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On the Stokes and Navier-Stokes equations
with Robin boundary condition
in a perturbed half space

Waseda university Yuka Naito

1 Introduction

We consider Navier-Stokes cquation with Robin boundary condition in a
perturbed half space. 'We show that Navier-Stokes cquation has a unique
strong solution u(t) on (0, 00) with a small data. Navier-Stokes cquation is
given by the following:

Uy —Au+u-Vu+Vp=0 in Q x (0, c0),

(1.1) Vou=0 in 2 x (0, 00),
' u-v=0, Bopg(u,p) =0 on 9N x (0, c0),
u(z,0) = a(x) in Q.
where u = (u, - ,u,) is vclosity, p is pressure, v is a unit outer normal

vector of €, a is a initial value. And we assume 2 C R3 is a perturbed half
spacc with smooth boundary d. Here a perturbed half space is a domain
that satisfies the following condition:

there exists R > 0 such that 2\ Bp = R% \ Bg, where Bp = {z € R™ | |z| <
R}. And Robin boundary condition is given by

u-v=0, B,s(u,p)=au+B{T(u,p— (T(u,pr,v)v}=0 (a+8=1).

where T'(u, p) = D(u) —pl denotes stress tensor of the Stokes flow, D(u)j, =
245 . We know casily that B, g(u, p)

Oru;+0juy is strain tensor, where dyu,; = e
is independent of wu:
Ba,/J(U,P) = Ba,ﬂ(u)-

Especially when o = 0, Robin boundary condition becomes Navier’s slip
condition (J,u = 0). And when 8 = 0, it becomes non-slip condition (u = 0).
With non-slip condition there arc many papers. R. Farwig and H. Sohr
showed that Stokes opcrator A gencerates an analytic semigroup 7°(t) on J,(2)
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in a half spacc and a perturbed half space [1]. Kubo-Shibata tracted the non-
slip condition casc in a perturbed half space in [2]. In this paper we would
like to extend their results to the casc of Robin boundary condition. When
parametrix is constructed with non-slip condition, Bogovski lemma is very
uscful. But with Robin boundary condition we can usc the lemma, and so
wc can not do by same way. And in Navier’s slip condition case, we need
the different way, and we assume a > 0, 8 > 0 in this papcr. The following
thcorem is our main result.

Theorem 1.1. Let n > 3.
There is a constant € = €(§2,n) > 0 such that if a € J*(QY) satisfies

llallr@) <,

Navier-Stokes equation admits a unique strong solution u(t) on (0, 00).
Moreover as t — 00,

lu(llry = O(L_%Jr%) for n <p < oo,
1
IVu(t)| Ly = o(t™2).

To get this main thcorem, we consider Stokes cquation which is given by
the following:

u— Au+Vp=0 in Q x (0, 00),
(1.2) V-u=0 in Q x (0, c0),
' u-v=0, Byg(u,p) =0 on 9N x (0, 00),
u(x,0) = a(x) in €.

Using semigroup argument, we define a operator the following. We consider
the solenoidal space : JP(§2) which is given by

JP(Q) ={ue Q)" | V-u=0inQ, u-v =0 on 002}.
And we define Stokes operator by the following:
Au= —PAu for u € D(A)

D(A) = J"N{u € W*P(Q) | B, s(u,p) = 0 on 60},

here P is a continuous projection from LP(2)™ onto JP(2). According to
Kato’s argument [4], to get the main theorem, it suffices to show the following
two results about Stokes cquation:

1. Stokes opcrator A gencrates an anlytic semigroup {7'(¢)}+>o,
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2. L™ — L7 dccay cstimates of the Stokes semigroup {7T'(¢) }+>o-

To consider the two theorems about Stokes cquation, I consider the re-
solvent problem:

AMu—Au+Vp=f in €,
(1.3) Vou=20 in €2,
u-v=0, B,s(u) =0 on 0Q.

About this resolvent problem we introduce the known result ([5]). It is the
thcorem about resolvent cstimate with large A.

Theorem 1.2. For all ¢ > 0 there exists A\g and C, such that satisfies the
following:

IA] 1wl agay + (A2 VUl Loy + V20l ey + VPl Loy < Cllf lzae
for Xed ., Al > Ao where D>, ={A e C\ {0} | |argA| <7 —€}.

This theorem implics 1, that is the generation of an anlytic semigroup
{T(t)}+>0. But we can not know 2, that is L™ — L9 dccay cstimatces of the
Stokes scmigroup {7'(¢)}:>0. Therefore our aim of this paper is to show the
L™ — L9 dccay cstimates. To do so, we have to analyze the resolvent problem
with small A. Therefore first we show the resolvent expansion with small A in
scction 2. In scction 3 we show LP — L cstimates in a half spacc. Concretely
we show the resolvent cstimates in a half spacc. In scction 4 we get L™ — L9
decay cstimatces, using the cstimates with small A .

2 The resolvent expansion with small )

Instcad of (1.3) we consider genceralized resolvent problem in a perturbed half
spacc:

AM—Au+Vp=f in ,
V’u:g inQ,
u-v =0, Bopg(u) =h on OS2

Generalized means that the right members : g, h are not zero. Let us define
the solution opcrator U(A) and II(A) by the formula:

UF = u, IOF = p,
where we set F =*(f, g, h). Then we know

U(A) : Ll 3(S)" x "Vll?,i);*.,o(ﬂ) X Wll?fs(ﬂ)n — W2P(),
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F="%fg,h) — u,
TI(A) : Ly (0™ x WPy 0(82) x WP (Q)" — WLP(1),
F="%fg,h)— p,

where we have sct the function spaces:
L% 5(Q) = {f € L?(Q) | supp f C Bpris},
Wityol®) = {1 € W) | supp | € Braa, [ Jdo =0},
Wllzis(ﬂ) = {f e W'P(Q) | supp f C Brys}.

About the solution opcrator U(\) and II(\) we can get the following:

Theorem 2.1. Letn >3 and 1 < p < oo.
Ga = L(LY,5()™ x WPy o(Q) x WPy ()™, WiEP(Q) x W,;7(Q))

Then solution operators (U(N),II(A\)) € G for A e U .2

) (1+v2)2p2
moreover they have the following expansion formula

(UNF,TI(A)F)
= A"T Hi(A\)F 4+ A" Hy(A\)F + (Mog N Hs(\)F + Hy(\)F,
where L(X,Y) is the Banach space of all bounded linear operators from X to
Y, H; (j =1,2,3,4) are Go-valued holomorphic functionsinU _,» |, F =
1+v2)Zp2
t(fag’h)f U,\ = {/\ eC I l/\l < T}.

To prove this thcorem, we need the results of a half space problem. There-
forc we shall consider gencralized resolvent problem in half space:

Ab‘h — A’Uh + Veh = f in Ri,
(2.1) V=g in RY.
QUp; = BOpvn;i = h; (j =1,---n — 1), vap, =0 on IRZ,

where the unit outer normal vector becomes v = (0,---,0,—1) in a half
spacc. We shall introducc thcorcms about this problem. They were proved
in [6] by Y.Naito.

Theorem 2.2. Letn >3 and 1 < p < co.

Gry = L(L5(R)™ x Wriy o(R}) x WRT,(R)™, Wil (R}) x WP (RY))

oc oc
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Then solution operators (Un(A),IIn(N)) € Gry for A€ U .2,

(1+v2)232
moreover they have the following expansion formula

(Un(N) F, TR (M) F)
= A" Hy(\)F 4+ A"T Hy(\)F + (Mog \)Hs(\) F + Hy(M\)F,

where H; (j = 1,2,3,4) are Grn -valued holomorphic functions in U ..
- (V52562

F = 'f,g,h), Uy = {) € C| |\ < r}, where we have set U,(\)F =
Vh, Hh()\) = 0h.

Theorem 2.3. Let 1 < p < oo, n > 3. Let (Un(N\), II4(N\)) be the solution
operator to (2.1) for A € C\(oo,0]. Then there exists operator

(Un(0), TTn(0)) : (Lo (RE)" X W AT, o (RT) x WAT, (RT )™, W2 (RT) x W2 (R7))

loc

which have the following properties:
(1)If we set U,(0)F = vy, and I, (0)F = 04, then then (vy,6) satisfies the
equation:

—Av, + VO, = f in RY,

V.v,=g in R7,
QUp; — BOpvp; =h; (j=1,---n—1), vp, =0 on IRY,

(2)(vn, 61) satisfies the estimates:

”Uh”W?m(B,f) + ||9h||W1m(B;j) < CR,L”F“A(RS;)’

ooup {lz" Hon(@)| + 2" Vor(2)] + 2] 0n(2)} < Cr Ll Fllags)
z|>1,z€RT

IURNF = Un(0)Fllw 1o (s + IMa(MF — Ta(0)Fl 151
< COAT + A" log )| F [l agen)

where || Fl|agz) = [ fller@z) + |gllwio@ny + |Rllwis@n)-
Moreover we use the follwoing lemma:

Lemma 2.4. Let 1 < p < oo, n > 3.
We assume that u € Wl":,’f, p € WP and they sastify the following condition:

loc

—Div T'(u,p) =0 in 2,
V-u=0 n €,
u-v =0, Byg(u,p) =0 on 09,

sup {|z[" " u(z)| + 2" Vu(z)] + |2]" 7 |p(z)]} < oo.

z€RRy3

Then u=p =0.
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Proof. Let ¥(z) € Cg°(R™) be a cutoff function such that

(z) = 1 forjz| > R+1
AT 0 for || <R

We sct ¢y (z) = (F) € Cg°(R™).

0 = — (Div T (u,p), Yiu)g =
= — (T'(u, p)v, Yuu)r + (T'(u, p), V(dru))q
= (T (u,p)v — (T (u,p)v,v)v, viu)r — (T (u, p)v, v)v, Y1u)r
+ (T (u, p), V(¥)u)g + (T'(u, p), ¥uD(u))g

= % (u, Yru)p — (T (u, p)v, v) (v, Yiu)p
+ (T'(w, p), V(¥1)u)q + (T'(u, p), ¥1D(w))g

As | — oo, we can get §|ull3q+( D(u)lle = 0. Therefore we know || D(u)||e =
0 which implics © = 0 by the boundary condition. By the cquation we can
get p=0. U

Under these preparations we prove Theorem 2.1
Proof. We consider a zcro extension which is given by

v n_ | f(z) for |z| >R
f(x)—{O for |z| < R °

Let Ry (M), IR (N) be a solution operator to a half space problem. And we sct
vp = Ry(A\)F*, 0 = IIL,(\)F* where F* =(f*, g%, h*). That is vy, 0}, sastisfy
the following problem:

Avp — Avp + VO, = f* in R?%,
V., = g* in Rr_:_,
Qup; — B0nvn; = h (j=1,---n —1), vp, =0 on IRY,

Morcover we consider the following problem:

-Aw+Vl=f, V-w=g in Ep
w-v =0, Byg(w,8) =h on OFR.

Knowing the cxistence of the solution of this problem, we sct AF = w, BF =
8. We usc a cut off function : Y% (z) € C* which is given by

1 f >R+1
(2.2 o ={ ¢ b Zn’
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And we sct

{ UNF = 658 Ra(VF* + (1 = 435, AF
OMNF = ¥ ma(VF" + (1 — ¥, BF.

We know U (M) F, ©(A)F satisfy the following:
(A= AUNF +VONF = f+S'F  in®,
V.UMNF = g + S2F in 0,
U(/\)F V= 0, Ba,[j(U(/\)F) =h + SgF on 0f).
Here we have set Sy I, S2F, S3 I by the following:

SIF =2V, - VRA(A)F* + (AYE ) Ra (A F* + AR, AF — 2Vy%, | - VAF
— (AYR)AF — 2(VY R )ma(A) F™ + 2(VYR,,) BE
SIF = — V&, - RWA)F*+V - AF

SYE =B(VYg1 - v)(—Ru(A\)F* + AF)

Here we have use
/(—ij}"le - Rp(A)F™ + VY, - AF)dx
Q

= / (VYR RAFT + VYR, - AF)dz
D .

R+1

= [ V@R AF)

R+1

+ V- (WEnAF + 930V - R\ F* —YE,V - AF)dx

= / (=Y RN F™ v + —yYFAF - v)do.
8D} 14

Where we have set D, = {z € R* | R+ 1 < |z| < R + 2} and do denotes

surface. Since S, = *(S}, 5%, S%) is a compact operator on L(L%5 ()™ x

W,lz’fr’;,,o(Q) x WgP,(Q2)™), to show I +S, has a inverse operator, it is sufficient

to show I + S, is injective. And so we shall show (/ +S,)F =0 = F =0.

Sctting u = U(0)F,p = ©(0)F, we know that u, p satisfy the problem:

—Au+Vp=20 in €2,
V-u=20 in €,
u-v=_0, Bap(u) =0 on 0.

By Lemma 2.4 we can get u, p = 0 which implies

{ 2 RA(O)F* + (1 — ¢ )AF =0 inQ
Y (0)F* + (1 — Y% ,)BF =0 in Q.
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Considcring suppy®, ;, we know

Rh(O)F* :Wh(O)F* =0 I:L‘l >R+ 2
AF =BF =0 lz] < R+1

Sctting

| AF |z|> R, x € ER 0 _ BF || > R, x € ER
10 lz| < R 10 |z| < R,

we know that w, 8 satisfy the following:

—Aw+ Vo = f* in ER,
V-ow=g* in ERJ
w-v =0, Bog(w)=h* on0ER,

where we have st ER = {z € ER | |z| > R} U B};. On the other hand, we
know

—AR,(0)F* + V7, (0)F* = f~ in ER,
V- Ry (0)F* =g~ in ER,
RL(0O)F*-v =0, Byas(Rr(0)F*) =h* on OFR.

Thercfore we get R,(0)F* = w in ER by uniquencss. And we know
RL(0)F* =w = AF, m,(0)F* =6 = BF in ER. For |x| > R+ 1,
0=y 1 Ra(0)F* + (1 — vz, )AF
= —(1 = YZ)(Ra(0)F" — AF) + R, (0)F™
= Rn(0)F™
By similar argment, we get II(0)F* = 0 for |x| > R + 1. Thcrefore for
x| > R+ 1 and z €
f = —AR(0)F* + VII(0)F* =0,
g=V-(R(O)F*) =0,
h = Bag(R(0)F*, II(0)F™) = 0.

For |z| < R+ 1 and = € Q2 we know

0=—-AAF + VBF = f,
0=V -Af =y,
0 = Byas(AF, BF) = h.

And we know f =g = h =0 for x € Q. Therefore we sum up Theorem 2.3,
and we get the following lemma:
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Lemma 2.5. There exists A\g > 0 such that the following holds:

(I +8Sx)~ ! =1+ S,\)I + S)w[ + S,\) te ‘C(LR+3( )" X Wéﬁa,()(ﬂ) X Wllzis(g)n),
I +Sx) ey < C

O

By lemma 2.5, we can write (u, p) as follows:

w(z) = U +Sy)"'F,

= '¢j’§+11{h(>\)(1 + S,\)_lF + (1 — d)j'fH)A(I -+ S,\)‘lF
p(z) = A +S2)7'F,

= YR\ +S2)TF + (1 — ¢F, ) B +Sy)7'F.

Summing up this and theorem 2.2, we can get theorem 2.1.

3 LP— L* estimates in a half space

In this section we treat a half space problem (2.1) continuously. About this
problem we show the following thecorem.

Theorem 3.1. Let be v, a solution of (2.1). Then it satisfies the estimates.

_i_n
lvallLeo gy < CIAT27 2 || fll Lowrr)
1
[VurllLee@ny < CIATZ|| fllzrry)

forAed ., |Al <X, p#n.

To show this thcorem, we introduce the Gagliardo-Nircnberg-Sobolev the-
orem.

Theorem 3.2. The Gagliardo-Nirenberg-Sobolev theorem Let1 < p < oo, 1<
q < 00.
Let j, m be integers such that satisfy 0<j<m.
We assume m —j — 2 750,1,2
For0<a<1 set . _ . )
j m
;—n+a(p n)+(1 a)q.

Then the following estimate holds:

lullzr@sy) < CUIV™ullZomn) il oG -
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And we usc the following thcorem:
Theorem 3.3. Let 1 < p < oo.
Al lonll gy + A2 [[Vonll o) + IV 20ml|ory) + V0l 2oy
< C{IS Nzrmey + Ml gllw-1o@ey + A2 (g, )l ey + (Vg VA) || o)
for xe >, ={AeC\{0} | |argA| <7 —€}.
Using this thorem, we show Theorem 3.1.

Proof. First we assume p # n, and we usc the Gagliardo-Nirenberg-Sobolev
thcorem. When p = n, I consider py,pa such that p; < n < py. And I
interpolate LP(€Q2) and LP?(Q?), I can remove the restriction p # n. a

4 L" — L7 decay estimates

In this scction we show L™ — L7 decay cstimates which is given by the following

Theorem 4.1. Let 1 < p < oo and n > 3. Then there exists a unique
solution u of (1.2) satisfying the estimates:

1
IVulliny < Ct72|| fllin@y. t>0, fe J*(Q).
We show the only following thcorem which implies Theorem 4.1.

Theorem 4.2. Let 1 < p < oo and n > 3. Let u be the solution of (1.3).
There exists a positive constant C such that u satisfies the following:

_1_n

Loy < CIAT27 22 || flln(eys
1

IVullzr) < CIAT2|| fllzn,

foraedY, ={ e C\ {0} | |argA| <m =€}, [A|l < Ao

Proof. We use a cut off function which is given by (2.2).First I shall consider
a bounded part Qp = QN Bgr. We sct u = YFvp +w, p = YF0n + 7 where
Un, O, is the solution of (2.1) with g = h = 0. And w, 7 satisfy the following:

A=—Aw+Vr =K, in Q,
v . w pned K2 in Q,
w-v =0, Byg(w) =Kz on 0.
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Here the formula of K4, Ky, K3 arc given by the following:

K1 = K1 (VYR - vn, (AYF v, VYR OR, (1 — 7)) f)
Kg = —V”(/}%o * Uh,
K3 = K3 (V'L/)})zo’l)h) .

Since supp K1, K3, K3 C Bp, we can usc Theorem 2.1:

(w,m) = A" T G1(A)Y (K1, Ko, K3) + A7 Go( V) (K1, K2, K3)
+ ()\ log )‘)GJ(/\)t(Kla K2, ’3) + G4()\)t(Kla KZ: K&))

where G; (j = 1,2,3,4) are holomorphic functions with respect to A. Here
Ki, K9, K3 have the estimates:

H(Kl, Ko, K3)HL°°(QR) < CH(Uh,VUh,@h)”Lw(QR) < C|/\|_l+%l|f||u'(sz)-

Therefore I can get the following:

n—2

“w”Lw(“R) S Ci/\l 2 'I(K17K27K3)HL°°(QR)
< CNF (N5 I )

< CIN™2*2 %% || f| 1oy

forn>3 p<n.
Next I shall consider (w,7) in Q\ Qg. Sctting YF ,w = 2z, YF o7 =6, we
know that z, # satisfy this problem:

A—A)z+V0O =11 in R%,
V.-z=H, in R?,
az; — B0pz; = Hg; (j=1,--n—1), 2, =0 on OR},

where H,, Hy, H3 arc given by these:

Hy =H, (Vw?zo—z w, (AYR_)w, VYR o, w?zo—2K1) ;
Hy = =VYR o w+ YR 1Ko,
H3 - Hs (Vlﬁj’f_zw, 1/)?{0_2}(3) .

Therefore we can get the following:
1
AL 2l e ey + A2 1V 2]lLo@ey + V22| Lo wry + (VO] Logrry
< C{liH @y + NI Hallw-1r @)

1
+ N (Ha, Ha)l oy + 1V Ha, VH) o) |
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forxe ) .

1 1 nel 1

2]l rryy < ClIVE2 lqu(Rn N2l e "y "

n(l )
< “(fll’ H,, HJ)“Lq(]Rn

- 1
x {|A| )+ WPl oy + (. H)llaoc

< CIAF2 5_5)||(H1,H2,H3)||Lq (2R)

< O EGED (N2 £

< CINTFETa T £l paey

< CIAT*EGD) |l oy for g < p.

About Vu I can usc the resolvent estimates.
Thercfore I can get the theorem: O
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