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Combinatorial representation of irrational rotations and invariant
sets around irrationally indifferent fixed points

Mitsuhiro Shishikura
(Kyoto University)

Let f(z) be a holomorphic function defined near z = 0 with expansion
f(z) = ™z + 0(2%),

where a € R\Q. The origin is an irrationally indifferent fized point. Especially, we are interested
in the case where f is a quadratic polynomial f(z) = €?™*®z + 22. The irrational number « can
expressed in terms of (fast) continued fraction:

€
a=ap+ 05 , Where a,€2Z, g,=%x1(n=0,1,2,...),
a1+—1 an>2 (n>1).

€2
as +

We proved in [IS] that there exists a class F; of holomorphic functions around 0 and a large
constant N such that for h(z) = z + O(2?) € F; and @ € R \ Q with a, > N, the function
f = €?™2h has a sequence of well-defined “return maps” R"f (which are called near-parabolic
renormalizations), which have the form R" f = e?™on . with h, € F1. In this paper, we discuss
how to derive the properties of an invariant set Ay around 0 and how to analyze its combinatorial
aspect which is strongly associated with the irrational rotation R, (z) = €*™®z on S!.

We describe the local dynamics via an infinite systems of open covers of punctured neigh-
borhoods, and in the open sets the dynamics can be conjugated to canonical maps (see Figure).
More precisely, we have:

Theorem. For f as above, there exists an infinite sequence of systems

{Ans rans {hy . ko Ykr o kn)€An> {Pk1rkin Ykt ,kn)€Ans LFR1,onkin Y (k1 ,eonskn) €An e
satisfying: |
e The index set is a finite set A, C Z", which inherits the lexzicographic order;
o The combinatorial dynamics ron : An — Ay is bijective and preserves the cyclic ordering;

e Open sets Q.. .k, ((k1,...,kn) € Ap) cover a punctured neighborhood of 0, and their
order around O is the same as the order of the indices in An;

o Maps k.. k. : Dy, kn — Scanl@n], where Qcan s so-called the truncated checkerboard
pattern (see Figure) and Qeanlan] is its truncation according to the coefficient of the con-
tinued fraction of ; @k, ..k, are either holomorphic if &, (defined later) is +1 or anti-
holomorphic otherwise;
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e The model dynamics F,, . k, = ‘Pra,n(kl,...,kn)°f°‘P;11,.,,,k,, is Fegn if (k1,...,kn) = (0,...,0)
and it is id otherwise, where F.q, is the canonical dynamics on the truncated checkerboard
pattern;

o Two open sets g, . k., and Qp, g, overlap if and only if (k1,...,kn) and (€1,...,£5) are
(cyclically) adjacent in A,, and the gluing is defined via the n-th near-parabolic renormal-
ization R"f of f;

e The (n + 1)-th system is a “refinement” of n-th one; If (k1,...,kn,kny1) € Ant1, then
(k1,..-,kn) € An and Q. knknsr C Pk, ks The combinatorial dynamics almost com-
mutes with the projection projny1 : Ant1 — An in the sense that projni1 © Tans1 =
Tamn © PTrojny1 except at one element in Apny.

Figure: Truncated Checkerboardl Pattern

Fean(w) = w/(1-1) = w+1+0(2) is conjugate
to z + 22 and has a parabolic fixed point at oo.
Its attracting Fatou coordinate ®,¢¢r (defined in
a right half plane) conjugates Feqn to T(w) =
w+ 1, and is normalized so that gy, (crit.pt) =
0. It extends to the whole parabolic basin. The
Truncated Checkerboard Pattern .., is defined
to be the union of some inverse images of {w :
n< Rew<n+1l —-2< Imw< 2} and
{fw:n<Rew<n+1, 2<Imw} (n€Z)bdby
D,ttr together with boundary curves.

Furthermore, the projective limit Ao, = lim A, and the combinatorial dynamics 74,00 : Aco —

Ao are well-defined and there is an order-preserving semi-conjugacy 7 : Aoo — S! from 74,00 to
the a-rotation R, such that two distinct indices (ki, k2, ... ), (€1,%2,...) in As are mapped to
the same point if and only if (k1,...,kn) and (¢1,...,¢,) are adjacent in A, for large n. The
quotient dynamics 7o on A = Aco/ ~adjacent is conjugate to R, on St

The maximal invariant set Ay covered by these open sets is called the mazimal hedgehog:

o0 oo
Ay ={0}u) U Qs k2,0 ke = {0} U U [ Qs .kz,rbn-

n=1 (k1,k2,....kn)EAn (k1,k2,... )E€EApe =1

It can be shown that for each (ki,k2,...) € Aco, o2 Uk, ks, kn 1S either empty or an arc
tending to 0. The sets (oo, Qky ks, ke ((F1,k2,...) € Ac) are (cyclically) permuted by the
dynamics f. The map (oo ; Ok ks, ke — (k1,k2,...) — m(ki,kg,...) defines a semi-
conjugacy from f on As \ {0} to R, on S! (not necessarily onto).

Rotation combinatorics: The key ingredient in the construction (beside the theorem in [IS})
is the analysis of the combinatorics of the irrational rotation R,. This will naturally gives us

the index set A, and the combinatorial dynamics ro . Let us first review the fast continued
fractions.

Definition. For z € R, (z) denotes the closest integer to z. If z = n + } with n € Z, we set
(z) = n. Define ||z|| = dist(z,Z) = min{|z—n| : n € Z} = |z — (z)|. Then we have 0 < ||z|| <
and z = (z) + ||z||.
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Forae RN\Q, let a_; =éanddeﬁnean€Z, an € (0,%]CRa,nd€n=:t1 (n=0,1,2,...)

as follows:
1 1 : +1 ifa, < 2
an = < >) ap = H and En = { " n-t (1)
Qn_1 an_1

It immediately follows that

Qn-1"

= Qp + EnQn (2)
Qp—1

and that a, > 2 for n > 1. Moreover if a, = 2 (n > 1), then &, = +1. A repeated use of (2)

shows
a=agp+ £0 . (3)

An + EnQn

Define the sequence of integers {gn}>> _5 and {pn}52_, by the following

gn = GnQn—1 + En—1qn-2 (4)
Prn = QnPpn—-1 + En—1Pn—2 ’

whereg_ o =1,p_2=0,9g_1 =0and p_; = 1.
Finally define 8, = |gha — pn| and 6, = (=1)""leg...en-1 (n=-1,0,1,2,...).

Lemma. For n > 0, we have

1

= (=1)"¢q...€ o — = = . 5

/Bn ( ) 0 n(Qn pn) Tt + Ent10nCntt ]I;IO 5 ( )

Hence fB-1=1>Bo=ag>0F2>--->0Fp>---\0 and Pn _,q (n — o0). Furthermore
dn

@nBn-1 + €ngn-1Pn = 1, (6)

An+1Pn + En+1Bn+1 = Bn-1. )

We can now describe the combinatorics of irrational rotation. For simplicity, we assume that
an > 5 (n > 1). We want to define Ap, I, Tan (n = 1,2,...) with following properties ((E)-(H)
will be stated later):

(A) A, is a finite subset of Z". A, = A% U Al (disjoint union), where AJ = {(k1,...,kn) €
An| kn =0} and AL = {(k1,...,kn) € Apn| kn # 0}. §An = gn and HAD = gn—1.

(B) (Partition) Z, = {Ix,, k.| (k1,-..,kn) € An} is a partition of [0, 1], i.e. it is a collection
of closed subintervals of [0, 1] which have disjoint interior, and their union covers {0, 1].

(C) (Length) If (kl, e ,kn) € Ag, then |Ik1,...,kn| = Bp-1+ Enln; if (k],. . .,kn) € A,]:l, then
|Ik1,...,kn‘ = ﬂn—l-

(D) (Order) The correspondence A, 3 (ki,...,kn) — Ik, k., € In is order preserving, where
A, inherits the lexicographic order < from Z" and the order among I, . k,’s comes from
the order in [0, 1]. In particular, adjacent indices in A, corresponds to the intervals which
are adjacent.
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Remark. Note that (C) is consistent with the formula (6). In fact, we have gn—1(Bn—1 +€nfn) +
(gn — @n-1)Bn-1 = @nPn-1 + €ngn-1Pn = 1. Therefore, once the set A, is given with property
(A), it automatically determines the intervals by (B), (C) and (D).

Notation. Let T8 = {Ix,, k.| (k1,...,kn) € A4} (i = 0,1). When it is necessary to indicate

the index length n explicitly, we write I li?)k,, for Z,,. For example, I(g??,,o =Ty, 0

n

Now we define the set A,.

Notation. Let §, = (~1)""eg...e,—1. Note that &, is equal to the signature of (g,—10—pn_1)
and 6, = —0,_16n—1. Define

Kn(+1) = [7] and Kkn(—1) = [ : } , (8)
where [k] denotes the largest integer which does not exceed k.
Denote [a, b]z = [a,b]NZ. We will frequently use the set [x,(—1), k,(+1)]z below. Note that
this set consists of a, elements including 0. In fact, if a, = 2¢, then the set is [—(£ — 1), £]z and
if ap, = 2€ + 1, then the set is [—¢, £]z.

Definition. An array (ki,...,kn) € Z" is called allowable (or a-allowable) if k1 € [k1(—1), k1(+1)]z
and for j =2,...,n,

[k5(=1), ki (+1)]z (kj-1 #0)
kj e [Iij(—l), h‘,j(-'}-l) — 6_7']2 (kj_l =0 and 5_7'._1 = +1) (9)
[kj(=1) = &5, k5(+1)]z  (kj—1 =0 and §;—; = —1).

(Note here that —0; = +¢;-1 if §;_1 = +1, and —6; = —¢;_; if 6,1 = —1.)

Let A, = {(k1,...,kn) € Z™, a-allowable } for n > 1. For consistency, we define Ag to be a
singleton, consisting of an array of length 0. When we need to specify the dependence on «a, we
write A, . The definition of allowability extends to infinite sequences and defines Ao, C ZN.

For (ki,...,k;) € A;, 0 < j < n, we denote by A,(ky,...,k;) the set of arrays in A, that
start with (k1,...,k;).

Lemma 1. The set A, satisfies (A). Moreover §An+1(k1, ..., kn) = ant1 + €n if (k1,-..,kn) €
A% (i.e. kyn =0), and §An11(k1,...,kn) = ans1 if (k1,...,kn) € AL (ie. kn #0).

Proof. The second half of the statement follows immediately from (9). Let us prove (A) by
induction. Clearly 49 = 1 = qo, §41 = a1 = ¢1 and §A4% = 1 = go. Suppose (A) holds up to n
(n = 1). By decomposing Ant1 = U, . kn)ea2 An(k1, - s kn) UU @k, knyear An(ky, - - -, kn), we
obtain

fAnt1 = q'n——l(an+1 + En) + (Qn — @n-1)@n+1 = On41Gn + EnQn_1 = dn+1.

Obviously #A4% +1 = §An = gn. This proves the assertion.: O

Although Z,, can be determined by A,, it is important to see the recursive construction of
Z,. For n =0, we set Zo = {[0,1]}. For n = 1, let A; = [k1(—1), x1(+1)]z and Z; the partition
of [0,1] as in (C) and (D), which is easy to determine. We can define recursively Z, by the
following rule:
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(E) (Subdivision) Each I, , € I, is subdivided into a collection of subintervals

In+1(k1, ceey kn) = {Ik1>~~~,kn,kn+1| kn+1 satisfies (9) with 7 =n+ 1}, (10)
which consists of ap+1 + €, subintervals if (ki,...,k,) € A%, and an4+1 subintervals if
(k1y...,kn) € A,ll. In particular, I, . knkni: C Iki,....kn- They are ordered within I, &,

according to kp41-

If Z,, satisfies (B) and (D), then Z,,;; clearly satisfies them also. We only need to check the
consistency of the length condition (C). If (ki1,...,kn) € AL, |Ix,,. k.| = Bn—1. By the above
rule, Z,4+1(k1,. .., kp) consists of 1 subinterval of length Oy, +€n+10n+1 and an41 — 1 subintervals
of length 3,. By (7), we have

(Bn + ent1Pn+1) + (an+1 — 1)Bn = an+1Pn + €nt108n+1 = Bn-1.
Therefore the length is compatible with (C) and the subdivision (E) is possible.

Now we define ro , : A, — A, and make a connection to the irrational rotation R, : R/Z —

R/Z.
Definition. For (ki,...,k,) € Ap (n > 1), define rqn by 74n(0,...,0) = (é1,...,08,) and if
1< j<nandk;#0, then
Ta,n(O, ce ,0, kj, ceey kn) = (51, ceey 5j-1, (kj -+ 5j), kj+1, ceey k.n), (11)
j—1
except the following exceptional cases.
Special Case 1: if 2 < j < n, g;_1 = +1, then
ra,n(O, ey 0, K'j(""dj—l), kj+1, ey k‘n) = (51, ey (5]'_.2, 0, K/j(aj—l) - 5_7', kj+1, ey k‘n). ' (12)
j—1
Special Case 2: if 2 < j < n, g;_1 = —1, then
ra,n(O, ‘e ,0, -—(5_7'_1, K‘,j ((Sj_l), kj+1, ceey k:-n) = (51, N ,5]'_2, (5j_1, Iij(—-(sj._l), kj+1, ceny kn). (13)
j—2

Remark. By definition, r4,(0,...,0,—6,) = (é1,...,6n-1,0) is not a special case. Note also
that if the above rule in Special Cases were not applied, i.e. (11) were used instead of (12) and
(13), then the images would not be in A,. In fact, for Special Case 1, where €;_; = +1, the
image would be (...,8j_1,k;(=8;—1) + 6;,...), but k;(—d;—1) + d; & [k;(—1),K;(+1)]z, since

§; = —6j—1€j—1 = —d;_1. For Special Case 2, the image would be (...,d;-2,0, ki (8j-1)s-.-)
which is not allowed by (9).
We claim:

(F) ran is well-defined (i.e. the image belongs to A,) and bijective.

Although one could prove this directly, we will prove it via comparison to the action of the
rotation R, on intervals in Z,.

(G) (Dynamics) If (ki,...,kn) € An and (k1,...,kn) # (0,...,0),(0,...,0,—5,), then Rq
maps I, ,E?)kn bijectively onto IT(:)n (ku,... kn)- ON the other hand, R, maps Ié?').,o UIST.).’O,_ on

n)

1 bn1.0" Note here that Ié?_)"o and Ic(,?')"o’_ 5, are adjacent, and

bijectively onto I é:"’)‘ 'I., 6, I (g

) _ r(n)
so are Ié:)...,a,. = Iﬁ:,)n(o,...,O) and Ig,...,a,,_l,o =1 (©0,..0-6n)



Combinatorial representation of irrational rotations

(H) (Mismatch) If e, = +1, then II(ST.)_’O| > II(()"T_)“O‘_%I and

) (n) ( )
oI 0) 217 500 Rallg o s )G I 5 1o
(n+1) (n+1)
and the difference comes from Ra(I nn+1(—6n)) Ial, 1.0k s1 (6)—Gman

If e, = —1, then |Iy, o] < |Io,.,.,o,—6,,| and
R_a(Ié?.).,o) ;C.:Ié:)...,a,,’ Rq (I(n)o _6.) 2 é?) On-1,0

(n+1) (n+1)
In 0 5“3"’114-1(6‘")) Iél! l6ﬂ 1)6'1,'(""-}-1( 671)'

and the difference comes from R, (
These properties can be proven by induction. In fact, the induction process corresponds to
the subdivision of the intervals. This structure will be reflected in the proof of the main theorem.
The key step replaces the open sets given by n-th system by smaller open sets for (n + 1)-st
system and the number and arrangements of the sub-open sets are exactly like the subdivision
of the corresponding intervals.

Reference: (IS] H. Inou an d M. Shishikura, The renormalization for parabolic fixed points and
their perturbation, preprint.



