $E$ be the set of all equivalence classes of $\approx c$ . Then, by Lemma 1.1, each
$e\in E$ has cardinality $\leq$ cf $(\kappa)$ .

$\mathcal{P}=\{\cup e : e\in E\}$ is a partition of $X$ into clopen subspaces. Since each $Y\in$

$\mathcal{P}$ is the union of $\leq$ cf $(\kappa)$ many Lindel\"of subspaces, we have $L(Y)\leq$ cf $(\kappa)<\kappa$ .

It follows that each $Y\in \mathcal{P}$ is paracompact by the induction hypothesis and
hence $X$ is also paracompact. $\square$ (Theorem 5.1)

Though we presently do not know if FRP$R(\kappa)$ is equivalent to FRP $(\kappa)$ for
all regular $\kappa$ , it $is$ the case for many instances of $\kappa$ :

Theorem 5.2. Suppose that $\kappa$ is regular and

(5.18) $cf([\lambda]^{\aleph_{0}}, \subseteq)<\kappa$ for all $\lambda<\kappa$ .

Then we have FRP$R(\kappa)\Leftrightarrow$ FRP $(\kappa)$ .

Proof. It is enough to show the direction $\Leftarrow$
”

Assume that $\kappa$ is a regular cardinal $>\aleph_{1}$ with (5.18) and FRP $(\kappa)$ holds.
Let $S\subseteq E_{\omega}^{\kappa}$ be stationary, $g:Sarrow[\kappa]^{\aleph_{0}}$ and $\mathcal{T}\subseteq[\kappa]^{\aleph_{1}}$ be $\omega_{1}$-club. We want to
show that there is $I\in \mathcal{T}$ such that $I$ satisfies (5.1).

Let $\theta$ be sufficiently large and let $\mathcal{M}^{*}=\langle \mathcal{H}(\theta),$ $S,$ $g,$ $\mathcal{T},$ $\ldots,\underline{\triangleleft},$ $\in\rangle$ and let
$\mathcal{M}\prec \mathcal{M}^{*}$ be the union of the continuously increasing chain $\langle M_{\alpha}$ : $\alpha<\kappa\}$ of
elementary submodels of $\mathcal{M}^{*}$ such that

(5.19) $|M_{\alpha}|<\kappa$ for all $\alpha<\kappa$ ;

(5.20) $M_{\alpha+1}$ is $\omega$-bounding for all $\alpha<\kappa$ ;

(5.21) $M_{\alpha}\in M_{\alpha+1}$ for all $\alpha<\kappa$ and

(5.22) $\kappa\subseteq \mathcal{M}$ .

Note that (5.20) is possible by (5.18). Let $C=\{\alpha\in\kappa : \kappa\cap M_{\alpha}=\alpha\}$ . Since
$C$ is club in $\kappa,$ $S_{0}=S\cap C$ is stationary. Applying FRP $(\kappa)$ to $S_{0}$ and $grs_{0}$ we
obtain $I_{0}\in[\lambda]^{\aleph_{0}}$ such that, letting $\alpha_{0}=\sup(I_{0})$ ,

(5.23) cf $(\alpha_{0})=\omega_{1}$ ;

(5.24) $g(\alpha)\subseteq I_{0}$ for all $\alpha\in I\cap S_{0}$ ;

(5.25) for any regressive $f$ : $S_{0}\cap Iarrow\kappa$ such that $f(\alpha)\in g(\alpha)$ for all $\alpha\in S_{0}\cap I$ ,

there is $\xi^{*}<\kappa$ such that $f^{-1}$ ”
$\{\xi^{*}\}$ is stationary in $\sup(I_{0})$ .

Since $S_{0}\cap\alpha_{0}$ is cofinal in $\alpha_{0}$ by (5.26), we have $\alpha_{0}\in C$ . By (5.23) and (5.20)
it follows that

(5.26) $M_{\alpha 0}$ is $\omega$-bounding.
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Let $\langle N_{\alpha}$ : $\alpha<\omega_{1}\}$ be a continuously increasing sequence of elementary
submodels of $M_{\alpha_{0}}$ such that

(5.27) $|N_{\alpha}|=\aleph_{0}$ for every $\alpha<\omega_{1}$ ;

(5.28) there is a countable set $x_{\alpha}\in N_{\alpha+1}$ such that $N_{\alpha}\subseteq x_{\alpha}$ for every $\alpha<\omega_{1}$

and

(5.29) $I_{0} \subseteq\bigcup_{\alpha<\omega_{1}}N_{\alpha}$ .

The condition (5.28) is realizable by (5.26). Let $N= \bigcup_{\alpha<\omega_{1}}N_{\alpha}$ and $I=\kappa\cap N$ .
Then $I_{0}\subseteq I$ by (5.29). So $|I|=\aleph_{1}$ by (5.27). Since $N\subseteq M_{\alpha_{0}}$ , we have
$\sup(I)=\alpha_{0}$ .

Thus the following claim implies that this $I$ is as in the definition of FRP$R(\kappa)$

for $S,$ $g$ and $\mathcal{T}$ .

Claim 5.2.1. $I\in \mathcal{T}$ .

$\vdash$ For $\alpha<\omega_{1}$ there is $A_{\alpha}\in \mathcal{T}\cap N_{\alpha+1}$ such that

(5.30) $\cup(\mathcal{T}\cap N_{\alpha})\subseteq A_{\alpha}$

by (5.28) and elementarity. $\langle A_{\alpha}$ : $\alpha<\omega_{1}\rangle$ is then an increasing sequence in
$\mathcal{T}$ . Let $A= \bigcup_{\alpha<\omega_{1}}A_{\alpha}$ . By the $\omega_{1}$-clubness of $\mathcal{T}$ , we have $A\in \mathcal{T}$ . By (5.30)
and (5.28), we have $I\cap N_{\alpha}\subseteq A_{\alpha}\subseteq I$ for all $\alpha<\omega_{1}$ . By (5.29), it follows that
$A=I$ . $\dashv$ (Claim 5.2.1)

$\square$ (Theorem 5.2)

By the theorem above we have FRP$R(\aleph_{n})\Leftrightarrow$ FRP $(\aleph_{n})$ for all $n\in\omega\backslash 1$ .
Thus the test question in this connection would be the following:

Problem 2. Is FR$P^{}$ $(\aleph_{\omega+1})$ equivalent to FRP $(\aleph_{\omega+1})$ ?

The following problem is also still open:

Problem 3. Does (5.2) follow from FRP or FR$P^{}$ ?
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