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1. INTRODUCTION

The Burgers vortices arc cxact stationary solutions to the three dimen-
sional Navicr-Stokes cquations, and they represent a balance between two
basic mechanisms in fluid dynamics - vorticity stretching cffect and diffu-
sion cffect. The Burgers vortices are also known as a simple model of vortex
tubes which are coherent structurcs observed in turbulent flows [23, 12]. For
this rcason they has been widely studied physically [13, 18, 21, 3, 22] and
mathematically [11, 2, 10, 7, 8, 9, 15, 16, 17, 5|. In this report we discuss
three dimensional stability of the Burgers vortex and introduce a recent
result obtained by [5] on this problem.

2. FORMULATION OF THE PROBLEM

We consider the Navier-Stokes cquations for viscous incompressible
flows in R3,

1
(2.1) oV —vAV + (V,V)V + —-VP =0, V-V =0.
p
Here V (z,t) = (Vi(z,t), Va(z,t), Vs(z,t)) T and P(z,t) denote the velocity
ficld and the pressurc ficld, respectively, and the parameters in (2.1) arc the

kincmatic viscosity v > 0 and the density p > 0. We assumc that the
velocity V' has the form

(2.2) V=VtU.

Here V* is a given background straining flow defined by (2.3) below,

(2.3) Vi(x) = (—— —— xa)T =yMz,
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and U is the unknown perturbation velocity ficld. The paramcter v > 0
describes the magnitude of the straining flow, and M is a matrix of the form

-1 0 0
M=| 0 —3 0
0 0 1

By performing the scaling transformation

1% ~ P

o (1) P = D)

(yv)2 PV

we may assumc that v = v = p = 1. For simplicity of notations we usc z
and ¢ for £ and ¢. From the assumption of V = V*® + U, the cquation for
the vorticity ficld 2 =V x V =V x U is given by

N

= (L)tz, f=n~t, V=

R

(2.4) - LO+ (U, V)Q—-(,V)U=0, V-Q=0.
Here L is a partial differential operator defined by

(2.5) LO = AQ — (Mz,V)Q + MQ.

The velocity ficld U is formally rccovered from the vorticity ficld 2 via
the Biot-Savart law

(2.6) Uz, t) = (Ksp * Q)(z,t) = —ﬁ g (z —I-Z)_xyﬂi(y’ Y dy.

If U is two dimensional, that is, if U(z,t) = (Uy(zn, t), Us(zh,t),0)7,
zh = (z1,72)" € R2, then the associated 2 becomes Q(z, t) = (0,0, Qa(zs, 1)) 7,
and (2.6) is replaced by the two dimensional Biot-Savart law

(27) Uh(:z:h, t) == (KQD * 93)(1'}“ t) == L (x—h_—yi)iﬂg(yh, t)d'yh.
2m R2 |.’L‘h ——yhlz

Here Uy, = (U, U,) " and x5 = (—z2,71) .
We sct the vorticity ficld G as

(2.8) @) = (0.0,9@))T,  glew) = e

Then by dircct calculations we can check that {aG}aer gives a family of
stationary solutions to (2.4). The vclocity ficld associated with G is
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(2.9) U°(z) = W (|zh|?)(—2e,21,0)T,  wi(r) = %(1 — e 1),

The vorticity ficld aG is called the (axisymmetric) Burgers vortex. The
paramcter « is the circulation number which represents the magnitude of the
vorticity ficld. To consider the asymptotic stability of the Burgers vortex,
we first note the following lemma.

Lemma 2.1. If Q € (L} _(R; L*(R?)))? satisfies V - = 0 in the sense of

distributions, then there exists a € R such that / Qs(xh, z3)dzy, = a for
R2

loc

a.e. ry3 & R.

Although it is casily proved by the integration by parts, Lemma 2.1 is

uscful since the quantity Q3(zp, x3,t)dxy is conserved under the equation

(2.4). Especcially, if the solutlon Q to (2.4) converges to aG at time infinity,
then the value a is determined in terms of the initial data, i.c., we must

have o ———/ Q3(xp, z3,0)dxy,.
]'R?

3. MAIN RESULTS

To state our main results, we introduce function spaces. Since the Burgers
vortex is essentially a two-dimensional flow, it is natural to choose a function
space which allows for perturbations in the samc class. Following [8], we
assumec that the perturbations arc localized in the horizontal variables, but
mcrcly bounded in the vertical direction. For cach m > 1 we sct p,,, by

(3.1) pm(r) = (1 + ﬁ)m, r > 0.

Then we introduce the weighted L? space

32)  Im) = {FeL2@) | [ If@n)Ponllandan < oo}
33)  Lim) = {ferim)| [ flondz =0}

Next, we define the three-dimensional space X (m) as the set of all ¢ :
R3 — R for which the map zp, — ¢(z, z3) belongs to L2(m) for any z3 € R,
and is a bounded and continuous function of z3. In other words, we sct

(34) X(m) = BC(R; L*(m)), Xo(m) = BC(R; Lg(m)),
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which arc cquipped with the norm
|6l x(my = sup [|@(; 3)|[L2(m)-
r3€R

Then our main result is stated as follows.
Theorem 3.1. Let m > 2. Assume that 2y = (21, Qo 2, Q(),;;)T belongs to
X(m)? and satisfies V - Qy = 0. Set o = / Q0 3(xh, z3)dxn. Then there
exist 6 and C such that if | — aG||x@m)s < %2, then Eq. (2.4) has a unique
solution Q0 € L>(0, 00; X (m)?) with initial data Q. Moreover, it satisfies
(35) 192(t) — @G|l x(myr < Ce™ 7| — aGl| x(mye t>0.
Here § and C depend only on o and m.

Remark 3.1. Thecorem 3.1 was firstly proved by [8] under the assumption
of || < 1. The smallness of |a| is removed by [5].

Sct
(3.6) X(m) = X(m) x X(m) x Xo(m),

which is invariant under (2.4). Theorem 3.1 shows that the Burgers vortex
aG is asymptotically stable with respect to perturbations in X(m), for any
valuc of the circulation @ € R. However, the constants § and C' in Thecorem
3.1 depend on « in such a way that d(a,m) — 0 and C(a,m) — oo as
|a| — oo.

To prove Theorem 3.1 it is uscful to consider the cquation for w = Q—aG
in X(m),

(3.7)
Ow —(L—al)w = —(Ksp*w,VIw+ (w,V)Ksp*xw, z€R3 t>0,
V- w() =0, zeRd t>0,
Wli=o = wo, z € R3.

Here A is a lincar opcrator defined by

(3.8) Aw = (K3p*G,V)w—(w, V)K3p*G+(Ksp*w, V)G—(G, V)Kzp*w.

The key step to prove Theorem 3.1 is to analyze the lincarized problem

_ (L — — 3
(3.9) {atw (L — aA)w 0, zeR t>0

— 3
(UI;::() = Wy z € R,

Espccially, L — aA has a uniform spectral gap for all a € R, which lcads
to a uniform decay e~ 3 in (3.5). Morc preciscly, we can show
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Theorem 3.2. Let m > 2. Assume that wy = (w1, w2, wo3) € X(m) sat-
isfies V-wy = 0. Then Eq. (3.9) has a unique solution w € L*(0, oo; X(m))
with initial data wy and it satisfies

(3.10) lw(®)llxem) < Ce 2 [lwollxemy, 0.
Here C depends only on a and m.

3.1. Key lemmas for the linearized operator L — aA. In this scction
we collect several properties of L and A which arc keys to prove Theorem
3.2. We first consider the operator L. Sctting

2 2
_ Th _E: 2 E:%
(311) L, = A;L-{—?-vh—}-l— - lazj-*— - 150%4—1,
J= 1=

(312) Eg = 823_1'38.7:3:

we write Lw as

Lw = Lpwn '\ _ (L + L3 — 3)ws )
Lyws (Lh + L3)ws '

Since the semigroups associated with £ and L3 arc cxplicitly given by

1 _lzp—ype” 7 _
(313) o= tra(t) Jia w® " d(yn)dyn, a(t) =1-e"",

(3.14) ¢ = e (ya)dys, b(t)=1—e*,

Vool

we have the representation of the semigroup for Ls such as

315) o= s [ g ) s
27rb
Hence the semigroup associated with L is given by
(3.16) e Lw() (e 3t tqu)J’ e—gtetngO’% EtLﬂ(U(),;;)T.
In [6] the following cstimates for e'* arc obtained:
3:17) e flizzmy < Clifllz2em), f e L¥m), m>1,
(3818) [ flligaem < Cedlfllisem,  f € Lim), m>2

Combining these with (3.13)-(3.16), we can show that
(3.19) e fllxemy < Ce™ % fllxem, — fEX(m),  m>2.
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In particular, when || is sufficiently small, we have a control of the spece-
trum of L — aA from the gencral perturbation theory for lincar opcerators.
Howcver, when |« is not small, we nced to usc additional special structures
of L and A in order to estimate the spectrum of L — aA.

To overcome the difficulty for the casc of not small |a|, we first obscrve
that L and A have a simple dependence on z3 variable such as

(3'20) [61'3’ L] = az‘:sL - Lax:; = _0:637
(3.21) [0,,,1\] =

which gives a rclation 9 el(t=>A) = e‘“ Hl—ah) gk .

Hence, as a first step,
wce casily get an cxponcntlal dccay cstimate for 8'“" UL=a) at lcast for suffi-
ciently large k. So the sccond step is to show that (')’“ let(L—ah) g ossentially

cstimated by 9% e “L=aA) " which cnables us to get thc cstimate for et(L—aA)
itsclf by the backward induction on k.

For the proof of the sccond step we decompose L — aA as follows. Set
A, 3 =1,2,3,4, as

Aw = (UC V)w— (w, V)U® + (Ksp *w, V)G — (G, V) (Ksp * w)
(3.22) = Ajw—Aw + Asw — Ayw,

and also sct Ay as

(323) 1~\3w = (K2D * Wy, V)G
Using these notations, we define lincar opcerators Lyp , and N by

(Eh — % — aA1 -+ aAz)wh )

L2D’aw - ( (Lh — aAl — a/~\3)w3

Nw = (A3 - ;\3 - A4)w

Note that Lyp, is a two dimensional operator in the scnse that it does
not depend on z3 variable. Now we can write L — aA as

(3.24) L —aA = LQD,Q + L3 — aN,

and thus, et(L=>A) gatisfics the integral cquation

t
(325) et(L—‘(IA) — et(LzD,a+E3) _ a/ e(t—s)(L2D’a+E3)Nes(L_aA)dS.
0

The intcgral cquation (3.25) is uscful to get the desired cstimates. We

t L a+£1 t L u+£.
(eh( 2D, 1) 8( 2D, %))T.

first consider the scmigroup et(L2patLs) — , €3
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Lemma 3.1. Let m > 2. Then we have

k _t(L at+tls) __ _—kt t(L at+L: k
(3.26) O elb2paths) — g—ktptlan,at Dok,

L2 fe] Ll — «

(327) ||e:7,( Dot {)fh”X(m) S Ce t“fh”X(m)) fh. € X(m)27 > 07
L P L; 1

(328) ”efi( 2Dt ;)fd“X(m) S CG 2||f3||X(m)J f3 S XO(m)7 t>0.

The equality (3.26) follows from [0, Lap o] = 0 and [8,,, L3] = —0%,.
The details of the proof for (3.27) and (3.28) will be given in [5]. Next we
neced the estimate for NV to control the second term in the right hand side
of (3.25). We write

Nw = (Niw, Naw, Nsw)' = (Npw, Nsw)'.

Lemma 3.2. Let m > 2. Then 8% N = NO¥ holds, and we have for any
f= (fh7f3)T € X(m)7

(3.29) | Ve fllx(m) < Cll0z, flIx(m)
(3.30) | N3 fllx(m) < C |0z fllxmy + | frll x(m)2)-

The important fact in Lemma 3.2 is that || f3|| x(m) docs not appcar in the
right hand side of (3.30). Combining Lemma 3.1 and Lemma, 3.2 with the
integral cquation (3.25), we finally obtain

(3.31)
|08, e Em M fllxiny < Cem GO GE Fllxim

t
1 —8 s o
+C/ e~ (ZHR(=9)| gk tlesllmal) £ ds.
0

We note that, from the parabolic regularity, we may assume that f is
smooth and 9% f € X(m) for cach k in (3.31). Then Theorem 3.2 is proved

by the backward induction on k for 9% e'F=*N). The details will be stated
in [5] and we omit them here.
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