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Abstract

In this survey paper, we rcview the development and progress of the study on the 2 x 2
hyperbolic p-system with damping. The damping effort makes such a system to behave as a
diffusion equation. The focus in this paper is to show how to find the best asymptotic profile
for the damped p-system, and what arc the optimal convergent rates. The most new results
are reported in this paper.

1 Introduction

For the model of the compressible low through porous media with dissipative external force
field, it can be described in Lagrangian coordinates as the p-system of hyperbolic conservation
laws with damping

v — Uy =0,
{ut £ p()s = —ou— Blujrty, (D ERX R+ (-
Here, v = v(z,t) > 0 is the specific volume, u = u(z,t) is the velocity, the pressure p(v) is a
smooth function of v such that p(v) > 0, p(v) < 0. As well-known in hyperbolic system, the
typical example in the case of a polytropic gas is p(v) = v~ with v > 1. The external term
—au — Blu|9'u appears in the momentum equation, where a > 0 and S are constants. The
term —au is called the linear damping, and —g3|u|7"'u with ¢ > 2 is regarded as a nonlinear
source to the linear damping —au. When 8 > 0, the term —f|u|?"'u is nonlinear damping,
while when 3 < 0, the term —/3|u|? !u is regarded as nonlinear accumulating.
Considered in this paper is the equation (1.1) with the initial value problem (IVP)

(v,u)(z, t)|t=0 = (vo, u0)(x) — (v+,u+) as z — *oo, (1.2)
and the initial-boundary value problems (IBVP), respectively,

{(v,u)(x, le=0 = (vo,uo)(x) = (v4,uy) 8s T — +o0, z € Ry, (1.3)

ulm:() =0,
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{(v,u)(w,t)hzo = (vo,u0)(z) — (vy,uy) as T — +o0, T € Ry, (1.4)

'Ul,,;:() = v_.

Here v+ > 0 and u4 are the state constants.

When 8 = 0, the system (1.1) is linear damping. The asymptotic behavior of the solution
for the Cauchy problem or the IVBP for the linear damped 2 x 2 p-system has been extensively
studied. In 1992, Hsiao and Liu (3, 4] first studied the Cauchy problem for the linear damped p-
system, and showed that the solution (v, u)(z,t) converges to its diffusion wave (%, @)(z/v/1 + t),
a self-similar solution to the following porous media equations

Uy — Ug = 0 0y = —1p(v T
vt_ Yo " or Ut_ "‘p(v)_ (z,t) € R x Ry, (1.5)
p(v)ﬂ‘ = —oau, p(v)ll = —au,

in the form of ||(v — @,u — @)(¢)|le = O(1)(t~1/2,¢t~1/2). Since then, the convergence have
been improved by Nishihara [27, 28] as [|(v — 7, u — @)(t)[ L~ = O(1)(t~3/%,t=5/4) for the initial
perturbation in H3, and then by Nishihara, Wang and Yang [32, 36] as ||(v — 7, u — @) (t)||z =
O(l)(t'l,t;3/ 2) for the initial perturbation in L! N H3. These convergence results need the
initial perturbation around the specified diffusion wave and the wave strength both to be
sufficiently small. Such restrictions were then partially released by Zhao [37], where the ini-
tial perturbation in L°°-sense can be arbitrarily large but its first derivative still needs to
be small, which implies that the wave must also be weak. For the 2 x 2 quasi-linear p-
system but still with linear damping, the convergence with some decay rates was obtained
by Li and Saxton [15]. Furthermore, when vy = v_, Nishihara [29] improved the rates as
(v —B,u — @) ()| Lo = O(1)(t~3/?logt, t~2logt). Very recently, when vy # v_, by a heuristic
analysis, Mei [25] pointed out that the best asymptotic profile to the damped p-system is the
particular parabolic solution to the corresponding porous media equation with a specific initial
data, rather than the self-similar solutions (the so-called nonlinear diffusion waves), and further
proved the convergence as ||(v — @, u — @)(t)|[Lo = O(1)(t3/2logt, t 2 logt).

For the initial boundary problem on the quadrant, the convergence to the diffusion waves
with different boundary conditions has been studied respectively by Marcati and Mei [20] and
by Nishihara and Yang [31] with ||(v — 9, u — @) (¢)||z~ = O(1)(t~3/4,¢75/4) for the initial per-
turbation in H3, respectively, and then improved to ||(v — 9, u — @)(t)||z~ = O(1)(t~1,t73/2) by
Marcati, Mei and Rubino [21] for the initial perturbation in LN H3. Inspired by [37], the conver-
gence result has been further improved for the strong diffusion wave by Jiang and Zhu [14]. Very
recently, motivated by [25], after looking for the best asymptotic profile to the original IBVP, Ma,
and Mei [18] obtained a much better convergence rate ||(v — U, u — @) (t)| Lo = O(l)(t_%_%,t‘2)
for 0 < a < 1, in the case of v; = v_ and the initial data in vo(z) — v} € L1, where L™! is the
weighted L! space, for detail we refer to the notations below.

When (8 # 0, the system (1.1) becomes either nonlinear damping for 8 > 0 or nonlinear
accumulating for 8 < 0. The research related to this topic, so far, is very limited. For the Cauchy
problem case, under the stiff condition uy = u_ = 0, Jiang and Zhu [39, 40] proved the solution
to converge the diffusion wave in the form of ||(v—, u—@)(t)|| Lo = O(1)(t~3/%,¢t~5/4). Recently,
by technically constructing a pair of correction functions, Mei {24] released the condition uy =
u—_ = 0 to the general case u, # u_, and proved the convergence to the diffusion wave with the
optimal rates |[(v—,u—@)(t)[|ze = O(1)(¢t~',27%/2) when the initial perturbation is in L' N H3.
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For the IBVP case, the convergence of the solution has been investigated by Jiang and Zhu in
[13] under the condition uy = 0, and then improved by C.K.Lin, C.T.Lin and Mei [17] for the
general case uy # 0 with a much better decay rate ||(v — 9,u — u)(t)||L~ = O(l)(t“l_'},t_:‘m),
when the initial perturbation is in LY N H3 with the best selected number v = }1.

Regarding the multi-dimensional Euler equations with damping, the convergence to the
planar waves has been showed by Liao, W.Wang and Yang {16] for 8 = 0 and by Huang, Mei
and Y.Wang [10] for 8 # 0, respectively.

For the other interesting studies for the convergence to diffusion waves in many different
cases, we refer to [5, 6, 7, 8, 9, 11, 14, 15, 28, 29, 33, 35, 37, 38| and the references therein.

Notations. Throughout the paper, C > 0 denotes a generic constant which may change its
value from line to line or even in the same line, while C; > 0 (¢ = 0,1,2,---) represents a
specific constant. The partial derivatives of f are denoted by f;, fzz, and so on, or sometimes
by 85f, k = 0,1,2,---. LP(Ry) (1 < p < o) is the usual Lebesque space with the norm
| fller = [f]R+ |f(z)|Pdz]'/P for 1 < p < oo, and || f|lL= = sup,eg, |f(x)|, where the integral
region R, will be omitted without any confusion. LP7(R,) with v+ > 0 and 1 < p < o0
is the weighted LP(R,) space with a weight (1 + ). Its norm is denoted as | f||rrv(r},) =
UIR+(1 + z)7|f(z)|Pdz]'/?, 1 < p < co. H¥(Ry) (k > 0) is the usual Sobolev space with the
norm || f|| gx = [Zf:o fm+ |82 f|2dz]'/2. For the sake of simplicity, we also denote ||(f, g, k)| =
15125 + gliZa + 1412 and I/, 9. WIZs = /12 + 1912 + |AlZ. Let T > 0 and let B be a
Banach space. We denote by C°([0,T]; B) the space of B-valued continuous functions on [0, T},
and L%([0,T)]; B) as the space of B-valued L?-functions on [0,7]. The corresponding spaces of
B-valued functions on [0, c0) are defined similarly.

2 ([ =0: Damped p-System without Nonlinear Source

2.1 Best Asymptotical Profile for IVP

In this subsection, we investigate the best asymptotical profile for (1.1) with 8 = 0, namely,

Vt — Ug = 0,
us + p(v)z = —au, (z,t) € R x Ry, (2.1)
(v,w)|e=0 = (vo, uo)(x) — (vx,us) as z — +.

In what follows, we are going to make a heuristic analysis, then we will show how to find the
best asymptotic profile and what will be the best asymptotic profile. Finally, we will establish
the working equations and state our main convergence results with the improved decay rates.

We first investigate the asymptotic behavior of (v, u)(z,t) at £ = *oo. Let us take the limits
as £ — +oo to the damped p-system (1.1), and note that u, and p(v), will vanish at z = *oo
due to the boundedness of (v, u)(x,t), then we have $v(oo,t) =0, %u(ﬂ:oo,t) = —au(too,t),
(v,u)(£o00,0) = (vg,ug)(to0) = (v+,us+), which can be exactly solved as

v(too,t) = vy, u(too,t) = ure ¥ t>0. (2.2)

By the Darcy’s law, the expected asymptotic profile of (1.1) is the (parabolic) porous media
equation (1.5). It can be easily verified that the solution (v, %) of (1.5) satisfies (7, @)(Zo0,t) =

(v, 0).



53

Notice that, the solutions (v, %) to (1.5) with (v, 4)|z = oo = (v+,0) are not unique. These
solutions include the so-called diffusion waves (self-similar solutions) (9, %)(z/+/1 +t) and the
parabolic solutions with given initial data ¥|;—9 = Tp(z). The natural questions are, which
solution is the best asymptotic profile of (1.1) and (1.2), and what is the optimal decay rate.
In order to answer these questions, we need to investigate the gap between (v,u)(z,t) and
(v, 1) (=, ).

From (1.1); and (1.5);, we have (v — ) = (u — 4)5. Integrating it with respect to x over
(—o0, 0), we then get

%/_:(v — 9)(z,t)dz = u(+00,0) — u(—o00,t) = (uy — u-)e ** #0.

@t we need to construct a pair

In order to eliminate the gap u(+o00,0) —u(—o00,t) = (uy —u_)e”
of correction functions (9,1)(x,t), which was first introduced by Hsiao and Liu in [3]. Namely,

let 4(xz,t) be the solution to the following equation

d
Zﬁﬂ(z’t) = —oii(z,t) with @(too,t) = ure ™™,
then it can be easily solved as
i(z,t) = m(z)e™ ™, (2.3)
where m(z) needs to be m(+oc) = uy. For this, we construct it as m(z) = u_ + (uy —

u_) [ mo(y)dy, and mo(z) € C§°(R) with [* mo(z)dz = 1. Now setting o(z,t) such that
Uy = U4, one then immediately obtains :

Uy —u

o(z,t) = — “mg(z)e (2.4)

Thus, the correction functions (9, 4)(z,t) satisfy

B — g = 0,
ﬁ’t = _aﬁ‘a (25)

(ﬁ,ﬁ)l:,;:ioo = (0, uie_at).

Now we are going to look for the best asymptotic profile (7, u)(z,t). Traditionally, we take
the self-similar solution (7, %) = (¢, ¥)((z+ Z)/+/1 + t) as the asymptotic profile for the solution
(v,u)(z,t) for some shift . Here, in order to avoid the singularity, we use (¢,%)(z/v1+t) to
replace (¢,v)(z/vt). However, this is not the best asymptotic profile. In fact, as showed in
(3, 27, 32], one can expect only

—00

/:(v—z‘)——ﬁ)(m,t)dmzo, but /w(uﬁaﬂﬁ)(m,t)dl_#o.

This implies that the selected asymptotic profile (v,a) = (¢, ¥)((z + Z)/+/1 + t) is not optimal.
In order to get the best the asymptotic profile (7, %), we need technically to construct a particular
solution (o, 4)(z,t) such that, for all ¢ > 0,

/oo(v—f)—f))(:v,t)d:czo, /:(u—ﬂ——ﬁ)(w,t)dm=0, /;Z/_;(v—ﬁ—f))(y,t)dyzo.

—00 —
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Let (9,u)(x,t) be the expected particular solution of the Cauchy problem

Uy — Uy = 0, . U = —ép(ﬁ)mmw
p(0)z = —a, or equivalently, p(0)y = —ai, (2.6)
Bli=0 = Uo(z), ¥t=0 = Do(x),

where the initial data @o(z) satisfies #g(z) — v+, as x — oo, and will be specified later.
Furthermore, let us take the correction function

(5, @) (z + zo,t) = ( - ﬁt;—“‘mo(x + z0)e™, m(z + x())e—"t), (2.7)
with a shift zy determined by
20 = o { [ luo(e) = m(@)ldz + Zlp(0s) - p(w-)]}. (28)

It is verified that

{(v—ﬁ-f))t—(u~ﬂ—ﬁ)m-——0,

o _ N (2.9)
(u— @ — @)+ (p(v) — p(0))z = —a(u — @ —4) + 5p(V)at-

Integrating (2.9)2 with respect to (z,t) over R x [0,t], and noting that p(v) — p(v+), p(¥) —
p(vs) as T — *oo, and the selection of ¢y mentioned above, we have

/°° (4 — @ — )(z, t)d

—00

=e /oo [uo(z) — @(z,0) — @(x + zo,0)]dz

—00

e [ [uo(@) + 2p(o(z,0))z ~ m(a + z0)|da

—00

- e-at{ /:)[u(,(x) — m(z + zo)|dz + é /

= e"o‘t{ [/_00 [ug(z) — m(z + fl:o)]dl‘] + é[p(v+) - p(v_)]}

(o ]

=0. (2.10)

00

_ p(o(z, 0)ada }

Now we return back to (2.9);. Integrating it over (—oo, z] yields
d T
% -9 0dy =@ -)a0.
a J_o.

Again, integrating the above equation over (—oo,00) with respect to x, we have

%/_Z/_;(v—ﬁ—ﬁ)(y,t)dydw:/_Z(u—ﬁ—ﬂ)(m,t)dmzo.

Then, integrating the above equation with respect to t, we further obtain

[ [ oo is

B /_Z /_;[“"(y) — %o(y) — 9(y, 0)ldydz

-/ oo [v0(s) — Bo(w) + 5= mo(y + z0) ] dyda. (2.11)



95

Now we select the particular initial data 7g(x) such that

/ / vo(y) — vo(y) + mg(y + xg)] dydx = 0, (2.12)
as a particular example, we may take 7y(z) := vo(z) + &mo(m + zg), then we can expect,
from (2.11), that

/ / — v —9)(y,t)dydr =0, t=>0. (2.13)
Defining
T y T
e = ([ [ w-v-oeosa [ @-a-0eow) (2.14)

Vo, Uo)(z) = / / [vo(2) — To(2) — (2, 0)]dzdy,/ [uo(y) — a(y,0) — u(y, 0)]dy) (2.15)

namely, Voo = v — 9 — 9, Uy = u — @ — 1, and applying them to (2.9), we finally establish a new
working system of equations

Vi -U=0,
Ut + p( + © + Vig) — p(0) = —aU + 5p(D)s, (2.16)
(V,U)lt=0 = (Vo, Uo) (=),
namely,
Vi-U =0,
Ui+ (P (0)Vz)s = —aU — F1 — F3, (2.17)
(V,0)lt=0 = (Vo, Uo(=)),
where
Fi: o= ——p(), (2.18)
Fr: = [p(@+ 0+ Vig) = p(®) — P (0)Vaa] — 7 (@)aVa- (2.19)

Our convergence results are as follows.

Theorem 2.1 (Mei [25]) Let %(x) be chosen such that (2.12) holds, and let (Vo, Up) € H*(R) %
H?(R). There exists a number e1 > 0, when the initial perturbation (Vo, Up)(z) and the wave
strength 6 = |vy — v_| + |us —u_| are suitably small such that & + [|Vol ars(r) + 1ol 2wy < €1,
then the global solution (V,U)(z,t) of (2.16) (or (2.17)) uniquely exists and satisfies

V(z,t) € CF0,00; H¥F(R), k=0,1,2,3, U(z,t) € C*0,o00; H?*k(R), k=0,1,2,

and

Z(l + 8)*105V (O 22wy + Z(l + )02V O 22wy
k=0

of) [0+ 0V (o) ey + S+ R (6) B ds
0

k=0 k=0
< C(IVolhawy + Wollz2wy + 9)- (2.20)
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Moreover, if (Vo,Up) € (H3*(R) N LY(R)) x (H%(R) N (L'(R)), then the rates can be further
improved as follows

N
Nix

165V )l 2wy < CIVoll gy + 1Uoll3 + 6)(1 + )~
—5_
185U 1)l L2ry < C(IIVoll s gy + 1Tll3 + 6)(1 + )74

log(2+1t), k=0,1,2 3,2.21)
log(2 +1), k=0,1,2. (2.22)

Nlx

Corollary 2.2 (Mei [25]) Under the conditions in Theorem 2.1, the system (1.1) and (1.2)
possesses a uniquely global solution (v,u)(x,t), which converges to its best asymptotic profile
(0,1)(zx,t) defined in (2.6) with the specified initial data given in (2.12) in the form of
10 = D) Ollm@ = O +1)"21og(2 +1), (2.23)
I = D@l = O+ )~ log(2+1). (2.24)

2.2 Best Asymptotic Profile with Improved Convergence Rates for IBVP

In this subsection, we consider the following IBVP

vt — ug =0,

ut + p(v)y = —au, (z,t) € Rt x RY,

(v, u)(z,0) = (vo,uo)(x) — (v4,u4) as z — oo,
v(0,t) = v_.

(2.25)

As showed before, the best asymptotic profile for (2.25) is its corresponding IBVP of the porous
media equation

by — gy = 0,

p(0)z = —ai, (z,t) € Rt x Rt,

(2.26)
(ﬁ,ﬂ)(a:,O) = (’l_)Ov ﬁ())(x) - (’U+,O) as T — -+o00,
9(0,t) = v—,
where iy = —%p('l_)())z, and vp(z) needs to be specified later.

Let us technically construct the correction function (9, 4)(z,t) as follows

—at

o(z,t) = —Llurmo(z) + Somp(z)le,
a(x,t) = [uym(z) + domo(z)le™ >,

which is different from what selected in the previous works for the IBVPs [20, 31, 21]. Here
mo(z) is a smooth and compact supported function mg(z) € C§°(R™) satisfying

mo(0) = mo(c0) = 0, mh(0) =0, /meo(y)dyﬂ,

and m(z) is defined as
m(e) = [ mo@)dy, m(oo) = 1.
0

dg is a constant given by

b0 = ~p(vs) ~ plv)] + /0 " luo(z) — wym(z))dz. (2.27)
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Thus, (0,4)(x,t) satisfies

’Dt - 'az‘ = 07
4 = —ad, (z,1) € RY x R*, (2.28)
(0,4)(z,t) — (0O,ure™ ) as z — +oo.

Now we are going to determine %p(z) such that the corresponding solution (7,%)(z,t) to the
system (2.26) is the best asymptotic profile for the original solution (v,u)(x,t), and then we
derive the perturbation equations. From (2.25), (2.26) and (2.28), we have

(v—0—-0)t—(u—a—140); =0
{ (w—a—a)+ [p(v) = p(D)]z = —c(u — @ — @) + 2p(D)at. (2.29)

Integrating the second equation of (2.29) with respect to z over Rt and noting the boundary
condition 9(0,%) = v(0,t) = v— and 9(+o00,t) = v(+o00,t) = vy yield

d * T} i = —q oo'u,:c —1u — u(x T
E/0 w(z, t) — @(x, t) — i(z, )]dz = /0 u(z, ) — () — iz, )]d

which can be solved as
/ [u(z,t) — w(z,t) — 4(z,t))dx
0

=e /Ooo[ug(x) — 4(=z,0) — a(x, 0)]dz

= ot / * [uo(z) + ép(ﬁg(ﬂ:))x — i(z,0)]dz (2.30)
0

= e [ lun(o) ~ uym(a)lds + Zlp(v4) ~ plo-)) — b0}

=0,

where (2.27) is used in the last step. Now we turn to the first equation of (2.29) to determine
Uo(z). Integrating(2.29); with respect to x over [z, c0), we obtain

d o0
dt J,
= (u— @ — @)(2,t) o0 — (u— @ — 8)(2,8)]2=a

= —[u(z, t) — @(z, t) — (=, t)],

[v(z,t) — V(z,t) — B(2,1)]dz
(2.31)

then integrate the above equation with respect to z over Rt and use (2.30) to have
d oo oo {o o)
—/ / (2, £) — 5(2,8) — (2, t)|dzdz = —/ (u(z, ) — @(z,t) — i, t)]dz = 0,
dt 0 T 0
which gives
o0 oo o0 oo
/ / (2, t) — 5z, t) — 8(z, £)|dedz = / / o(2) — Go(2) — (2, 0)|dzde.  (2.32)
0 T ] T

By selecting Tg(z) as
Bo(x) = vo(x) — (=, 0), (2.33)
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then from (2.32) and (2.33), we obtain

/ / (2,8) — (2, ) — (2, t)|dzdz = 0. (2.34)

Thus, as explained in Subsection 2.1, the solution (9,u)(z,t) for the system (2.26) with the
specified initial data ©y in (2.33) is the best asymptotic profile for the original system (2.25).
Therefore, let

Ve, t): = /:0 /:o(v — 5= 9)(2,t)d2dy,
U t) = [ (w500

00 roo (2.35)
Vo) = [ [ (o0(a) = oo(2) — o(c,0))dzdy =0,
z Jy
V@) : = [ (uo(w) — 5(w,0) — iy, 0))dy,
namely
Veg=v—0—0, Ug=u—1u—1u.
Then U(co,t) = 0, the original system can be reformulated as
‘/t -U= 07
Ui+ p(0+ 9+ Viz) —p(®) = —aU +p(®):, (z,t) € RT x RT, (2.36)
(Vv U)|t=0 = (0’ UO(m))v
V(0,t) =0,
which can be rewritten as
( ‘/t - U = 0)
U: + (p'(‘l—))vz)z = —alU — F; — Fy, (:L‘, t) e Rt x R+, (2 37)
) V.0)le=o = (0, Vo(=)), |
\ V(O, t) - 0,
or
( ‘/t —U= 01
) U; +p’(v+)Vm = —alU — F| — F3, (:L',t) e Rt x ]R+, (2 38)
(Va U)lt:() = (Oa U()(IB)), )
L V(0,t) =0,
where
Fl L= _p(’l—))ta
Fp:=p(0+ 0+ Viz) — p(0) — p’('t_))Vm; - p’(’l—J)sz,
F3:=p(®+ 0+ Vez) — p(7) — D' (v4)Vaa-
Here, we mainly consider the case v_ = vy, and for the case v_ # v; we will give a remark at

the end of this section. Now we are going to state our convergence results. First of all, we have
the following existence and stability of the solution (¥, u)(z,¢) (the best asymptotic profile) for
the system (2.26) with a particular initial data satisfying (2.33).
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Theorem 2.3 (Ma-Mei [18]) Let vy = v_ andl > 3. Suppose 5y — vy € LY(RT) N H{(RT)N
WHLYRY), and §op = | J57 (Bo(x) — vy )dx| is suitably small. Then there exists a unique solution
(0,3)(z,t) to (2.26) and (2.33) satisfying the decay properties

18705 (5 — vi) ()| Lo <CBos(1 + )~ /P2 (kb25)/2,
t>0, 1<p<oo, 4k>0, 2j+k<l-1,
18¥@(t)|| Lr <CBo5(1 + t)~A-1/P/2-UFR)/Z)
t>0, 1<p<oo, 0<LEk<I-2

(2.39)

Moreover, if Ty — vy € LYY (RY), 0 < v < 1, then Va € (0,7). the solution v(z,t) to the system
(2.26) and (2.33) salisfies
18705 (8 — v4) (@)l 1 SC(1+ t)~GitkEr=e)/2,
16705 (5 — v4) (@) l|L» <C(1 + 1)~ (/2= (27402,
tZO, 131’300, JJCZO, 2]+k_<_l_17

(2.40)

Our convergence results are as follows.

Theorem 2.4 (Ma-Mei [18]) Let vy = v_ and | > 3, 8oy = | [ (vo(z) — vy)dz| and &y
be defined as before. Suppose that vg — vy € HY(RT) N WI-LYRY) and Up(z) € HIZL(R™).
If A = ||[Uol|l2_; + 80 + ou is suitably small, then there exists a unique time-global solution
(V,U) (1) of (2.96)

V(xvt) eck([ovoo);Hl—k)7 k:(),l:"' aly

U(x,t) € C*([0,00); H17%), k=0,1,---,1—1,
satisfying

(1+)**+||8k8]V (1) < O, (2.41)

forj=0,1,--- -2 and k=0,1,--- ,1 —j,
(1 + t)BED/2H=2 9k pl=1Y (1) < C, (2.42)

fork =0,1, and
1+ ) eV ()l < O (2.43)

Furthermore, let | = 4, if Ug(z) € LY(RY) and vo — vy € LYY(RT)(0 < v < 1), then the
convergence rates can be further improved as

[ME

1 1y
185V (&)llr < CAg + |Uollp)(1+8)" G772, k=0,1,2

. (2.44)
185U () l2r < COa + ||Uollp)(1 +¢)~ 373072 k=o0,1.

Nl

fort>0,2<p<oo.

Based on Theorem 2.4, we have the following decay properties of the solution (V,U)(z,t) to the
system (2.36).
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Theorem 2.5 (Ma-Mei [18]) Leta € [0, 3). Suppose the conditions in Theorem 2.4 hold, and
in addition, Y a_, ||6£U0H%,a < 1. Then the unique time-global solution (V,U)(z,t) of (2.36)
satisfies
2 1
Yo+ 0)FIokV ). + D (1 + M EU )13
k=0 k=0
: 2 1 24
[ {0+ 1BV @) B + 3+ 9B () s (249
k=1

k=0
<C.

Finally, we obtain much better decay rates as follows.

Theorem 2.6 (Ma-Mei [18]) Let a € (0,1]. Suppose the conditions in Theorem 2.4 and
Theorem 2.5 hold. In addition, we assume that vg — vy € LYY(RY) and Uy € LV*(RY). then
the decay rates of the solution V to (2.36) can be further improved to be optimal as follows

1BV <+t~ 55, k=0,1,2. (2.46)

From Theorem 2.4 and Theorem 2.6, noticing that ||0%(?, 4)||L~ < Ce™®t, we can easily ob-
tain the following decay properties for the solution (v, u)(x,t) of (2.25) to the solution (7, @)(z,t)
of (2.26).

Corollary 2.7 (Ma-Mei [18]) Under the conditions in Theorem 2.6, the system (2.25) pos-
sesses a unique time-global solution (v,u)(zx,t), which converges to its best asymptotic profile
(v,a)(x,t) defined in (2.26) and (2.33) in the form of

(v -3 — D)) < C(L+)"5 %,
(v —3)(®) L < C(1+1)"
I(w—@—a) @) < C(L+1)3,

[(u—a)(t)lLe < C(1+1)72

NI i
w9
-

(2.47)

Finally, we give a remark on the case v_ # v,.

Remark 2.8 For the case v— # vy, v(x,t) decays as
18705 (5 — v4) (Dl r = O(1)(1 + £) (= 1/P/2-@3+k=D/2,

even if o9 — vy € LY1(RY). As a result, we can only obtain the following decay properties for
the solution (v,u)(z,t) of (2.25),
lw =5 —9)l = 0(1)(A +1)7%,
(v = 9|z = O(1)(1 + 1)1,
Il(u—a—da)| =01)1+1¢)"
l(u = @)l = O()(1 +1)72.

b

Nl S

These rates are exactly same to those obtained by Marcati-Mei-Rubino [21] for the IBVPs.
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3 [ #0: Damped p-System with Nonlinear Source

3.1 Initial Value Problem

We first look for the asymptotic profile to (1.1) and (1.2) with 8 # 0. By setting the following
scalings to the variables

t=1/e?, r=%/e, v="0, u=cl
for 0 < € < 1, we then scale the damped p-system (1.1) to the new system (still denote ¢ and Z

as t and z, respectively)

’Dt - ’17,,. = 07

€2ty + p(0); = —adii — Be97 a9 .
Neglecting the small terms 2@ and —Bc91|a|?" 14, we derive the asymptotic state equations
for (1.1) and (1.2) just same to (1.5), i.e.,

(e ﬁx = O,
p(v); = —ad.

Namely, the diffusion wave (7, %)(z/+/1 + t) is our asymptotic profile for the damped p-system
(1.1) with nonlinear source.

Now, we investigate u(4o0,t). Let u*(t) := u(doo,t) = limgy 100 u(z,t). Taking the limits
to the second equation of (1.1) as z — +oo, and noting that p(v), will be vanishing, then we
find that u*(t) satisfy formally the following modified Bernoulli’s ODEs:

{giui(t) = —au®(t) — Blut ()| ut(t), t >0,

ut(0) = u(xo00,0) = up(+oo) = u. (3.1)

Using the method of separation of variables, by a straightforward but tedious calculation, we
can exactly solve (3.1) as

—at
Wt (t) = Cxe _, (3.2)

(1 - §(|Cﬂ:!e—at)q—1) 71

with u
= £ —. (3.3)
(1 + Elug|a-1)7—T

Here, in order to avoid the blowing-up for the solution, we need

1+ gluilq"l > 0. (3.4)

Note that, when 8 > 0, the condition (3.4) automatically holds. While, when 8 < 0, (3.4) is

also true if we ask
g | < (B_)l/(q—l)
= = \g|

which implies that |u+| needs to be suitably small. Thus, if |ut| < 1, then (3.4) is always true,
and there is no blowing-up for u*(¢). Substituting (3.3) to (3.2), we obtain

—at

ut(t) = tte . (3.5)
(1+ Bluslo1 - )

qg—1
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Obviously, it holds |u(£o0,t)| = [ut(t)] ~ O(1)|us|e™™*, ast — oo. Next is to construct the
correction functions such that we can eliminate the gap of u(+o00,t) —u(—o0,t). Let us consider
the function #(x,t) such that

di . A lg—1n
7 = —ai — Bla|97 1, T eR, teRy, (3.6)
a(z,t) —» ut(t) as z — too.
As shown in (3.2), we can similarly solve (3.6) as
—at
iz, t) = m(z)e =, (3.7)

(1 - g[lm(z) Ie—at]q_l) =1

where m(z) is an integration constant (with respect to t). Note that 4(z,t) — u®(t) as z —
+00, we further confirm m(x) — Ci, as £ — Zoo. Let mo(z) > 0, mo(z) € C§°(R) and
J22 mo(x)dz = 1, then we construct the desired function m(z) as

m(z) = C- + (Cy — C_) /_ " o) dy. (3.8)

It can be verified that m(z) is sufficiently smooth and satisfies

1
. a\ -1
m(@)| < min{|C41,10-1} < (157) (3.9)
which ensures no blowing-up for i(z,t).
Technically, we construct
/ —at
o(z, t) = — m(z)e — (3.10)
a(1 - Lllm(z)le-at)a1) 7T

we then have #; = ;. Thus, the constructed correction functions (9, )(z, t) satisfy

{vt—-u,,,=0, (3.11)

gy = —at — pal.
Therefore, from (1.1), (1.5) and (3.11), we get

(v—9—-90)—(u—a—14), =0, 3.12
{(u — @ — @) + [p(v) — p(®)]e = —o(u — & — @) — B(lu|T u — [4]971a) — G, 12

where (7, ) is the shifted diffusion wave (9, @)(z + zo,t) with the shift zo which is specified as

T = — / * (vo(z) — B(z, 0) — i(x, 0)|dz. (3.13)

Vy — V- J_xo

Then, integrating (3.13) with respect to (z,t) over R x [0,t] yields

oo

/°° 0(z,) — 5(z + 70, ) — B, ¢)]dz = / (vo(z) — 5(z + 70,0) — (z,0))dz = 0.  (3.14)

—00 —_
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Thus, we can define

z(z,t) == u(z,t) — u(z + z9,t) — u(z,t),
and
Vo(z) = [ [vo(y) — By + z0,0) — 9(y,0)]dy, (3.16)
zo(z) = uo(x) — @z + z9, 0) — 4(zx,0),
we deduce (3.12) into
‘/t — R = Oa
2+ (P (0)Vz)s = —az — F1 — F3, (3.17)
(Vv Z)|t=0 = (‘/0’ zO)(x)7
where
i ) ) . .
Fi: = ——p@)u+ {p(Ve+7+0) —p(®) — P (@0)Vals, (3.18)
F: = glz+ua+4a)—g(a) =gVe +u+1a) — g(d), (3.19)
gu): = PBlul?lu. (3.20)
Theorem 3.1 (Mei [24]) Let g > 3, (Vo, 20)(z) be in H3(R) x H%(R), and u+ satisfy
1/(g—-1)
lut| < (I%‘I) : (3.21)
There ezists a number £1 > 0, when the initial perturbation and § := |vy — v_| + |uy| + |u—| are

suitably small such that 0 + || Vol gsr) + |20l m2w) < €1, then the global solution (V,z)(z,t) of
(3.17) uniquely exists and satisfies

V(z,t) € C*(0,00; H**(R), k=0,1,2,3, z(z,t) € C*¥0,00;H**[R), k=0,1,2,

and
3

2
DA+ MV Ol m) + (1 + OF 20520172 m)
k=0 k=0

t 3 2
[ [0+ 5O @)y + Do+ ) 0kx(9) g ds
k=0 k=0

< C(IVollfs gy + 0l Er2m) + 9)- (3.22)

Furthermore, if (Vp,z9) € L, (3.22) can be improved as the following optimal convergence
rates

k
105V @) |2y < CUIVlZ + 12013 + 8)(1 + )43, »1,2,3, (3.23)

k=0,1
k
105 2(t) || 12wy < C(IVall + llzoll3 + 6)(1 +8)7i73, k=0,1,2. (3.24)
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Corollary 3.2 (Mei [24]) Under the conditions in Theorem 8.1, the system (1.1) and (1.2)
possesses a uniquely global solution (v,u)(z,t), which converges to its nonlinear diffusion wave
(v, @)(z + xg,t) in the form of

I =) OllLom = OMA+8)7, (3.25)
I(w— BB zo@ = OMWA+1)~2 (3.26)

The rates showed in (3.25) and (3.26) are optimal.

Remark 3.3 When 8 <0 and
a \1/(@-1)
sl > ()

18]
then the solution (v,u)(z,t) of (1.1) and (1.2) doses not globally ezist, and blows up. In fact,
let us consider the following Cauchy problem

vt — Uy =0,
us + p(v)y = —ou — BlulTlu, (z,t) e RXR,.

(v, u)]t=0 = (v4,u4),

Obuiously, it possesses the unique solution

v(z,t) = vy,
—1/(q—1
“Cmt)==U+e‘“‘(1+-§|u+w“1u-e-a@-uq) /G %

and v(z,t) = vy is never blowing-up, but u(z,t) will blow up at t. = a(ql_l) In ll}ﬁil:‘*;l_q,_ia for

,B<0 and]ﬂ|>—|u—;’|q—_r

3.2 Initial-Boundary Value Problem

In this subsection, we consider the following initial-boundary value problem

vy — Ug = 0,
z,t) € Ry x Ry, 3.28
{U-t + P(’U)z = —qu — ﬂ|u|q'1u, ( ) + + ( )

with the initial-boundary conditions

{(v,u)|t=0 = (vo,u0)(z) — (v4,uy) as x — +oo, T € Ry, (3.29)
u|z=0 = 0.

Its best asymptotic profile is expected as the following IBVP to the porous media equation

Uy — Uy = Oa
p(0), = —at,

(:z:, t) (S ]R+ X R+, (3-30)
lt=0 = Uo(z) — v4, as T — 00,

'l—)zlz=() = 0:

where 9y(x) will be specified.
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From the second equation of (3.28), the solution u(+o00,t) (denoted as ut(t)) satisfies the
following Bernoulli’s equation

{%M(t) = —aut(t) — Blut ()| ut (),
ut(0) = u(+00,0) = ug(+00) = uy,

which can be solved explicitly as

upe
u(+oo,t) = ut(t) = + T (3.31)
(1+ Bluslo1[1 = e=ota-v1)
Notice that, when o
B <0 and I,BI > T (332)
lu+[?

the solution u™(¢) will blow up at £, = a(ql—ﬂ In Aﬁyr[*;,'_q; ia. So, in order to guarantee the global

existence of u™(¢), we need

either >0, or <0 but |8 < __a:I_ (3.33)
|y |7

Since there is a gap between u(oo,t) and 4(oo,t) = 0, namely,
U(OO,t) - ﬂ(OO,t) = ’Ll.+(t) —0= O(l),u‘l-le_at,

which causes that u — % is not in L?(R,), thus we need to construct the correction function
iu(z,t) to delete it.
Let 4(z,t) be such that

44 =—ad— Blaj? 4, (z,t) € Ry x Ry,
U z=oo = ut (), (3.34)
'&z:l:z:=0 = 0.

Similarly, @(x,t) can be constructed as

m(z)e”*

(1~ Elim(@)leeet

i(z,t) = (3.35)

)1/(9—1) ’

where m(z) is an integration constant (with respect to t) given by m(z) = C4 foz mo(y)dy,
m(0) = 0, m(+o0) = C. Here,

U4
C, = . RNVt (3.36)
(1+ 2luy]o-1)

and mg(x) satisfies mg(z) > 0, mo(0) = my(+o0) = 0, mg(x) € C(R4), and fR+ mg(z)dz = 1.
Furthermore, let 9(z,t) be
—m/(x)e™*

o(1 - Zlm(z)leot)~!

(3.37)

o(z,t) =

)1/(q—1)'
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Thus, the correction functions (9, 4)(x,t) satisfy

(6, — iy = 0,

4 = —od — Bla|97 14,
3 (0,0)|em o0 = (0,u*(2)), (3.38)
'Dl:z:=0 = 07

{ Uz |z=0 = 0.
From (v — 9 — 9); — (u — @ — @) = 0, it yields
/ [v(z,t) — v(z,t) — O(x,t)|dz = / [vo(z) — Vo(z) — ¥(x,0)]dz =0 (3.39)
0 0
by selecting the initial data 9y(z) as

/w[vo(x) — Ug(x) — ¥(z, 0)]dz = 0. (3.40)
0
Thus, we can define some possible L2-functions as

(V,U)(z,t) : = ( - / P oy, ) — 5y, 1) — B(y, £)]|dy, u(z, t) — Az, t) — ﬂ(z,t)), (3.41)

(Vo,U0)(@) s = (= [ lw) = 9(u,0) ~ 9(y,O)ldy, uofe) — a(z,0) ~ (,0)) (342

then, from (3.28), (1.5) and (3.38), we can reformulate the system as

Vi-U=0,
(D =-F - F.
Ui+ 0 (®)Va)s + oU 175 (2,1) e Ry x Ry, (3.43)
(Va U)It:() = (Vﬂa UO)(:E)J
V!z=0 = 0)
where

1 R _ _
Fi: = —p(@)s+ (p(Vz + 9+ 9) ~ p(2) —p' (0)Vs)a, (3-44)

Fy: = BlU+a+a|l" YU+ a+a) - 8lar'a
= BVi+a+al? 'V +a+a) - Blalr . (3.45)

Theorem 3.4 (Lin-Lin-Mei [17]) Let 8 and ut satisfy (3.33), ¢ > 2, and vo(z) be chosen
such that (3.40) holds, and [;°[Uo(x) —vy]dz = 0, To(x) —~ vy € L'(Ry) N H™(Ry) withm > 3.

1. If (Vo,Up) € H3(R4) x H?(Ry), when maxger, |To — v4| + |[Vollgs + [Uollgz + |us | < 1,
then the global solution (V,U)(z,t) of (3.43) uniquely exists and satisfies

2 1
V(z,t) € [ C*(0,00; H¥*(R)), Ula,t) € [] C*(0,00; H**(R)),

k=0 k=0
and
185V ()| = O(1)(1 + )2, k=0,1,2,3, (3.46)
16U (t)] 2 = O(1)(1 +t)~*+D/2, K =0,1, (3.47)
105V (8)l| e = O(1)(1 + )~V —0,1,2, (3.48)

IU@)lIz= = O)(1 + £)~5/4. o (349)
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2. If (Vo,Up) € (LY(Ry) N H2(R)) x (LY(R4) N HY(Ry)), then

105V ()] 12 = O(1) (1 + t)~CF+D/4 1 | =0,1,2, (3.50)
U@ L2 = O(1)(1 +t) 574, (3.51)
105V () || oo = O(1)(1 +2)~*+D/2 k= 0,1, (3.52)
U )] L = O(1)(A + )32, (3.53)

3. If (Vo,Up) € (LM (R4) N H2(R,)) x (LY7(Ry) N HY(Ry)), where v = §, then

105V @) |2 = 01+ ¢)~ 253, k=0,1,2, (3.54)
U@z = 0)(1 +1)~i 3, (3.55)
185V @) || = O(1)(1 + 1)~ F 3, k=0,1, (3.56)
U@L = O1)(1 + )73 (3.57)

Corollary 3.5 (Lin-Lin-Mei [17]) Under the conditions in Theorem 2.4, and (Vo,Up)(z) €
LY(R,), it holds

lv =)@l = OM)A+1)7H, (3.58)
Iu—B)E)l|ee = O +1)7¥2 (3.59)

Furthermore, (Vo, Up)(x) € LYY (Ry) with v = §, it holds

I =)= = OWA+)7"F =0(1)(1+1)73, (3.60)
lw— @)@l = O()(1+1)7%. (3.61)

Remark 3.6 From Theorem 3.4 and Corollary 3.5, we get the convergence rates as

_2k+l 7y
) 4

185V (®)ll2 = O(1)(1 + ¢ 2, k=0,1,2,

with the best choice of v = i for q > 2, which are much better than the existing rates. Bul,
unfortunately we cannot improve |U(t)||pe = [|[Vi(t)||L = O(I)t”% to O(l)t—%_% due to the
slow decay of Uz in the nonlinear term. These results are also true for the case B = 0, namely,
the system (1.1) becomes the linear damping. We notice also that, when 3 = 0 Said-Houari [34]

claimed that he got some better decay rates, for v € [0,1],

185V (8)||z2 = O()(1 + )~ "3, k=0,1,2,
105U (8)]| 2 = O)(A +2)~ "4 %, k=0,1,

especially, the case of % < v < 1. However, this is not true, and his proof is wrong. He never
checked how the nonlinear term decays, in particular, the term involving Uz in the nonlinear
term doesn’t give any improved rates in LVT(Ry), because U(x,t) is the corresponding porous
media equation with the Nuemann boundary condition, and the improved rate in the weighted
LY (R,) obtained by Ikehata [12] for the Cauchy problem case is failed to the Nuemann boundary
case. In another word, the decay rates of the nonlinear term doesn’t not decay as faster as we
always ezxpect.
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Remark 3.7 When the parameters 3 and uy satisfy (3.32), namely, 8 < 0 and |B| > —55=1,

Juy]

from (3.31), u(+oo,t) will blow up at the finite time t.. Thus, the solution u(z,t) of (3.28) and
(3.29) doses not globally ezist, and

li;n lu(t)|| Lo = +o00, for 0 <T* < t,. (3.62)
t—T*—
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