On applications of the cellular algebras

Nobuharu Sawada

Department of Mathematics
Tokyo University of Science

ABSTRACT. In this report we explain briefly the results of parts of papers [SawS] and [Sa].

1. CELLULAR ALGEBRAS

1.1. Cellular bases. We begin with the definition of a cellular basis.

Let R be a commutative domain with 1 and A an associative unital R-algebra which is free as an R-module. Suppose that (Λ, \geq) is a (finite) poset and that for each $\lambda \in \Lambda$ there is a finite indexing set $T(\lambda)$ and elements $c_{st}^\lambda \in A$ for all $s, t \in T(\lambda)$ such that

$$\mathcal{C} = \{c_{st}^\lambda \mid \lambda \in \Lambda \text{ and } s, t \in T(\lambda)\}$$

is a (free) basis of A. For each $\lambda \in \Lambda$ let \check{A}^λ be the R-submodule of A with basis

$$\{c_{uv}^\mu \mid \mu \in \Lambda, \mu > \lambda \text{ and } u, v \in T(\mu)\}.$$

The pair (\mathcal{C}, Λ) is cellular basis of A if

(i) the R-linear map $*: A \to A$ determined by $c_{st}^\lambda = c_{ts}^\lambda$, for all $\lambda \in \Lambda$ and all s and t in $T(\lambda)$, is an algebra anti-isomorphism of A,

(ii) for any $\lambda \in \Lambda$, $t \in T(\lambda)$ and $a \in A$ there exist $r_a \in R$ such that for all $s \in T(\lambda)$

$$c_{st}^\lambda a \equiv \sum_{u \in T(\lambda)} r_u c_{s0}^\lambda \text{ mod } \check{A}^\lambda.$$

If A has a cellular basis we say that A is a cellular algebra.

Throughout this section we assume that (\mathcal{C}, Λ) is a fixed cellular basis of the algebra A.

For $\lambda \in \Lambda$ let A^λ be the R-module with basis the set of c_{uv}^μ where $\mu \in \Lambda, \mu \geq \lambda$ and $u, v \in T(\mu)$. Thus, $\check{A}^\lambda \subset A^\lambda$ and $A^\lambda/\check{A}^\lambda$ has basis $c_{st}^\lambda + \check{A}^\lambda$ where $s, t \in T(\lambda)$.

Lemma 1.2 (cf. [Ma, Lemma 2.3]). Let λ be an element of Λ.

(i) Suppose that $s \in T(\lambda)$ and $a \in A$. Then for all $t \in T(\lambda)$

$$a^* c_{st}^\lambda \equiv \sum_{u \in T(\lambda)} r_u c_{st}^\lambda \text{ mod } \check{A}^\lambda$$

where r_u is the element of R determined by (1.1) for each u.

(ii) The R-modules A^λ and \check{A}^λ are two-sided ideals of A.

(iii) Suppose that s and t are elements of $T(\lambda)$. Then there exists an element r_{st} of R such that for any $u, v \in T(\lambda)$

$$c_{us}^\lambda c_{tv}^\lambda \equiv r_{st} c_{uv}^\lambda \text{ mod } \check{A}^\lambda.$$
Fix an element λ of Λ. If $s \in T(\lambda)$ define C^λ_{s} to be the R-submodule of $A^\lambda/\check{A}^\lambda$ with basis $\{c_{t}^\lambda + \check{A}^\lambda \mid t \in T(\lambda)\}$. Then C^λ_{s} is a right A-module by (1.1) and, importantly, the action of A on C^λ_{s} is completely independent of s. That is, $C^\lambda_{s} \cong C^\lambda_{t}$ for any $s, t \in T(\lambda)$. This motivates us to define the right cell module C^λ to be the right A-module which is free as an R-module with basis $\{c_{t}^\lambda \mid t \in T(\lambda)\}$ and where for each $a \in A$

\begin{equation}
(1.2) \quad c_{t}^\lambda a = \sum_{u \in T(\lambda)} r_{u}c_{u}^\lambda
\end{equation}

where r_{u} is the element of R determined by (1.1). Then $C^\lambda \cong C^\lambda_{s}$, for any $s \in T(\lambda)$, via the canonical R-linear map which sends c_{t}^λ to $c_{st}^\lambda + \check{A}^\lambda$ for all $t \in T(\lambda)$. In particular, (1.2) determines a well-defined action of A on C^λ.

Abusing notation, define the left cell module C^λ to be the free R-module with basis $\{c_{t}^\lambda \mid t \in T(\lambda)\}$ and A-action given by

\[a^*c_{t}^\lambda = \sum_{u \in T(\lambda)} r_{u}c_{u}^\lambda \]

for all $a \in A$ and where, once again, r_{u} is given by (1.1). Then C^λ is a left A-module and $C^\lambda \cong \text{Hom}_R(C^\lambda, R)$.

Moreover, as (A, A)-bimodules, $A^\lambda/\check{A}^\lambda$ and $C^\lambda \otimes_{R} C^\lambda$ are canonically isomorphic via the R-linear map determined by $c_{st}^\lambda + \check{A}^\lambda \mapsto c_{s}^\lambda \otimes c_{t}^\lambda$ for all s and t in $T(\lambda)$.

Furthermore, as a right A-module,

\begin{equation}
(1.3) \quad A^\lambda/\check{A}^\lambda \cong C^\lambda \otimes_{R} C^\lambda \cong \bigoplus_{s \in T(\lambda)} C^\lambda_{s}.
\end{equation}

So, as a right A-module, $A^\lambda/\check{A}^\lambda$ is isomorphic to a direct sum of $|T(\lambda)|$ copies of C^λ.

By Lemma 1.2 (iii) there is a unique bilinear map $\langle \ , \ \rangle : C^\lambda \times C^\lambda \rightarrow R$ such that $\langle c_{s}^\lambda, c_{t}^\lambda \rangle$, for $s, t \in T(\lambda)$, is given by

\begin{equation}
(1.4) \quad \langle c_{s}^\lambda, c_{t}^\lambda \rangle c_{u}^\lambda = c_{us}^\lambda c_{tu}^\lambda \mod \check{A}^\lambda,
\end{equation}

where u and v are any elements of $T(\lambda)$. The bilinear form $\langle \ , \ \rangle$ is both symmetric and associative.

Let $\text{rad} C^\lambda = \{x \in C^\lambda \mid \langle x, y \rangle = 0 \text{ for all } y \in C^\lambda\}$. One can see that $\text{rad} C^\lambda$ is an A-submodule of C^λ. Accordingly, we define $D^\lambda = C^\lambda/\text{rad} C^\lambda$.

1.2. Simple modules in a cellular algebra. We are almost ready to show that every irreducible A-module is isomorphic to D^μ, for some $\mu \in \Lambda$. In this section we also define and describe the decomposition matrix of A. Throughout, we assume that the poset Λ is finite. Thus A is a finite dimensional algebra.

One of the main points of the cellular basis is that it gives rise to many filtrations in A. To formalize this, call a subset Γ of Λ a poset ideal if $\lambda \in \Gamma$ whenever $\lambda > \mu$ for some $\mu \in \Gamma$. If Γ is a poset ideal let $A(\Gamma)$ be the R-submodule of A with basis
$\{c_{\mu u}^{\nu} \mid \mu \in \Gamma \text{ and } u, v \in T(\mu)\}$. Then $A(\Gamma) = \sum_{\mu \in \Gamma} A^\mu$. So $A(\Gamma)$ is a two-sided ideal by Lemma 1.2 (ii).

Lemma 1.3 (cf. [Ma, Lemma 2.14]). Suppose that Λ is finite and let $\emptyset = \Gamma_0 \subset \Gamma_1 \subset \cdots \subset \Gamma_k = \Lambda$ be any maximal chain of ideals in Λ. Then there exists a total ordering μ_1, \ldots, μ_k of Λ such that $\Gamma_i = \{\mu_1, \ldots, \mu_i\}$, for all i, and

$$0 = A(\Gamma_0) \hookrightarrow A(\Gamma_1) \hookrightarrow \cdots \hookrightarrow A(\Gamma_k) = A$$

is a filtration of A with composition factors $A(\Gamma_i)/A(\Gamma_{i-1}) \cong C^{*\mu_i} \otimes_R C^{\mu_i}$.

Let $\Lambda_0 = \{\mu \in \Lambda \mid D^\mu \neq 0\}$. Then $\mu \in \Lambda_0$ if and only if the bilinear form $\langle \ , \ \rangle$ on C^μ is non-zero. In principle, the next theorem classifies the simple A-modules. However, in practice, it is often difficult to determine the set Λ_0.

Theorem 1.4 (Graham-Lehrer). Suppose that R is a field and that Λ is finite. Then $\{D^\mu \mid \mu \in \Lambda_0\}$ is a complete set of pairwise inequivalent irreducible A-modules.

Suppose that $\mu \in \Lambda_0$ and $\lambda \in \Lambda$. Define $d_{\lambda \mu} = [C^\lambda : D^\mu]$ to be the decomposition number (or composition multiplicity) of the irreducible module D^μ in C^λ. By the Jordan-Hölder Theorem, $d_{\lambda \mu}$ is well-defined. The matrix $D = (d_{\lambda \mu})$, where $\lambda \in \Lambda$ and $\mu \in \Lambda_0$, is the so-called decomposition matrix of A.

Corollary 1.5 (cf. [Ma, Corollary 2.17]). Suppose that R is a field. Then the decomposition matrix D of A is unimatrix. That is, if $\mu \in \Lambda_0$ and $\lambda \in \Lambda$ then $d_{\mu \mu} = 1$ and $d_{\lambda \mu} \neq 0$ only if $\lambda \geq \mu$.

The last result in this section connects the theory of quasi-hereditary algebras and cellular algebras. Quasi-hereditary algebras are a very important class of algebras which were introduced by Cline, Parshall and Scott [CPS].

Proposition 1.6 (cf. [Ma, Corollary 2.23]). Suppose that R is a field. Then the following are equivalent.

(i) $\Lambda = \Lambda_0$.

(ii) The decomposition matrix D is a square unimatrix.

Furthermore, if these conditions are satisfied then A is quasi-hereditary.

As this criterion indicates, being quasi-hereditary is a non-degeneracy property on A.

2. Preliminaries on Ariki-Koike algebras and Cyclotomic q-Schur algebras

2.1. Fix positive integers r and n and let S_n be the symmetric group of degree n. Let R be an integral domain with 1 and q, Q_1, \ldots, Q_r be elements in R, with invertible q. The Ariki-Koike algebra associated to the complex reflection group $W_{n,r} = G(r, 1, n)$, is the associative unital algebra $\mathcal{H} = \mathcal{H}_{n,r}$ over R with generators T_1, \ldots, T_n subject to the following conditions,

$$(T_1 - Q_1) \cdots (T_i - Q_r) = 0,$$

$$(T_i - q)(T_i + q^{-1}) = 0 \quad (i \geq 2),$$

$$T_i T_j = T_j T_i \quad (|i - j| \geq 2),$$

$$T_i T_{i+1} T_i = T_{i+1} T_i T_i \quad (2 \leq i \leq n - 1).$$
It is known that \mathcal{H} is a free R-module of rank $n! r^n$. The subalgebra $\mathcal{H}'(\mathfrak{S}_n)$ of \mathcal{H} generated by T_2, \ldots, T_n is isomorphic to the Iwahori-Hecke algebra \mathcal{H}_n' of the symmetric group \mathfrak{S}_n.

For $i = 2, \ldots, n$ let s_i be the transposition $(i-1, i)$ in \mathfrak{S}_n. Then $\{s_2, \ldots, s_n\}$ generate \mathfrak{S}_n. For $w \in \mathfrak{S}_n$, we set $T_w = T_{s_1} \cdots T_{s_k}$ where $w = s_{i_1} \cdots s_{i_k}$ is a reduced expression. Then T_w is independent of the choice of a reduced expression. We also put $L_k = T_k \cdots T_2 T_1 T_2 \cdots T_k$ for $k = 1, 2, \ldots, n$. Note that all L_1, \ldots, L_n commutes. Moreover, these elements produce a basis of \mathcal{H}.

Theorem 2.2 ([AK, Theorem 3.10]). The Ariki-Koike algebra \mathcal{H} is free as an R-module with basis $\{L_1^{a_1} \cdots L_n^{a_n} T_w \mid w \in \mathfrak{S}_n, 0 \leq a_i < r \text{ for } 1 \leq i \leq n\}$.

Recall that a composition of n is sequence $\sigma = (\sigma_1, \sigma_2, \ldots)$ of non-negative integers such that $|\sigma| = \sum \sigma_i = n$. σ is a partition if in addition $\sigma_1 \geq \sigma_2 \geq \cdots$. If $\sigma_i = 0$ for all $i > k$ then we write $\sigma = (\sigma_1, \ldots, \sigma_k)$.

An r-composition (or multicomposition) of n is an r-tuple $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)})$ of compositions with $\lambda^{(i)} = (\lambda_1^{(i)}, \lambda_2^{(i)}, \ldots)$ such that $|\lambda^{(1)}| + \cdots + |\lambda^{(r)}| = n$. An r-composition λ is an r-partition if each $\lambda^{(i)}$ is a partition. If λ is an r-partition of n then we write $\lambda \vdash n$. The diagram $[\lambda]$ of the r-composition λ is the set $[\lambda] = \{(i, j, s) \mid 1 \leq i \leq \lambda_j^{(s)}, 1 \leq s \leq r\}$. The elements of $[\lambda]$ are called nodes. The set of r-compositions of n is partially ordered by dominance, i.e., if λ and μ are two r-compositions then λ dominates μ, and we write $\lambda \triangleright= \mu$, if

$$\sum_{c=1}^{s-1} |\lambda^{(c)}| + \sum_{j=1}^{i} |\lambda_j^{(s)}| \geq \sum_{c=1}^{s-1} |\mu^{(c)}| + \sum_{j=1}^{i} |\mu_j^{(s)}|$$

for $1 \leq s \leq r$ and for all $i \geq 1$. If $\lambda \triangleright= \mu$ and $\lambda \neq \mu$ then we write $\lambda \triangleright \mu$.

If λ is an r-composition let $\mathfrak{S}_\lambda = \mathfrak{S}_{\lambda^{(1)}} \times \cdots \times \mathfrak{S}_{\lambda^{(r)}}$ be the corresponding Young subgroup of \mathfrak{S}_n. Set

$$x_\lambda = \sum_{w \in \mathfrak{S}_\lambda} q^{l(w)} T_w, \quad u_\lambda^+ = \prod_{s=2}^{r} \prod_{k=1}^{a_s} (L_k - Q_s),$$

where $a_s = |\lambda^{(1)}| + \cdots + |\lambda^{(s-1)}|$ for $2 \leq s \leq r$. If $s = 1$ then we set $a_s = 0$. Set $m_\lambda = x_\lambda u_\lambda^+$.

For any r-composition μ, a μ-tableau $t = (t^{(1)}, \ldots, t^{(r)})$ is a bijection $t : [\mu] \rightarrow \{1, 2, \ldots, n\}$, where $t^{(i)}$ is a tableau of Shape($t^{(i)}$) = $\mu^{(i)}$. We write Shape(t) = μ if t is a μ-tableau. A μ-tableau t is called standard (resp. row standard) if all $t^{(i)}$ are standard (resp. row standard). Let Std(λ) be the set of standard λ-tableaux.

For each r-composition μ, let t^\ast be the μ-tableau with the numbers $1, 2, \ldots, n$ attached in order from left to right along its rows and from top to bottom, and from $\mu^{(1)}$ to $\mu^{(r)}$. If t is any row standard μ-tableau let $d(t) \in \mathfrak{S}_n$ be the unique permutation such that $t = t^\ast d(t)$. Furthermore, let $* : \mathcal{H} \rightarrow \mathcal{H}$ be the anti-isomorphism given by $T_i^* = T_i$ for $i = 1, 2, \ldots, n$, and set $m_{\ast t} = T_{d(t)}^* m_\lambda T_{d(t)}$.

Theorem 2.3 ([DJM, Theorem 3.26]). The Ariki-Koike algebra \mathcal{H} is free as an R-module with cellular basis $\{m_{\ast t} \mid s, t \in \text{Std}(\lambda) \text{ for some } \lambda \vdash n\}$.
2.4. We can now give a definition of the cyclotomic q-Schur algebras. A set Λ of r-compositions of n is saturated if Λ is finite and whenever λ is an r-partition such that $\lambda \geq \mu$ for some $\mu \in \Lambda$ then $\lambda \in \Lambda$. If Λ is a saturated set of r-compositions, we denote by Λ^+ be the set of r-partitions in Λ.

Definition 2.5. Suppose that Λ is a saturated set of multicompositions of n. The cyclotomic q-Schur algebra with weight poset Λ is the endomorphism algebra

$$S(\Lambda) = \text{End}_\mathcal{H}(M(\Lambda)), \quad \text{where } M(\Lambda) = \bigoplus_{\lambda \in \Lambda} M^\lambda.$$

Let λ be an r-partition and μ an r-composition. A λ-Tableau of type μ is a map $T : [\lambda] \to \{(i, s) \mid i \geq 1, 1 \leq s \leq r\}$ such that $\mu_i^{(s)} = \#\{x \in [\lambda] \mid T(x) = (i, s)\}$ for all $i \geq 1$ and $1 \leq s \leq r$. We regard T as an r-tuple $T = (T^{(1)}, \ldots, T^{(r)})$, where $T^{(s)}$ is the $\lambda^{(s)}$-tableau with $T^{(s)}(i, j) = T(i, j, s)$ for all $(i, j, s) \in [\lambda]$. In this way we identify the standard tableaux above with the Tableaux of type $w = ((0), \ldots, (1^n))$. If T is a Tableau of type μ then we write $\text{Type}(T) = \mu$.

Given two pairs (i, s) and (j, t) write $(i, s) \preceq (j, t)$ if either $s < t$, or $s = t$ and $i \leq j$.

Definition 2.6. A Tableau T is (row) semistandard if, for $1 \leq t \leq r$, the entries in $T^{(t)}$ are

(i) weakly increasing along the rows with respect to \preceq,
(ii) strictly increasing down columns,
(iii) (i, s) appears in $T^{(t)}$ only if $s \geq t$.

Let $T_0(\lambda, \mu)$ be the set of semistandard λ-Tableaux of type μ and let $T_0(\Lambda) = T_0^\Lambda(\lambda) = \bigcup_{\mu \in \Lambda} T_0(\lambda, \mu)$. Notice that if $T_0(\lambda, \mu)$ is non-empty, then $\lambda \geq \mu$.

Suppose that λ is a standard λ-tableau and let μ be an r-composition. Let $\mu(t)$ be the Tableau obtained from λ by replacing each entry j with (i, k) if j appears in row i of $(\mu)^{(t)}$. The tableau $\mu(t)$ is a λ-Tableau of type μ. It is not necessarily semistandard. If S and T are semistandard λ-Tableaux of type μ and ν respectively, let

$$m_{ST} = \sum_{s \in \text{Std}(\lambda), \mu(s) = S, \nu(t) = T} q^{(d(s)) + (d(t))} m_{st}.$$

For S and T as above we define a map φ_{ST} on $M(\Lambda)$ by $\varphi_{ST}(m_{\alpha}h) = \delta_{\alpha\nu}m_{ST}h$, for all $h \in \mathcal{H}$ and all $\alpha \in \Lambda$. Here $\delta_{\alpha\nu}$ is the Kronecker delta, i.e., $\delta_{\alpha\nu} = 1$ if $\alpha = \nu$ and it is zero otherwise. Then φ_{ST} is well-defined, and it belongs to $S(\Lambda)$. Moreover,

Theorem 2.7 ([DJM, Theorem 6.6]). The cyclotomic q-Schur algebra $S(\Lambda)$ is free as an R-module with cellular basis $C(\Lambda) = \{\varphi_{ST} \mid S, T \in T_0^\Lambda(\lambda) \text{ for some } \lambda \in \Lambda^+\}$.

The basis $\{\varphi_{ST}\}$ is called a semistandard basis of $S(\Lambda)$. Since this basis is cellular, the map $*: S(\Lambda) \rightarrow S(\Lambda)$ which is determined by $\varphi_{ST}^* = \varphi_{TS}$ is an anti-automorphism of $S(\Lambda)$. This involution is closely related to the $*$-involution on \mathcal{H}. Explicitly, if $\varphi : M^\nu \rightarrow M^\mu$ is an \mathcal{H}-module homomorphism then $\varphi^* : M^\mu \rightarrow M^\nu$ is the homomorphism given by $\varphi^*(m_{\alpha}h) = (\varphi(m_{\alpha}))^*h$, for all $h \in \mathcal{H}$.

For each r-partition $\lambda \in \Lambda^+$, we define $S^{\nu\lambda} = S^{\nu}(\Lambda)^{\lambda}$ as the R-span of φ_{ST} such that $S, T \in T_0^\Lambda(\alpha)$ with $\alpha \triangleright \lambda$, which is a two-sided ideal of $S(\Lambda)$. We define the Weyl
module W^λ by the right $S(\Lambda)$-submodule of $S(\Lambda)/S^\vee(\Lambda)^{\lambda}$ generated by the image $\varphi_\lambda = \varphi_{T^\lambda T^\lambda} \in S(\Lambda)$ where $T^\lambda = \lambda(t^4)$. For each $T \in T_0^\lambda(\lambda)$, let φ_T be the image of $\varphi_{T^\lambda T}$ in W^λ. Then the Weyl module W^λ is R-free with basis $\{\varphi_T \mid T \in T_0^\lambda(\lambda)\}$. As in the case of Specht modules there is an inner product on W^λ which is determined by

$$\langle \varphi_T, \varphi_S \rangle_{T^\lambda T^\lambda} \equiv (\varphi_S, \varphi_T)_{T^\lambda T^\lambda} \mod S^\vee(\Lambda).$$

Let $\text{rad}W^\lambda = \{x \in W^\lambda \mid \langle x, y \rangle = 0$ for all $y \in W^\lambda\}$. The quotient module $L^\lambda = W^\lambda/\text{rad}W^\lambda$ is absolutely irreducible and $\{L^\lambda \mid \lambda \in \Lambda^+\}$ is a complete set of non-isomorphic irreducible $S(\Lambda)$-modules.

2.8. For an r-composition μ, we define the type $\alpha = \alpha(\mu)$ of μ by $\alpha = (n_1, \ldots, n_r)$ with $n_i = |\mu^{(i)}|$, and the size of μ by $n = \sum_{i=1}^r n_i$. We also define a sequence $a = a(\mu) = (a_1, \ldots, a_r)$. (Recall that $a_i = \sum_{k=1}^{i-1} |\mu^{(k)}| = \sum_{k=1}^{i-1} n_k$.)

We define a partial order \geq on the set $\mathbb{Z}_{\geq 0}^r$ by $a \geq a'$ for $a = (a_1, \ldots, a_r)$, $a' = (a'_1, \ldots, a'_r) \in \mathbb{Z}_{\geq 0}^r$ if $a_i \geq a'_i$ for any i. We write $a > a'$ if $a \geq a'$ and $a \neq a'$. It is clear that

(2.1)

If $\lambda \supseteq \mu$, then $a(\lambda) \geq a(\mu)$ for r-compositions λ, μ.

Hence if $T_0(\lambda, \mu)$ is non-empty, then $\lambda \supseteq \mu$, and so we have $a(\lambda) \geq a(\mu)$.

For any r-partition λ and r-composition μ, we define a subset $T_0^+(\lambda, \mu)$ of $T_0(\lambda, \mu)$ by

$$T_0^+(\lambda, \mu) = \{S \in T_0(\lambda, \mu) \mid a(\lambda) = a(\mu)\}.$$

Note that the condition $a(\lambda) = a(\mu)$ is equivalent to $\alpha(\lambda) = \alpha(\mu)$. Take $S \in T_0^+(\lambda, \mu)$. Then one can check that $S \in T_0^+(\lambda, \mu)$ if and only if each entry of $S^{(k)}$ is of the form (i, k) for some i. Hence in this case $S^{(k)}$ can be identified with a semistandard $\lambda^{(k)}$-Tableau of type $\mu^{(k)}$ under the usual definition of the semistandard Tableaux for 1-partitions $\lambda^{(k)}$ and 1-compositions $\mu^{(k)}$. It follows that we have a bijection

$$T_0^+(\lambda, \mu) \simeq T_0(\lambda^{(1)}, \mu^{(1)}) \times \cdots \times T_0(\lambda^{(r)}, \mu^{(r)})$$

via $S \mapsto (S^{(1)}, \ldots, S^{(r)})$. Moreover, if $s \in \text{Std}(\lambda)$ is such that $\mu(s) = S$ with $S \in T_0^+(\lambda, \mu)$, then the entries of i-th component of s consist of numbers $a_i + 1, \ldots, a_{i+1}$ for $a(\lambda) = (a_1, \ldots, a_r)$. In particular, $d(s) \in \mathcal{S}_\alpha$ for $\alpha = \alpha(\lambda)$.

Fix an r-tuple $m = (m_1, \ldots, m_r)$ of non-negative integers. Then, an r-composition $\mu = (\mu^{(1)}, \ldots, \mu^{(r)})$ with $\mu^{(i)} = (\mu_1^{(i)}, \ldots, \mu_m^{(i)}) \in \mathbb{Z}_{\geq 0}^m$ is called an (r, m)-composition, and (r, m)-partition is defined similarly. We denote by $\mathcal{P}_{n, r} = \mathcal{P}_{n, r}(m)$ (resp. $\mathcal{P}_{n, r} = \mathcal{P}_{n, r}(m)$) the set of (r, m)-compositions (resp. (r, m)-partitions) of size n. (Note that $\mathcal{P}_{n, r}(m)$ are naturally identified with each other for any m such that $m_i \geq n$. However, $\mathcal{P}_{n, r}$ depends on the choice of m.) Finally, let

$$C^0(\Lambda) = \bigcup_{\mu, \nu \in \Lambda, \lambda \in \Lambda^+} \{\varphi_{ST} \in C(\Lambda) \mid S \in T_0(\lambda, \mu), \nu \in T_0(\lambda, \mu), a(\lambda) > a(\mu) \text{ if } \alpha(\mu) \neq \alpha(\nu)\}$$

and we define $S^0(\Lambda)$ as the R-submodule of $S(\Lambda)$ with basis $C^0(\Lambda)$.
3. The Standard Basis for $S^0(\Lambda)$

3.1. First, we prepare some notation. Let

$$\Omega = (\Lambda^+ \times \{0, 1\}) \setminus \{(\lambda, 1) \mid T_0(\lambda, \mu) = \emptyset \text{ for any } \mu \in \Lambda \text{ such that } a(\lambda) > a(\mu)\}$$

and we define a partial order $(\lambda_1, \epsilon_1) \geq (\lambda_2, \epsilon_2)$ on Ω by $(\lambda_1, \epsilon_1) > (\lambda_2, \epsilon_2)$ if $\lambda_1 \triangleright \lambda_2$, or $\lambda_1 = \lambda_2$ and $\epsilon_1 > \epsilon_2$. For a $(\lambda, \epsilon) \in \Omega$, we define index sets $I(\lambda, \epsilon), J(\lambda, \epsilon)$ by

$$I(\lambda, \epsilon) = \left\{ \begin{array}{ll} T_0^+(\lambda) & \text{if } \epsilon = 0, \\ \bigcup_{\mu \in \Lambda, a(\lambda) > a(\mu)} T_0(\lambda, \mu) & \text{if } \epsilon = 1, \end{array} \right.$$

$$J(\lambda, \epsilon) = \left\{ \begin{array}{ll} T_0^+(\lambda) & \text{if } \epsilon = 0, \\ T_0(\lambda) & \text{if } \epsilon = 1, \end{array} \right.$$

where $T_0^+(\lambda) = \bigcup_{\mu \in \Lambda} T_0^+(\lambda, \mu)$. Then $I(\lambda, \epsilon)$ and $J(\lambda, \epsilon)$ are not empty for all $(\lambda, \epsilon) \in \Omega$. Assume that $(\lambda, \epsilon) \in \Omega$. We define a subset $C^0(\lambda, \epsilon)$ of $S^0(\Lambda)$ by

$$C^0(\lambda, \epsilon) = \{ \varphi_{ST} \mid (S, T) \in I(\lambda, \epsilon) \times J(\lambda, \epsilon) \}.$$

It is easy to see that

(3.1) the union $\bigcup_{(\lambda, \epsilon) \in \Omega} C^0(\lambda, \epsilon)$ is disjoint and is equal to the set $C^0(\Lambda)$.

3.2. For any $(\lambda, \epsilon) \in \Omega$, we define by $S^0(\lambda, \epsilon) = S^0(\Lambda)(> (\lambda, \epsilon))$ the R-submodule of $S^0(\Lambda)$ spanned by φ_{UV} where $(U, V) \in I(\lambda', \epsilon') \times J(\lambda', \epsilon')$ for some $(\lambda', \epsilon') \in \Omega$ with $(\lambda', \epsilon') > (\lambda, \epsilon)$. Note that $S^0(\Lambda) \cap S_{\lambda}^\vee = S^0(\Lambda)(\geq (\lambda, \epsilon))$. Similarly, we define $S^0(\Lambda)(\geq (\lambda, \epsilon))$ as the R-submodule spanned by φ_{UV} with $(\lambda', \epsilon') \geq (\lambda, \epsilon)$. We can now state.

Theorem 3.1. The subalgebra $S^0(\Lambda)$ is standardly based (in the sense of [DR]) on Ω with standard basis $C^0(\Lambda)$, that is,

(i) The union $\bigcup_{(\lambda, \epsilon) \in \Omega} C^0(\lambda, \epsilon) = C^0(\Lambda)$ is disjoint and forms an R-basis for $S^0(\Lambda)$.

(ii) For any $\varphi \in S^0(\Lambda)$, $\varphi_{ST} \in C^0(\lambda, \epsilon)$, we have

$$\varphi \cdot \varphi_{ST} \equiv \sum_{S' \in I(\lambda, \epsilon)} f_{S', (\lambda, \epsilon)}(\varphi, S) \cdot \varphi_{ST} \mod S^0(\lambda, \epsilon),$$

$$\varphi_{ST} \cdot \varphi \equiv \sum_{T' \in J(\lambda, \epsilon)} f_{(\lambda, \epsilon), T'}(\varphi) \cdot \varphi_{ST'} \mod S^0(\lambda, \epsilon),$$

where $\varphi_{ST}, \varphi_{ST'} \in C^0(\Lambda)$ and $f_{S', (\lambda, \epsilon)}(\varphi, S), f_{(\lambda, \epsilon), T'}(\varphi) \in R$ are independent of T and S, respectively.

Note that the cellular algebra is a special case of the standardly based.

3.3. Next we introduce the Weyl module for $S^0(\Lambda)$. By (3.2) in Theorem 3.1, it is easy to see that R-modules $S^0(\Lambda)(\geq (\lambda, \epsilon))$ and $S^0(\lambda, \epsilon) = S^0(\Lambda)(> (\lambda, \epsilon))$ are two-sided ideals of $S^0(\Lambda)$. Fix a $(\lambda, \epsilon) \in \Omega$. For $S \in I(\lambda, \epsilon)$, we define the Weyl module Z^λ_S for $S^0(\Lambda)$ by the R-submodule of $\{S^0(\Lambda)(\geq (\lambda, \epsilon))\}/\{S^0(\Lambda)(> (\lambda, \epsilon))\}$ with
basis \{ \varphi_{ST} + \delta_{0}^{\nu}(\lambda, \epsilon) \mid T \in J(\lambda, \epsilon) \}. Moreover, by (3.2), we see that \(Z_{S}^{(\lambda, \epsilon)} \) is the right \(S^{0}(\Lambda) \)-module and the action of \(S^{0}(\Lambda) \) on \(Z_{S}^{(\lambda, \epsilon)} \) is independent of the choice of \(S \), i.e., \(Z_{S_{1}}^{(\lambda, \epsilon)} \cong Z_{S_{2}}^{(\lambda, \epsilon)} \) for all \(S_{1}, S_{2} \in I(\lambda, \epsilon) \). However, since \(T^{\lambda} \) is not an element in \(I(\lambda, 1) \) for \((\lambda, 1) \in \Omega \), one should pay attention that there is no "canonical"-Weyl module for the case \((\lambda, 1) \). (That is, we can not define \(Z_{T^{\lambda}}^{(\lambda, 1)} \).) For the convenience sake let \(Z^{(\lambda, 0)} = Z_{T^{\lambda}}^{(\lambda, 0)} \) and put \(\varphi_{T}^{0} = \varphi_{T^{\lambda}T} + \delta_{0}^{\nu}(\lambda, \epsilon) \) for any \(T \in J(\lambda, 0) = T^{0}(\lambda) \).

3.4. Suppose that \(S, T \in T^{0}_{0}(\lambda) \). Then there exists an element \(r_{ST} \in R \) such that for any \(U, V \in T^{0}_{0}(\lambda) \)

\[
\varphi_{US} \cdot \varphi_{TV} \equiv r_{ST} \cdot \varphi_{UV} \mod \delta_{0}^{\nu}(\lambda, 0).
\]

We define a bilinear form \((\cdot, \cdot)_{0} : Z^{(\lambda, 0)} \times Z^{(\lambda, 0)} \rightarrow R \) by \((\varphi_{S}^{0}, \varphi_{T}^{0})_{0} = r_{ST} \). Hence we have

\[
(3.3) \quad (\varphi_{S}^{0}, \varphi_{T}^{0})_{0} \cdot \varphi_{UV} \equiv \varphi_{US} \cdot \varphi_{TV} \mod \delta_{0}^{\nu}(\lambda, 0),
\]

where \(U \) and \(V \) are any elements of \(T^{0}_{0}(\lambda) \). It is easy to see that

\[
(3.4) \quad (\varphi_{S}^{0}, \varphi_{T}^{0})_{0} = (\varphi_{S}, \varphi_{T}) \quad \text{for every} \quad S, T \in T^{0}_{0}(\lambda).
\]

Let \(\text{rad} Z^{(\lambda, 0)} = \{ x \in Z^{(\lambda, 0)} \mid (x, y)_{0} = 0 \text{ for all } y \in Z^{(\lambda, 0)} \} \).

Lemma 3.2. \(\text{rad} Z^{(\lambda, 0)} \) is an \(S^{0}(\Lambda) \)-submodule of \(Z^{(\lambda, 0)} \).

We put \(L^{\lambda}_{0} = Z^{(\lambda, 0)}/\text{rad} Z^{(\lambda, 0)} \). Then we have the following.

Proposition 3.3. Suppose that \(R \) is a field, and \(\lambda \in \Lambda^{+} \). Then

(i) \(L^{\lambda}_{0} \neq 0 \) and

(ii) \(\text{rad} Z^{(\lambda, 0)} \) is the unique maximal submodule of \(Z^{(\lambda, 0)} \) and \(L^{\lambda}_{0} \) is absolutely irreducible. Moreover, the Jacobson radical of \(Z^{(\lambda, 0)} \) is equal to \(\text{rad} Z^{(\lambda, 0)} \).

4. A RELATIONSHIP BETWEEN \(S^{0}(m, n) \) AND \(S^{0}(\Lambda) \)

First, we recall the definition of modified Ariki-Koike algebras and their cyclotomic \(q \)-Schur algebras ([SawS]).

4.1. From now on, throughout this paper, we consider the following condition on parameters \(Q_{1}, \ldots, Q_{r} \) in \(R \) whenever we consider the modified Ariki-Koike algebras (and their cyclotomic \(q \)-Schur algebras).

(4.1) \(Q_{i} - Q_{j} \) are invertible in \(R \) for any \(i \neq j \).

Let \(A \) be a square matrix of degree \(r \) whose \(i-j \) entry is given by \(Q_{ij}^{i-1} \) for \(1 \leq i, j \leq r \). Thus \(A \) is the Vandermonde matrix, and \(\Delta = \det A = \prod_{i>j} (Q_{i} - Q_{j}) \) is invertible by (4.1). We express the inverse of \(A \) as \(A^{-1} = \Delta^{-1} B \) with \(B = (h_{ij}) \), and define a polynomial \(F_{i}(X) \in R[X] \), for \(1 \leq i \leq r \), by \(F_{i}(X) = \sum_{1 \leq j \leq r} h_{ij} X^{j-1} \).
The modified Ariki-Koike algebra $\mathcal{H}^b = \mathcal{H}^b_{n,r}$ is an associative algebra over R with generators T_2, \cdots, T_n and ξ_1, \ldots, ξ_n and relations

\begin{align}
(T_i - q)(T_i + q^{-1}) &= 0 \quad (2 \leq i \leq n), \\
(\xi_i - Q_1) \cdots (\xi_i - Q_r) &= 0 \quad (1 \leq i \leq n), \\
T_iT_{i+1}T_i &= T_{i+1}T_iT_{i+1} \quad (2 \leq i \leq n), \\
T_iT_j &= T_jT_i \quad (|i - j| \geq 2), \\
\xi_i\xi_j &= \xi_j\xi_i \quad (1 \leq i, j \leq n), \\
T_j\xi_j &= \xi_jT_j + \Delta^{-2} \sum_{c_1 < c_2} (Q_{c_2} - Q_{c_1})(q - q^{-1})F_{c_1}(\xi_j-1)F_{c_2}(\xi_j), \\
T_j\xi_{j-1} &= \xi_jT_j - \Delta^{-2} \sum_{c_1 < c_2} (Q_{c_2} - Q_{c_1})(q - q^{-1})F_{c_1}(\xi_j-1)F_{c_2}(\xi_j), \\
T_j\xi_k &= \xi_jT_j \quad (k \neq j - 1, j).
\end{align}

It is known that if $R = \mathbb{Q}(\overline{q}, \overline{Q}_1, \ldots, \overline{Q}_r)$, the field of rational functions with variables $\overline{q}, \overline{Q}_1, \ldots, \overline{Q}_r$, \mathcal{H}^b is isomorphic to \mathcal{H}, and it gives an alternate presentation of \mathcal{H} apart from 2.1.

The subalgebra $\mathcal{H}^b(\mathfrak{S}_n)$ of \mathcal{H}^b generated by T_2, \ldots, T_n is isomorphic to \mathcal{H}_n, hence it can be naturally identified with the corresponding subalgebra $\mathcal{H}(\mathfrak{S}_n)$ of \mathcal{H}. Moreover, it is known by [Sh] that the set $\{\xi_1^{c_1} \cdots \xi_n^{c}T_w | w \in \mathfrak{S}_n, 0 \leq c_i < r \text{ for } 1 \leq i \leq n\}$ gives rise to a basis of \mathcal{H}^b.

Let $V = \bigoplus_{i=1}^{r} V_i$ be a free R-module, with rank $V_i = m_i$. We put $m = \sum m_i$. It is known by [SakS] that we can define a right \mathcal{H}-module structure on $V \otimes \mathfrak{S}_n$. We denote this representation by $\rho : \mathcal{H} \rightarrow \operatorname{End} V \otimes \mathfrak{S}_n$. Note that this construction works without the condition (4.1). Also it is shown in [Sh] that, under the assumption (4.1), a right action of \mathcal{H}^b on $V \otimes \mathfrak{S}_n$ can be defined. We denote this representation by $\rho^b : \mathcal{H}^b \rightarrow \operatorname{End} V \otimes \mathfrak{S}_n$. By [Sh, Lemma 3.5], we know that $\operatorname{Im} \rho \subset \operatorname{Im} \rho^b$.

We consider the condition

\begin{equation}
m_i \geq n \text{ for } i = 1, \ldots, r.
\end{equation}

Lemma 4.2 ([SawS, Lemma 1.5]). Under the conditions (4.1), (4.3), there exists an R-algebra homomorphism $\rho_0 : \mathcal{H} \rightarrow \mathcal{H}^b$ such that ρ_0 induces the identity on \mathcal{H}_n. (Here we regard $\mathcal{H}_n \subset \mathcal{H}$, $\mathcal{H}_n \subset \mathcal{H}^b$ under the previous identifications.) If $\operatorname{Im} \rho^b = \operatorname{Im} \rho$ and R is a field, then $\mathcal{H} \simeq \mathcal{H}^b$.

From now on, throughout the paper, we fix an r-tuple $m = (m_1, \ldots, m_r)$ of nonnegative integers and always assume the condition (4.3) whenever we consider \mathcal{H}^b.

Any $\mu \in \mathcal{P}_{n,r}(m)$ may be regarded as an element in $\mathcal{P}_{n,1}$ (i.e., 1-composition) of n by arranging the entries of $\mu = (\mu_j^{(i)})$ in order

$$
\mu_1^{(1)}, \ldots, \mu_{m_1}^{(1)}, \mu_1^{(2)}, \ldots, \mu_{m_2}^{(2)}, \ldots, \mu_1^{(r)}, \ldots, \mu_{m_r}^{(r)}
$$

which we denote by $\{\mu\}$.

For $\alpha = (n_1, \ldots, n_r) \in \mathbb{Z}_{\geq 0}$ such that $\sum n_i = n$, we define $c(\alpha)$ by

$$
c(\alpha) = \left(\underbrace{r, \ldots, r}_{n_1 \text{-times}}, \underbrace{r - 1, \ldots, r - 1}_{n_2 \text{-times}}, \ldots, \underbrace{1, \ldots, 1}_{n_r \text{-times}}\right)
$$
and let $c(\alpha) = (c_1, \ldots, c_n)$. We define $F_\alpha \in \mathcal{H}^b$ by $F_\alpha = \Delta^{-1} F_{c_1}(\xi_1) F_{c_2}(\xi_2) \cdots F_{c_n}(\xi_n)$. For any $\mu \in \tilde{P}_{n,r}$, put $m^b_{\mu} = F_{\alpha(\mu)} \cdot m_{\mu}$ where $m_{\mu} = \sum_{w \in S_{\mu}} q^{l(w)} T_w = x_\mu \in \mathcal{H}_n$.

We define an R-linear anti-automorphism $h \to h^*$ on \mathcal{H}^b by the condition that $*$ fixes the generators $T_i \ (2 \leq i \leq n)$ and $\xi_j \ (1 \leq j \leq n)$. As discussed in [SawS, 2.7], this condition induces a well-defined anti-automorphism on \mathcal{H}^b. Moreover, by Lemma 2.9 in [SawS], we know that $(m^b_{\mu})^* = m^b_{\mu}$. For $s, t \in \text{Std}(\lambda)$ with $\lambda \in P_{n,r}$, we define an element $m^b_{st} \in \mathcal{H}^b$ by $m^b_{st} = T^*_d(s) m^b_t T_d(t)$. By the above fact, we have $(m^b_{st})^* = m^b_{ts}$.

Theorem 4.3 ([SawS, Theorem 2.18]). The modified Ariki-Koike algebra \mathcal{H}^b is free as an R-module with cellular basis \{m^b_s \mid s, t \in \text{Std}(\lambda) \text{ for } s, t \in P_{n,r}\}.

Put $M^b_\mu = m^b_{\mu} \mathcal{H}^b$ for $\mu \in \tilde{P}_{n,r}$. We define a cyclotomic q-Schur algebra $S^b(m, n)$ as follows.

Definition 4.4. The cyclotomic q-Schur algebra for \mathcal{H}^b with weight poset $\tilde{P}_{n,r}$ is the endomorphism algebra

$$S^b(m, n) = \text{End}_{\mathcal{H}^b}(M^b(\tilde{P}_{n,r})), \quad \text{where } M^b(\tilde{P}_{n,r}) = \bigoplus_{\mu \in \tilde{P}_{n,r}} M^b_\mu.$$

For an r-tuples $\alpha \in \tilde{P}_{n,1}$, let $M^\alpha = \bigoplus_{\mu, \alpha(\mu) = \alpha} M^b_\mu$. Then by Proposition 5.2 (i) in [SawS], we have $S^b(m, n) \cong \bigoplus_{\alpha \in \tilde{P}_{n,1}} \text{End}_{\mathcal{H}^b} M^\alpha$ as R-algebras.

Theorem 4.5 ([SawS, Theorem 5.5]). Let $S^b(m, n)$ be the cyclotomic q-Schur algebra associated to the modified Ariki-Koike algebra \mathcal{H}^b and $S(m_1, n_1)$ be the q-Schur algebra associated to the Iwahori-Hecke algebra \mathcal{H}_{n_1}. Then there exists an isomorphism of R-algebras

$$S^b(m, n) \cong \bigoplus_{(n_1, \ldots, n_r), n = n_1 + \cdots + n_r} S(m_1, n_1) \otimes \cdots \otimes S(m_r, n_r).$$

Let $\mu, \nu \in \tilde{P}_{n,r}$ and $\lambda \in P_{n,r}$. We assume that $\alpha(\mu) = \alpha(\nu) = \alpha(\lambda)$. For $S \in T^+_0(\lambda, \mu)$ and $T \in T^+_0(\lambda, \nu)$, put

$$m^b_{ST} = \sum_{\substack{s,t \in \text{Std}(\lambda) \mu(s) = S, \nu(t) = T}} q^{l(d(s)) + l(d(t))} m^b_{st}.$$

Moreover, for $S \in T^+_0(\lambda, \mu)$ and $T \in T^+_0(\lambda, \nu)$, one can define $\varphi^b_{ST} \in S^b(m, n)$ by $\varphi^b_{ST}(m^b_{a}h) = \delta_{\alpha \nu} m^b_{ST} h$, for all $h \in \mathcal{H}^b$ and all $\alpha \in \tilde{P}_{n,r}$.

Theorem 4.6 ([SawS, Theorem 5.9]). The cyclotomic q-Schur algebra $S^b(m, n)$ is free as an R-module with cellular basis $\mathcal{C}^b(m, n) = \{\varphi^b_{ST} \mid S, T \in T^+_0(\lambda), \text{ for some } \lambda \in P_{n,r}\}.$

4.2. Let $S^0(\Lambda)$ be as in Section 3. We describe a relationship between the algebra $S^0(\Lambda)$ and the cyclotomic q-Schur algebra $S^b(m, n)$ in the case where $\Lambda = \tilde{P}_{n,r}$. But in the moment, we shall consider an arbitrary Λ as in Section 3.
First, let $C^0(\Lambda) = \{ \varphi_{ST} \mid (S, T) \in I(\lambda, 1) \times J(\lambda, 1), \lambda \in \Lambda^+ \} \subset C^0(\Lambda)$ and $S^0(\Lambda)$ be the R-span of $\varphi_{ST} \in C^0(\Lambda)$, which is an R-submodule of $S^0(\Lambda)$. We note that, $S^0(\Lambda)$ is a two-sided ideal of $S^0(\Lambda)$ by the second and fourth formula in [Sa, Lemma 2.4]. Thus one can define the quotient algebra $\overline{S}^0(\Lambda) = S^0(\Lambda)/S^0(\Lambda)$. We write $\overline{x} = x + S^0(\Lambda)$ ($x \in S^0(\Lambda)$). It is easy to see that $\overline{S}^0(\Lambda)$ has a free R-basis $\{ \overline{\varphi}_{ST} \mid S \in I(\lambda, 0), T \in J(\lambda, 0), \lambda \in \Lambda^+ \}$. Note that the condition $(S, T) \in I(\lambda, 0) \times J(\lambda, 0)$ is nothing but $S, T \in T_0^+(\lambda)$. For $\lambda \in \Lambda^+$, let $\overline{S}_{0}^{\vee \lambda} = \overline{S}_{0}^{\vee} (\Lambda)^{\lambda}$ be the R-submodule of $\overline{S}^0(\Lambda)$ spanned by $\overline{\varphi}_{ST}$ with $S, T \in T_0^+(\lambda)$ for various $\alpha \in \Lambda^+$ such that $\alpha \succ \lambda$. We show the following.

Theorem 4.7. The algebra $\overline{S}^0(\Lambda)$ has a free basis

$$\overline{C}^0(\Lambda) = \{ \overline{\varphi}_{ST} \mid S, T \in T_0^+(\lambda), \lambda \in \Lambda^+ \}$$

satisfying the following properties.

(i) The R-linear map $\ast : \overline{S}^0(\Lambda) \rightarrow \overline{S}^0(\Lambda)$ determined by $\overline{\varphi}_{ST} = \overline{\varphi}_{TS}$, for all $S, T \in T_0^+(\lambda)$ and all $\lambda \in \Lambda^+$, is an anti-automorphism of $\overline{S}^0(\Lambda)$.

(ii) Let $T \in T_0^+(\lambda)$. Then for all $\overline{\varphi} \in \overline{S}^0(\Lambda)$, and any $V \in T_0^+(\lambda)$, there exists $\lambda \in \Lambda^+$ such that $\overline{\varphi}_{ST} \cdot \overline{\varphi} \equiv \sum_{V \in T_0^+(\lambda)} r_{\lambda} \overline{\varphi}_{SV} \mod S_{0,\lambda}$

for any $S \in T_0^+(\lambda)$, where r_{λ} is independent of the choice of T.

In particular, $\overline{C}^0(\Lambda)$ is a cellular basis of $\overline{S}^0(\Lambda)$.

In the case where $S^b(m, n)$ is defined, $\overline{S}^0(\Lambda)$ can be identified with $S^b(m, n)$, i.e, we have the following proposition.

Proposition 4.8. Let $\Lambda = \tilde{P}_{n,r}$ and assume that (4.1) and (4.3) holds. Then there exists an algebra isomorphism $b : \overline{S}^0(\Lambda) \rightarrow S^b(m, n)$ satisfying the following. For $\overline{\varphi}_{ST} \in \overline{C}^0(\Lambda)$ such that $S, T \in T_0^+(\lambda)$ and $\lambda \in \Lambda^+$, we have $(\overline{\varphi}_{ST})^b = \varphi_{ST}$.

We now return to the general setting, and consider $\overline{S}^0(\Lambda)$ for arbitrary Λ. The above proposition says that the $\overline{S}^0(\Lambda)$ is a natural “cover” of the $S^b(m, n)$.

For $\lambda \in \Lambda^+$, $\overline{\varphi}_\lambda = \overline{\varphi}_{T^\lambda T^\lambda}$ is an element in $\overline{S}^0(\Lambda)$. Hence, by the cellular theory [GL], one can define a Weyl module \overline{Z}^λ of $\overline{S}^0(\Lambda)$ as the right $\overline{S}^0(\Lambda)$-submodule of $\overline{S}^0(\Lambda)/\overline{S}_{0,\lambda}^{\vee}$ spanned by the image of $\overline{\varphi}_\lambda$. We denote by $\overline{\varphi}_T$ the image of $\overline{\varphi}_{T^\lambda T^\lambda}$ in $\overline{S}^0(\Lambda)/\overline{S}_{0,\lambda}^{\vee}$. Then the set $\{ \overline{\varphi}_T \mid T \in T_0^+(\lambda) \}$ is a free R-basis of \overline{Z}^λ. Define a bilinear form $(\ ,\)_\overline{0}$ on \overline{Z}^λ by requiring that

$$\overline{\varphi}_{T^\lambda S^\lambda} \overline{\varphi}_{T^\lambda T^\lambda} \equiv (\overline{\varphi}_S, \overline{\varphi}_T)_\overline{0} \cdot \overline{\varphi}_\lambda \mod \overline{S}_{0,\lambda}^{\vee}$$

for all $S, T \in T_0^+(\lambda)$. Let $\overline{L}^\lambda = \overline{Z}^\lambda/\mathfrak{rad} \overline{Z}^\lambda$, where $\mathfrak{rad} \overline{Z}^\lambda = \{ x \in \overline{Z}^\lambda \mid (x, y)_\overline{0} = 0 \mbox{ for all } y \in \overline{Z}^\lambda \}$. In the case where R is a field, by a general theory of cellular algebras, the set $\{ \overline{L}^\lambda \mid \lambda \in \Lambda^+, \overline{L}^\lambda \neq 0 \}$ gives a complete set of non-isomorphic irreducible $\overline{S}^0(\Lambda)$-modules. Furthermore, we have the following result.
Proposition 4.9. Suppose that R is a field. Then $\overline{L}^\lambda \neq 0$ for any $\lambda \in \Lambda^+$. Hence, $\{\overline{L}^\lambda \mid \lambda \in \Lambda^+\}$ is a complete set of non-isomorphic irreducible $\overline{S}^0(\Lambda)$-modules. Therefore, $\overline{S}^0(\Lambda)$ is quasi-hereditary.

The following result connects the decomposition numbers in \overline{Z}^λ and in $Z^{(\lambda,0)}$.

Theorem 4.10. Suppose that R is a field. Then

(i) $\{L_0^\alpha \mid \alpha \in \Lambda^+, \, \lambda \supseteq \alpha\}$ is a complete set of pairwise inequivalent irreducible $S^0(\Lambda)$-modules occurring in the composition factors of the $S^0(\Lambda)$-module $Z^{(\lambda,0)}$.

(ii) For λ, $\mu \in \Lambda^+$, we have

$$[\overline{Z}^\lambda : \overline{L}^\mu] = [Z^{(\lambda,0)} : L_0^\mu].$$

(iii) For λ, $\mu \in \Lambda^+$ such that $\alpha(\lambda) \neq \alpha(\mu)$, we have

$$[\overline{Z}^\lambda : \overline{L}^\mu] = 0.$$

5. AN ESTIMATE FOR DECOMPOSITION NUMBERS

We are now ready to estimate the decomposition numbers for the cyclotomic q-Schur algebras.

5.1. We keep the notation in Section 4, and consider the general Λ.

Theorem 5.1. Suppose that R is a field. Then, for all $\lambda, \mu \in \Lambda^+$ with $\alpha(\lambda) = \alpha(\mu)$,

$$[\overline{Z}^\lambda : \overline{L}^\mu] = [Z^{(\lambda,0)} : L_0^\mu] = [W^\lambda : L^\mu].$$

5.8. We return to the setting in 4.1. Let $\Lambda = \tilde{\mathcal{P}}_{n,r}$ under the condition (4.1) and (4.3). For an r-partition $\lambda \in \mathcal{P}_{n,r}$, we denote by $S^0_{\lambda}^{(\lambda)}$ the R-submodule of $S^0(m,n)$ spanned by φ_{ST}^b such that $S, T \in T_0^+(\alpha)$ with $\alpha \triangleright \lambda$. Moreover, for an r-partition $\lambda \in \mathcal{P}_{n,r}$, $T^\lambda \in T_0^+(\lambda, \lambda)$, and in fact T^λ is the unique semistandard λ-Tableau of type λ. Moreover, $t = t^\lambda$ is the unique element in $\text{Std}(\lambda)$ such that $\lambda(t) = T^\lambda$. Thus, $m_{T^\lambda T^\lambda}^\lambda = m_{T^\lambda T^\lambda}^\lambda$, and $\varphi_{T^\lambda T^\lambda}^\lambda$ is the identity map on M^λ_{λ}. We define the Weyl module W^λ_{λ} as the right $S^0(m,n)$-submodule of $S^0(m,n)/S^0_{\lambda}^{(\lambda)}$ spanned by the image of φ_{T}^λ. For each $T \in T_0^+(\lambda, \mu)$, we denote by φ_{T}^λ the image of $\varphi_{T^\lambda T}^b$ in $S^0(m,n)/S^0_{\lambda}^{(\lambda)}$. Then we know that the Weyl module W^λ_{λ} is R-free with basis $\{\varphi_T^\lambda \mid T \in T_0^+(\lambda)\}$. The Weyl module W^λ_{λ} enjoys an associative symmetric bilinear form, defined by the equation

$$\varphi_{T^\lambda S}^b \varphi_{T^\lambda T}^b \equiv (\varphi_{S}^b, \varphi_{T}^b)_b \cdot \varphi_{T}^\lambda \mod S^0_{\lambda}^{(\lambda)}$$

for all $S, T \in T_0^+(\lambda)$. Let $L^\lambda_{\lambda} = W_{\lambda}/\text{rad}W_{\lambda}$, where $\text{rad}W_{\lambda} = \{x \in W^\lambda_{\lambda} \mid (x, y)_b = 0 \text{ for all } y \in W_{\lambda}^\lambda\}$. By [SawS, Proposition 5.11], we know that, for all r-partition $\lambda \in \mathcal{P}_{n,r}$, L^λ_{λ} is an absolutely irreducible and $\{L^\lambda_{\lambda} \mid \lambda \in \mathcal{P}_{n,r}\}$ is a complete set of non-isomorphic irreducible $S^0(m,n)$-modules. Furthermore, for $\lambda, \mu \in \mathcal{P}_{n,r}$, we denote by $[W^\lambda_{\lambda} : L^\mu_{\lambda}]$ the composition multiplicity of L^μ_{λ} in W^λ_{λ}. Note that the above definition of the Weyl module W^λ_{λ} coincides with the definition of the Weyl module \overline{Z}^λ when $S^0(m,n)$ is isomorphic to $\overline{S}^0(\Lambda)$ under the isomorphism b in Proposition 4.8.
Consequently, under the isomorphism b, we have $[W^\lambda_b : L^\mu_b] = [\overline{Z}^\lambda : \overline{L}^\mu]$ for every $\lambda, \mu \in \mathcal{P}_{n,r}$. On the other hand, note that in the case where $r = 1$, the notation for $S^b(m, n)$ coincides with the standard notation for q-Schur algebras discussed as in [Ma, Chapter 4]. So, we use freely such a notation. For $\lambda, \mu \in \mathcal{P}_{n,r}$, we denote by $[W^\lambda_{\mu^{(i)}} : L^{\mu^{(i)}}]$ for $\lambda = (\lambda^{(1)}, \ldots, \lambda^{(r)})$ and $\mu = (\mu^{(1)}, \ldots, \mu^{(r)})$.

Proposition 5.2 ([SawS, Proposition 5.14]). Let $\Lambda = \tilde{\mathcal{P}}_{n,r}$. Suppose that R is a field, and that (4.1) and (4.3) are satisfied. Let $\lambda, \mu \in \mathcal{P}_{n,r}$. Then under the isomorphism in Theorem 4.5, we have

$$[W^\lambda : L^\mu] = \begin{cases} \prod_{i=1}^{r}[W^\lambda_{\mu^{(i)}} : L^{\mu^{(i)}}] & \text{if } \alpha(\lambda) = \alpha(\mu), \\ 0 & \text{otherwise}. \end{cases}$$

Corollary 5.3. Let $\Lambda = \tilde{\mathcal{P}}_{n,r}$. Suppose that R is a field, and that (4.1) and (4.3) are satisfied. Then, for all $\lambda, \mu \in \mathcal{P}_{n,r}$ with $\alpha(\lambda) = \alpha(\mu)$, we have

$$[W^\lambda : L^\mu] = \prod_{i=1}^{r}[W^\lambda_{\mu^{(i)}} : L^{\mu^{(i)}}].$$

REFERENCES

