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NON-EXISTENCE THEOREM EXCEPT THE OUT-OF-PHASE AND
IN-PHASE SOLUTIONS IN THE COUPLED VAN DER POL EQUATION
SYSTEM

Nohara, B. T. ! and A. Arimoto
Tokyo City University, 1-28-1 Tamazutsumi Setagaya Tokyo Japan

Abstract

In this paper, we study the coupled van der Pol equation system, which consists of
two van der Pol equations connected by the linear terms with each other. We consider
that two distinctive solutions: the out-of-phase and in-phase solutions exist in the
dynamical system of the coupled equations and we prove the non-existence theorem
except the out-of-phase and in-phase solutions in the coupled system.

1 Introduction

We treat the following van der Pol equation system with coupling by the positional
difference. Let y = y(¢) and z = z(¢) two real valued functions and we consider the
dynamical system

s JY —e(l -9y +y=k(y - 2),
k) 2 — e(l—22)2 +2=k(z—vy), te<t.

Here, ' denotes the derivative with respect to t. k, (> 0) are constants and %, indicates
an initial time. When k = 0, the dynamical system X, becomes two independent,
van der Pol oscillators.[van der Pol, 1926] The single van der Pol oscillator is a well-
known, classic problem. Many studies on the van der Pol equation have been carried
out and the fact that the van der Pol equation has a unique limit cycle is known
and proved by Poincaré-Bendixson’s theorem.(see, for example, [Guckenheimer and
Holmes, 1983]) However, the coupled van der Pol system, that is, the dynamical
system 3. constructs a three-dimensional manifold. Therefore we cannot apply
Poincaré-Bendixson’s theorem to the dynamical system 3. x to study the analysis of
the system. “Does there exist the limit cycle in 3, ;?[Nohara and Arimoto, 2008A]”,
“If there exists the limit cycle, how many limit cycles are there?[Nohara and Arimoto,
2008B]” and “Are the limit cycles ‘stable’ or ‘completely unstable’ or ‘semistable’?”
are still open problems we have.

In this paper, we first show the generalized van der Pol equation and analyze
it. Then the analysis of the coupled van der Pol equation system is carried out
based on the formation of our method after defining the out-of-phase and in-phase
solutions, which are new concepts arising when the system is coupled. We consider
that there exist two distinctive solutions: the out-of-phase and in-phase solutions in
the dynamical system ¥, ;. Finally, we give the answers to some of the above open
problems.

2 Analysis of the generalized van der Pol equation

Let &s(t) = col(y(t), ¥ (t), z(t), 2'(t)) be a solution of X, .
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Definition 2.1. In the dynamical system X. i, the following relation holds
y(t) + 2(t) = 0,

where Ex(t) not equivalent to 0, then the system is out-of-phase and the non-trivial
solutions of y(t) and z(t) are called the out-of-phase solutions.

Definition 2.2. In the dynamical system 2., the following relation holds
y(t) — 2(t) =0,

where £x(t) not equivalent to 0, then the system is in-phase and the non-trivial solu-
tions of y(t) and 2(t) are called the in-phase solutions.

Here, we consider the differential equation W, ,, 4
Weme: W' —e(w —@)+mw=0, (2.1)

where w = w(t), ¢ = ¢(w,w’),0 < € < 2¢/m. We call this the generalized van der
Pol equation since we obtain the ordinary van der Pol equation if we set W, 1 w24,
that is, m = 1, ¢(¢) = w?(t)w'(t). However, we have no restriction regarding m € R
and ¢ = ¢(w,w’) (but we simply write ¢ = ¢(t) instead of ¢(w,w’)) in this section.
We can write this in a matrix form as .

’

w = AwTyw — €&, (2.2)

(8 ) (2) - 0)

We know that the solution z,,(t) can be written by

xr

where

Ty (t) = et (o) — e/t eAwt=9)¢(s)ds. (2.3)

to

Here A, has two eigenvalues r and its complex conjugate 7 as the followings:

e+vV4dm — €21 € —Vdm —e? 1
2 2 )

y T =
We now see that A, has a spectral representation

Aw=T'P1+fP2,
E=P + P, PPPhb=PFPP =0.

Hence from the relation
TPl‘——Aw—FPQZAw—f(E—Pl),

we obtain

P, = 1_(Aw_f)7 P, = 1_
r—r rT—T

Using this, we simply write the exponential function of A,, as follows:

((e" —e™) Ay + (re™ —,fe’"t)).

(r — Ayp).

et =P +e"Pp = -
r—7
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We can easily obtain

et —e phet sin(v't)
r—7 9
re™ — rert 1. £ sin(vVt)
p— = e2* (cos(ﬂt)—— 9 ),
where
Am — &2
ﬁz_jﬁ%_i_ (2.4)
Hence we have (9%) (9%)
Awt _ let(SID € sin
etvt = bt (2 Ay + cos(8t) — s=)
and we see that using Equation (2.3) the solution of Equation (2.2) satisfies
€
It —t -5 1
T (t) —e3°- to){sm (9(t - t0)) ( E) + cos (V(t — to)) }a:w(to)
04 -m =
2
‘t in (8(t—s)) (2 1
—_ E/ e%s(t"’s) { sin ( 2 6) + cos (ﬁ(t - S)) } X
to 19 —-m =
2
0
2.
(¢(S to,’LU(to /(to))) ( 5)

In Equation (2.5), ¢(s;to, w(to),w'(to)) means the function ¢ of s defined by the
solution with the initial condition of w(to), w’(¢o) at time to.

Here we define in(9%)
sin
U,(9) := ( cos(vUt) g ) ,
—¥sin(dt) cos(dt)

and give the following lemma:

Lemma 2.1.

€ 1 -1 1
in(9t —— 1 —— 0 —— 0
Smf? )( 2 5>+cos(19t)= e .| | §
—-—m - — — —— —
2 2 € 2 €

Here we let auo = w(to), Buwo = w'(to) simpliy and define symbols as follows:

t
9
Is(t,to;awo, IBwO) :=/ e—-e(s ~to) Sln( 3)¢(S to,awo,,@wo)ds

to

t
IC(ta t07 Qywo, IB’UJO) = / e—%e(s_tO) COS(I?S)¢(S; th Qy0, /BwO) dS

to
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then we obtain the following equation:

1 __1' 0
e_ie(t_to)Ut_to ('19) i 1 xw(t)
2 €
! 0
_ e Quwo | Is(t,to;awo, /Bwo)
N _i l (/B’w()) U—to (19) (Ic(t’ th A0, )BwO) ' (26)
2 ¢

We utilize the following relations in computing Equation (2.6).

Uz(ﬁ)Us(ﬁ) =Ut+s(l9)’
Uy (9) =U—(¥),
Uo(¥9) =E.

Theorem 2.1. Suppose lim;_.oo €2z, (t) = 0.

1
lim (Is(t’ tO;aw&ﬂwO)) — Uto(’lﬁ) _g

t—oo0 Ic(ta to; Cwo, ﬂwO)

(i)
ﬁwo ’

Before stating the next theorem, we prepare the following proposition.

M= O

Proposition 2.1. (the property of autonoumous systems)(for ezample, see [Braun,
1993]) The followings are equivalent. There exists a T > 0,

(1) zw(to + 7) = zw(to), for some to,

(2) 2o (t + 7) = 74 (t), for any t.

Without warning, we often use this nature hereinafter.

Theorem 2.2. Let z,(t) be a solution of We 4. Then the following statements are
equivalent. For some tg,

(1)
( ) X
I(to + 7, to; Qwo, Bw _ —Zer e Qyy
(Ic(t2+r,t2;aw3,ﬂwg)) =Un(®) (1_6 U’(ﬁ)) B (ﬂwf)))' (2.7)
2 €
(2)
I( Buwo) 1
s(t + 7, t0; Qwo, Buwo) | _ —ler e Oty
(Ic(t + 7, tg; au‘,g, ﬁwg)> =Ui(9) (1 —c Ufw)) _i (Bw;))

2

0
1
£
“ler I5(t, to; ctwo, Bwo)
+e U‘r(ﬂ) (Ic(t, tO;awOa ﬂwO)) ’ for any t. (28)

(3) zw(t) is periodic with period T.
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Proof. (2)=>(1) Let t = to in Equation (2.8), we obtain Equation (2.7).

(1)= (3) We assume Equation (2.7). Letting ¢t = ¢ + 7 in Equation (2.6) and using
Equation (2.7) yields x,(to + 7) = zw(to). Therefore, by Proposition 2.1, we have
Ty (t + T) = x4 (t).

(3)=>(2) Substituting ¢ + 7 into ¢ in Equation (2.6) leads to

1
1 —— 0
e‘ie(t+-r~—to)Ut+T_to (19) f 1 :I:w(t + ’r)
2 €
! 0
— e Qo | Is(t ~+ 7, to; Quo, /BwO)
B _i l (/BwO) U_to (19) (Ic(t + 7, to; Qwo, ﬂwo) ’ (29)
2 €

Assuming ., (t+7) = z,,(t) and multiplying both sides of Equation (2.9) by ez¢"U_, (%),
we have

1
—Le(t—to) —- 0
e 2 0 Ut—to(ﬂ) i 1 .’Bw(t)
2 €
X ( )
__ter T e Qyo _ %s'r Is t+7-1 to;awo,,@wo
=e2°"U_,(9) _i 1 (ﬂwo) e2TU_;_4,(9) (Ic(t+T, to;awo,ﬁwo)) .
2 ¢

(2.10)

Equating both right-hand sides of Equations (2.6) and (2.10) yields Equation (2.8).
O

3 Analysis of the coupled van der Pol equation sysi:em

3.1 Formation of the fundamental equations for the analysis

Now, we let
y(to) = a0, ¥ (to) = Bo, 2(to) = Ao, 2'(t0) = ko,
and define some new symbols as follows:

o+ (t) := y2 ()Y (t) £ 22(t)2'(2),

V4 — g2
0+ -,
2
4 —e2 -8k
0_ =
2 b

t e3e(t—s) sin (0. (t — 5))

7 &+ (s; to, @0, Bo, Ao, Ho)ds,
+

I.;t(t? tO;QOaﬂO,/\o,/,LO) :=/

to

t
IF (L, to; 0o, Bos Aos o) = / e2¢(=9) cos (6£(t — 5)) b+ (8; to, @0, Bo, Ao, o) ds,

to
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where a double sign + in equations corresponds in order.
For y,z € 3.k, we let z,(¢t) = y(t) + 2(t), then we have the differential equation
We 1,4, corresponding to Equation (2.1) of the previous section, that is,

Weig, + i —e(zl —¢4) +z4 =0.

Again we define other symbols as follows:

b1 (e snSin(fxs
I+ (t, to; a0, Bo, Ao, o) 5=/ e~ 2¢( tO)——éi—lfﬁi(S; to, a0, Bo, Ao, o)ds,
to

t
le(g—
I+ (t, to; o, Bo, o, o) :=/ e 25(*~%) cos (8.4.5) - (5; to, @0, Bo, Ao, o) ds.
: ;

Before obtaining the fundamental equations for the analysis, we prepare the next
lemma.

Lemma 3.1.

(Isi(ta to; @0, Bo, Ao, to) \ _ U, (63) (Is:i:(t — to, 05 a0, Bo, Ao, o)
I+ (t,to; a0, Bo, Ao, Ho) ° I+ (t — to, 0; o, Bo, Ao, o)

Proof. See [Nohara and Arimoto, 2009). O
As the fundamental equation for z.(t), that is, y(¢t) + 2(t), we have the follow-
ing linear system of integral equation using integral symbols defined above, which
corresponds to Equation (2.6).
($+(t)>
7, (t)

<$+(to)> U (6) <Is+<t,to;ao,ﬂo«\o,uo>) . (3.1)

:E,_Q.(tO) Ic+(t7t0;a0’ﬂ07A0vu0)

1

e~ 3t-t)y, _, (6,) §

2

(-1
=1 1

2

M= O M|~ O

Here, applying Lemma 3.1 to the above equation, we obtain

(-1 o) 12
e~ 27U, _y, (64) T 1 (xi%%)
\"2 2/
1 ()\ T4 (o) Iy (t — to, 0; 0, Bo, Ao, o)
=1 1 1 (azﬁr(to)> - <Ic+(t — 10, 0; 040,50,/\0,“0)) - B2

"2 2
Whereas let z_(t) = y(t) — 2(t) for y, z € ., then we obtain W, ;_o¢4_, that is,
Weioko. @ 20 —e(z_ —¢-)+ (1 —2k)z_=0.

In the same way, we obtain the linear system of integral equation for z_(t) = y(t) —



95

z(t)
1
e 5y, (00) | § (;’:Eg)
\"2 =
(1,
Tr_ to) Is——(t —1 70; nBOa)‘ ’ )
-5 1) () - (i)
2 €

3.2 Necessary and sufficient condition for the periodicity of the coupled
van der Pol equation system

We give the necessary and sufficient condition for the periodicity of the solutions
of the coupled van der Pol equation system in this subsection. First, the following
theorem holds in the same way as Theorem 2.1.

Theorem 3.1. Suppose lim;_, e‘%“col(xi(t), 'y (¢)) = 0.

. I+ (t, to; ao, Bo, Moy o) | _ Z+(to)
tli’rg" (Ici(t,to;ao,ﬂo,%,lﬁo) = Ut (6) i zi(to))

M= O

In this theorem, a double sign + corresponds in order.

Next we state some properties when the system has the periodicity. Remember
that &= (t) = col(y(t), ¥/ (¢), 2(¢), 2(¢)).

Theorem 3.2. Suppose that Es(t+71) = Es(t), then the followings are equivalent for
a fized to.

(1)
{z+(t0) =0
z!, (to) = 0.
(2)
{Is+(to + n7, to; o, Bo, Ao, to) = 0,
I+ (to +n7,t0; @0, 8o, Moy 0) =0, n=1,2,...
Proof. See [Nohara and Arimoto, 2009]. O

Theorem 3.3. Suppose that Es(t+7) = £x(t), then the followings are equivalent for
a fized tg.

xTr_ (to) = 0,

iEl_ (to) = 0.

(1)
I;_(to + nT, to; o, Bo, Ao, o) = 0,
Ic—(tO + nr, tO; Qp, /60> AO’ :u'O) = 0) n = 1’ 27 .o

(2)
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Lemma 3.2. The followings are equivalent.

(1)
(2)

En(t+71) = En(t).

Ti(t+7) = z4(t).
Theorem 3.4. (Necessary and sufficient condition for the periodicity ) The
solution of the dynamical system X, with the initial condition

Y(to) = a0, ¥ (to) = Bo, 2z(to) = o, 2'(to) = 1o
has a period T if and only if

Fi(e) =0, (3.3)
where,
. 1 0 :
Fi(e) = (1 —e‘ﬁ*UTwi)) (_;. _1> (5200) = (g oo fovtal)
(3.4)

Proof. (proof of the necessary part) X, has a period, that is, £x(t + 7) = £x(t) for
some 7 > 0 inasmuch as z4(t + 7) = z4(¢t) and 2/ (¢ + 7) = z/.(¢) from Lemma
3.2. Therefore we have the following equation by the same procedure which yields
Equation (2.7).

(1 —e_gTU-r(e:t)) (% —01) (iigzb

Iy (to + 7, to; o, Bo, Aoy o)\
Ut (62) (Ic:h(tO + 7, to; o, Bo, Aoy o) | 0
(3.5)

The second term is computed by Lemma 3.1 as
U (0 ) Is:t(to + 7, tO;QO,IBO,)\O’ NO) _ (Isi(T, 0; O‘O’ﬁOv)‘O,/J'O) (3 6)
~PVE)\ Lot (to + 7, to; @0, Bo, Mo, 1o) I.+(7,0; o, Bo, Xos o) ) '

then substituting this into Eqaution (3.5) leads to Equations (3.3) and (3.4).

(proof of the sufficient part) Here, we prove that Fy = 0 = z1(to + 7) = z+(to),
which is equivalent to z+(t + 7) = z+(t). Using Equation (3.6) in Equation (3.4) we
have

e, 10 z4(t0) 10 z+(to)
¢ Uioir(0) (5 —1> (2266)) vt £ (&)
Isi (to + 7, to; o, Bo, Mo, Mo))
. 3.7
+e (Ic:t(t() + 7, tO;a05/807)‘03 NO) ( )
On the other hand, substituting ¢t = ¢, + 7 into Equation (3.1) yields

57U,(0,) (% _01) (Gtein) = (é ‘?1) )

I (to + 7, to; a0, Bo, Ao, Mo)
+eU-10(0+) (Ic+(t0 + 7, to; @0, Bo, Ao, to) /
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that is,
el 1 0 Ty(to+ T
e 2 Ut0+r(9+) (E —1> (xigt2+T;)

2
1 O T (t )
_ +\lo
- Uto(e-f-) (g_ ' _1> (.’L"_*_(to))
Is+(t0 + T, th Qo, 1807 )\Oa »U’O)
te (Ic+(t0 + 7, to; @0, Bo, Ao, ko) ) (3.8)

Similarly, we have

—er 10 z_(to+ 7)
€ 2 Dto 7-(9__) (E _ ) ! ( .
i 5 —1 (ar_(to + T))

= Uy, (6-) (% _01) (ﬁigﬁg)

Is_(to + T, t0; @0, Bo, Ao, Ko)
’ . 3.9
te (Ic—(to + T, to; @0, Bo, Ao, Ho) (3:9)

Subtracting Equation (3.7) from Equations (3.8) and (3.9) leads to

-y 1 0 l‘i(to -+ 7') T4 (to)
e 2 Uto-f-T(a:{:) (% _1) { (x;:(to_i_T)) - (x;(to)) = 0.
Therefore we obtain
T+ (to -+ 7') = IEi(to),
zl (to + 1) = z/L(to)-
Consequently, F1(e) =0 = z4(to + 7) = z4(to) is proved. a

4 Non-existence theorem of periodic solutions except the
out-of-phase and in-phase solutions in X
Our objective equation system X, is as follows: Let y = y(t,€) and z = 2(¢,¢) two
2
£

real valued functions depending on the parameter e and 0 < e < 2,0< k < 57§

5y —e(l- vy +y=k(y— 2),
€,k z”—e(l——z2)z’+z=k(z—y), to < t,
with the initial condition
y(to,€) = ao(e), ¥'(to,€) = Bole), z(to,€) = Xo(€), 2'(to,€) = po(e),

where the initial condition also depends on the parameter € inasmush as we write
ap(€), Bo(€), Ao(€) and po(e) deliberately.
Here, we give the assumption of periodic solutions of the dynamical system X .
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Assumption 4.1. Periodic solutions of X, Periodic solutions of X,y satisfy
y(t+7(e),e) =y(t,e), z(t+7(e),€) = z(t,€), |7(e)| < T, (4.1)

where T indicates a period of . and T is independent of the parameter €. Also
pertodic solutions and their derivatives satisfy

ly(t,e)l < M, |y'(t,e)l < M, |z(t,e)] < M, |Z'(t,e)| < M, (4.2)

where M s independent of the parameter € and t.

Hereinafter, we consider only periodic solutions restricted by Assumption 4.1.
Before stating the main theorem, we prepare the following lemma.

Lemma 4.1. Let y(t,€),z(t,e) be a periodic solution of X.) satisfying Assump-
tion 4.1. We assume that there exists lirr(x)a:i(to,s) and let lirr(x)a:i(to,e) = z4(to,0).
Then there ezists a solution y(t) and z2(t) of the degenerated system 3¢ such that
lir%:ri(t, €) = z4(¢,0) = y(t) £ 2(¢t) and linéa:’i(t,e) =2/, (¢,0) = ¢/(t) £ /(). Let
T+(€) and 74 (0) be periods of x+(t,€) created by X, . and z4.(t,0) by Xo 1, respectively,
then 1in(1) T+(€) = 74(0).

Proof. See [Nohara and Arimoto, 2009]. 0
We give the next main theorem for X, .

Theorem 4.1. Non-existence of periodic solutions except the out-of-phase
and in-phase solutions Let y(t,€) and 2(t,€) be a periodic solution of X, i, which
1 2
s analytic with respect to € on the segment [0,e0), where 0 < g9 < 2,0 < k < 5~ 68—0,
and k s wrrational. Then this solution is either out-of-phase or in-phase.
Preparations for the proof We assume that the periodicity is built up and let

a period (but unknown) be 7(¢), which depends on ¢, then we have the following
relation from Theorem 3.4.

Fi(e) =0,

where

1 0
—[1- 5@ Z(to, €)
Fi(e) = (1 e Ur(e)(oi)) (-;- —1) (x;(to, s))

L1 (7(€), 0; cro(€), Bo(€), Mo (€), ta(€))
+e (Ic:!: (T(E)v 0; aO(E)’ :80(5)7 )‘O(E)a :U'O(E))> ’

First, we take ¢ — 0 in F () = 0. Then we have

1 —cos(7(0))  sin(7(0)) z,(to,0)\ _
( —sin(7(0)) 1 —cos('r(O))) (x’i(tg,o)) =0. (4.3)

Here, 7(0) = lin(1) 7(£).
£—
On the other hand, taking € — 0 in F_(¢) = 0 we have

1 — cos(vT—2k7(0)) = f——11—_22k/:' > (xr(to,o)) =0. (44)
—V1 -2k Sin(\/l —2k7(0)) 1-— CQS(MT(O)) z’_(to,0)
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Equations (4.3) and (4.4) must hold simultaneously inasmuch as we have the follow-
ing results: For each t,

(1) We have (;f%ﬁo’((;;) = 0 or 7(0) = 27 from Equation (4.3). In the latter case,
+\%0,

we let 7_(0) = 27 for the sake of convenience.

.. —(%0,0) 27 .
2) Similarly, we have (%) = 0 or 7(0) = —-2"— from Equation (4.4). I
(2) Similarly, we have (z_(to,O) : or 7(0) Tk rom Equation (4.4). In
the latter case, we let 7, (0) = — =T for the sake of convenience.

v1-—2k \
(3) If k is irrational which satisfies 0 < k < —;— — %, then j7,(0) # I7_(0), (5,1 =

1,2,3,..., j # 1). Therefore, we obtain following two conditions: a condition is
Z4(to,0) 27 . . [z_(to,0)
= 0 and 74 (0) = ———= and another condition is ’ = 0 and
(w@(to,O) 0= 7= 2’ (t0,0)
7-(0) = 27 since (1) and (2) must hold simultaneously. We take some %, in the above
consideration, but we find that ¢y can be taken arbitrary in this stage. Consequently,
the former condition means out-of-phase and the latter in-phase.
. z4(t0,0)\ z_(20,0)\ .. _ _

Note that the condition of (x;(to, 0)) = 0 and 7 (t6.0)) = 01is ap(0) = Bo(0) =
A0(0) = po(0), that is, the origin.

Summarizing above, when € = 0, there exists no periodic solutions gxcept the
out-of-phase and in-phase solutions, in which periods are 7,(0) = \/_1_1r——ﬁ and
7_(0) = 2m, respectively. This fact is consistent with the characteristics of ok

Before proving the main theorem, we prepare two propositions and give the fol-
lowing definitions in order to prove the propositions using the inductive method.

Definition 4.1. P, (v),v = 1,2,3,..., is defined as:

T+ (t0,0)) _ : . O%zy(t,e) o"z! (t,¢)

If (:c; (t6,0) ) = 0, then there exist derivatives e and 5 and
14 V A/

921(t€) _ 5 4na 828 _ o e o,

Oe¥ Oev
Definition 4.2. P_(v),v =1,2,3,..., is defined as:

, vr_(t o’z (¢,

If (2,: gg:gg) = 0, then there exist derivatives o xas(",g) and x@s(” 6), and
or_ ovx’_(t,

Oev Oev

Proposition 4.1. P (v) is true forv=1,2,3,....
Proposition 4.2. P_(v) is true forv =1,2,3,....

Proof. We prove only Proposition 4.1 using the inductive method because Proposi-
tion 4.2 can be done by the same manner.

(1) z4+(¢,0) defined by lim._o 2, (¢, €) satisfies the differential equations z (¢, 0) +
z4(t,0) = 0 with the initial conditions z. (ty,0) and z/, (¢o,0). By uniqueness of the

. $+(t,0) — $+(t0,0) _ . fL'+(t,E) —
solution, we must have <z’+(t,0) = 0 when 7 (t6,0)) = 0. Hence 1_1_% z, (t,€)
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0 from Lemma 4.1. Then we have
y2(s, €)Y (s, €) + 2%(s,€)2' (s, €)

= (z4(s,€) — z(s,e))zzﬁr(s, g) — 2'(s,€)(y(s,€) — 2(s,€)) x4 (s,€)
—0 as e—0 (4.5)

Since we have F (¢) = 0 by the periodicity condition, that is,

_E 1 0 Ty(t E)
1—e QT(E)UT e (9+)> (E _ > f( 0
( () 5 1 (.’E+(to,€)>

7(e) ;
e_%”ﬁ'k—s)(gﬁ(to + 5,)y (to + 5,€) + 2*(to + 5,€)2'(to + s, €))ds
+& 0.,.(5) + =0.
/ e3¢ cos(018) (y%(to + s,€)y (to + s,€) + 2%(to + 5,€)2 (to + s,€))ds
0
(4.6)
Dividing Equation (4.6) by € yields
1 0 T4 (to, E)
— p—57(€)
(1 e”? Uf(e)(9+)) (% _1) x;(fo’ £)
£
() —1es sin(6+s) 2 / 2 /
e 2 —9——(y (to + 8,€)y' (to + s,€) + 2%(to + 5,€)2 (to + s,€))ds
+ O-r(e) + = 0
/ e~2%% cos(6.,.) (y2(to + s,€)y' (to + s,€) + 2°(to + 8,€) 2 (to + 8,€))ds
0
' (4.7)

We take € — 0 in Equation (4.7). Then the second term vanishes from Equa-

a t ,O . t 3 - t ’O
tion (4.5) and there exist the derivatives ﬁ(_o_) = lim Z+(to, €) = T+ (%0, 0) and

Oe e—0 £
a / t 0 / t , o t ,0 .
m+a(50“" "‘) = hff(l) Z (fo,€) - % (t0, 0) . Here we can take arbitrary to, therefore we
E—
oz (t,0 :
have the derivatives M—)— and ——$+( ) Furthermore we obtain _____81:+(t 0) =0
8, (t,0) o o B
and &_’_. = 0.

O¢
Note that in the computation of the limit we can exchange the limit and the in-
tegral. We show below this fact. The integral of Equation (4.7) is written as follows
using T defined in Equation (4.1):

&) _,_sin(6
/ e"ifs——smé +5) (y%(to + s, €)Y (to + 8,€) + 2%(to + 5,€)2 (to + s,€))ds
0 +

T 1 —les Sin(9+3) 2 ' 2 '
= ) (s)e™2 T(y (to + s,€)Y (to + s,€) + 2°(to + s,€)2'(to + s, 6))ds,
0

where

1, for s < 7(¢)
17' € -
@) {0, for s > 7(¢)
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Now we find

0
L) (s)e” 3¢ S_m_é_“ﬁ (y2(to + 5, €)Y (to + s, €) + 2°(to + 5,€)2 (to + s, E))l
+

< —9——|y2(to +5,6)y (to + 8,€) + 2%(to + 5,€)2" (to + 5,6)| < M, for 0 < s < T.
+

Here we use the same symbol M in the above equation and also in Equation (4.2) for
the sake of convenience but these are different from each other. Then we can apply
the bounded convergence theorem and we obtain

7(€) sin(@
lim e‘%“—%—ﬁl(yz(to + 8,€)y (to + s,€) + 22(to + 5,€)2 (to + 8,€))ds
e~V Jo +

= / hm 17‘(6)(8)6——563 smg9+s) (v%(to + s, €)Y’ (to + s,€) + 22(to + s,€)2 (to + s,€))ds
+

= / 1,(0)(s) sin s lim (v2(to + 8, €)Y (to + s,€) + 2°(to + 5, )2 (to + s,€))ds
0 &
= 0.
In the above equation, we use the relation 7(¢) — 7(0) as € — 0. In fact, we have
lim (t +7(e),e) = z+(t + 7(0),0) from the assumption lim zi(t,e) = xi(t 0) =

y(t) =+ 2(t) and the periodicity conditions hm x4 (t + 7(€), 6) = z4(t,0) and z4(t +
7(0),0) = z+(¢,0).

14 t 3!/ ! t ,0

(2) We assume that P, (v),v < n, that is, there exist 9"z+(to, 0) Z-giuo,o) and —————xgi_yo )
14 V ./

and 0"z+(t0,0) _ xgg,o’o) 0, —8%-@9’—92 0, v=0,1,2,...,n. Then we show Py (n + 1).

Dividing Equation (4.6) by £"*! yields

o t0,0) ,
($+(t0,5) Z"%O“l \
s 1 0 V=1+1
(1 —e‘fT(e)Ur(e)(9+)) <_€_ _1) i oz’ (to,0) ,
2 z', (to,€) — Z _ﬁ,,__

\ o /
( /T(E) e_%ESS_iEM{($+(to+8,€) —2(750+3,5))2’%(t0—Jriﬁl \

0., gn
to + s,
—2'(to+ s,€) (y(to + s,€) — 2(to + s, 5))%—8—@}@

+ 7(€) Tt =0
1 _—--——-—+ ’
./ e 2% coS(9+3){ (z4(to + 8,€) — 2(to + s, 5))2x+( 05“ )
0
t + ]
K —2(to + 5,€) (y(to + 5,€) — 2(to + 8, €)) i Ogn & }d‘s)
T4 (to + s,€)

Here, we take ¢ — 0, then the second term vanishes since lim —
£ —

€
/ t , £ . . an+1$ t 3 0
0, lim 0 ______a:+( 0 —: 5,£) = (. Therefore we find that there exist the derivatives 86:*(‘10 )
£ I3
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o"tia, (to,0) . . : . 8™z, (¢, 0)
and T gentl Since ty is arbitrary, we have the existence of B

ot (¢,0) otz (t,0) 0 ozl (t,0) 0
en+1 en+1 - Hen+l -
(3) From (1) and (2), we obtain that P, (v) is true for Vv € N.
The - part, that is, P_(v) is true for Vv € N can be also proved in the same way
using the relation

and

. Furthermore, we obtain

y3(s, €)Y (s,€) — 2°%(s,€)2 (s, €)
= (z_(s,e) + z(s,e))zx'_(s,z-:) + 2'(s,€)(y(s,€) + 2(s,€))z_(s, ).

O
We obtain the following lemma from Propositions 4.1 and 4.2.

Lemma 4.2. We assume that y(t,e) and z(t,e) are analytic with respect to the

T4 (t0,0)\ _ z+(to €)Y\ _ z_(to,0)\ _
parameter €. If (x;(to,0)> = 0, then (a:;(to,e) = 0. Also, If 7 (t6,0)) = 0,

ten (3 i) O

Proof of Theorem From Lemma 4.2, if (iigg:g) # 0 and (ﬁ,:gg:g) # 0,

then (i,igg:g;) # 0 gnd (:;,: gs:gb # 0. However, this is inconsistent with the

fact of ¥ x under the assumption which k is irrational, that is, the dynamical system
30,k does not have except the out-of-phase and in-phase solutions. Therefore, we have

zy(t,e)) _ z_(t,e)\ _ :
(x; (t. €)> =0or (x'_ (te)) = 0. Consequently, the dynamical system ¥, ; does not

have any other periodic solutions except the out-of-phase and in-phase solutions. O
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