<table>
<thead>
<tr>
<th>Title</th>
<th>Morita equivalences between blocks of finite group algebras (Algebraic Combinatorics and related groups and algebras)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Koshitani, Shigeo</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 2010, 1687: 148-151</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-05</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/141481</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Morita equivalences between blocks of finite group algebras

Department of Mathematics and Informatics, Graduate School of Science, Chiba University
e-mail koshitan@math.s.chiba-u.ac.jp

Shigeo Koshitani 越谷 重夫

1. Introduction and notation

In representation theory of finite groups, particularly, in modular representation theory, studying structure of p-blocks (block algebras) of finite groups G, where p is a prime number, is one of the most important and interesting things.

Notation 1.1. Throughout this note we use the following notation and terminology. We denote by G always a finite group, and let p be a prime. Then, a triple $(\mathcal{K}, \mathcal{O}, k)$ is so-called a p-modular system, which is big enough for all finitely many finite groups which we are looking at, including G. Namely, \mathcal{O} is a complete descrete valuation ring, \mathcal{K} is the quotient field of \mathcal{O}, \mathcal{K} and \mathcal{O} have characteristic zero, and k is the residue field $\mathcal{O}/\text{rad}(\mathcal{O})$ of \mathcal{O} such that k has characteristic p. We mean by "big enough" above that \mathcal{K} and k are both splitting fields for the finite groups mentioned above. Let A be a block of $\mathcal{O}G$ (and sometimes of kG) with a defect group P. We denote by mod-kG and by mod-A the categories of finitely generated right kG- and A-modules, respectively. We write $B_0(kG)$ for the principal block algebra of kG. For the notation and terminology we shall not explain precisely, see the books of [2] and [3].
Setup 1.2. Throughout this note all the time except in Theorem 2.1 our situation is the following: Namely, G and H are finite groups which have the same Sylow p-subgroup P, and hence $P \subseteq G \cap H$. Assume that \tilde{G} is a normal subgroup of G and \tilde{H} is a normal subgroup of H such that \tilde{G} and \tilde{H} have the same Sylow p-subgroup \tilde{P}, and hence $\tilde{P} \subseteq \tilde{G} \cap \tilde{H}$, and moreover that $G/\tilde{G} \cong H/\tilde{H}$.

Remark 1.3. If the factor group G/\tilde{G} is p'-groups, then we know essentially by the famous result due to H. Maschke (1898) that the ring extension $k\tilde{G} \subseteq kG$ is a so-called separable extension. Then, roughly speaking, mod-kG and mod-$k\tilde{G}$ are in some sense similar (of course, even the numbers of simples in the two module categories are different, though). Therefore, much more interesting situation should be the case where $|G/\tilde{G}|$ is divisible by p. Then, here comes our situation.

Our situation 1.4. We still keep the setup 1.2. In addition we assume that the factor groups $G/\tilde{G} \cong H/\tilde{H}$ are p-groups. Surely, the factor groups are isomorphic to P/\tilde{P}, too. Then, we naturally come to the following questions.

Questions 1.5. Our main concern in this note is the following:

(i) If there is a nice equivalence between mod-$k\tilde{G}$ and mod-$k\tilde{H}$, can we lift it to a nice equivalence between mod-kG and mod-kH?

(ii) If there is a nice equivalence between mod-kG and mod-kH, can we descend it to a nice equivalence between mod-$k\tilde{G}$ and mod-$k\tilde{H}$?

2. Results

In this short section we shall list two results which come up from Question 1.5.

Theorem 2.1. Assume 1.4, however, note that we do not assume that P and \tilde{P} are Sylow p-subgroups of G and \tilde{G}, respectively. Namely, P is just a p-subgroup of G and also of H, and \tilde{P} is just a p-subgroup of \tilde{G} and also of \tilde{H} We assume then that P is a defect group of A and B, and \tilde{P} is a defect group of \tilde{A} and \tilde{B}. Moreover, we suppose
that the factor groups $Q := G/\tilde{G} \cong H/\tilde{H} \cong P/\tilde{P}$ are just cyclic group C_p of order p, and that A, \tilde{A}, B, \tilde{B} respectively are block algebras of kG, $k\tilde{G}$, kH, $k\tilde{H}$, such that A covers \tilde{A} and B covers \tilde{B}. Set $\Delta Q := \{(u, u) \in Q \times Q | u \in Q\}$. We assume, in addition, that \tilde{A} and \tilde{B} are both ΔQ-invariant, that is, they are stable under conjugation action by all elements in Q. Set furthermore that $\Delta := (\tilde{G} \times \tilde{H})\Delta Q = (\tilde{G} \times \tilde{H})\Delta P = (\tilde{G} \times \tilde{H})\Delta G = (\tilde{G} \times \tilde{H})\Delta H$. Then, we get the following: Suppose that there is a bounded complex $\tilde{M}^\bullet \in C^b(\mathcal{O}\tilde{A} - \mathcal{O}\tilde{B})$ of finitely generated $(\mathcal{O}\tilde{A}, \mathcal{O}\tilde{B})$-bimodules such that

1. $\tilde{M}^\bullet \otimes_{\mathcal{O}} \mathcal{K}$ induces an isometry \tilde{I} from $\mathbb{Z}\text{Irr}(\tilde{A})$ to $\mathbb{Z}\text{Irr}(\tilde{B})$.

2. \tilde{M}^\bullet is perfect (exact), that is, all terms in the complex \tilde{M}^\bullet are projective as left $\mathcal{O}\tilde{G}$-modules and also as right $\mathcal{O}\tilde{H}$-modules (and hence the isometry \tilde{I} above is perfect).

3. the complex \tilde{M}^\bullet extends from $\tilde{G} \times \tilde{H}$ to Δ.

Then, we can define a bounded complex $M^\bullet := \tilde{M}^\bullet_{\tilde{G} \times \tilde{H} \rightarrow \Delta} \uparrow^{G \times H} \in C^b(\mathcal{O}A - \mathcal{O}B)$, and the new complex M^\bullet induces a perfect isometry from $\mathbb{Z}\text{Irr}(A)$ to $\mathbb{Z}\text{Irr}(B)$, where $M^\bullet := \tilde{M}^\bullet_{\tilde{G} \times \tilde{H} \rightarrow \Delta} \uparrow^{G \times H}$ is an induced complex by applying the functor $- \otimes_{\mathcal{O}\Delta} \mathcal{O}[G \times H]$ to the bounded complex \tilde{M}^\bullet.

Corollary 2.2. We easily get [1, Example 4.3] in our previous paper by making use of Theorem 2.1.

Theorem 2.2. Assume 1.4. Here we assume that P is a Sylow p-subgroup of G and H, and also \tilde{P} is a Sylow p-subgroup of \tilde{G} and \tilde{H}. Moreover, we suppose that the factor groups $Q := G/\tilde{G} \cong H/\tilde{H} \cong P/\tilde{P}$ are isomorphic finite p-groups, and that A, \tilde{A}, B, \tilde{B} respectively are principal block algebras of kG, $k\tilde{G}$, kH, $k\tilde{H}$ Set $\Delta P := \{(u, u) \in P \times P | u \in P\}$. Moreover, we denote by Scott($G \times H, \Delta P$) the (Alperin-)Scott module in $G \times H$ with respect to a subgroup ΔP of $G \times H$, see [2, Chap.4 Theorem 8.4, Corollary 8.5]. Then, we get the following: If $\mathcal{A}M_B := \text{Scott}(G \times H, \Delta P)$ induces a Morita equivalence (and hence it is a Puig equivalence) between A and B, then $\mathcal{A}\tilde{M}_B := \text{Scott}(\tilde{G} \times \tilde{H}, \tilde{\Delta} \tilde{P})$...
\(\tilde{H}, \Delta \tilde{P} \) induces a Morita equivalence (and hence it is a Puig equivalence) between \(\tilde{A} \) and \(\tilde{B} \). (Recall that \(A := B_0(kG) = \text{Scott}(G \times G, \Delta \tilde{P}) \) and \(B := B_0(kH) = \text{Scott}(H \times H, \Delta \tilde{P}) \).

Acknowledgment. The author is grateful to Professor Akihide Hanaki for organizing such a wonderful meeting held in Shinshu University as a RIMS meeting during 17–20 November, 2009.

REFERENCES

