<table>
<thead>
<tr>
<th>Title</th>
<th>Fractional Calculus and Gamma Function (Geometric Mechanics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>ASADA, Akira</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1692: 17-38</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/141595</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>
Fractional Calculus and Gamma Function

ASADA Akira, Freelance (Former: Sinsyu University)
3-6-21 Nogami Takarazuka, E-mail asada-a@poporo.ne.jp

Abstract
The following variable change formulae of fractional order and logarithm of differentiation are shown.

$$\frac{d^a}{dx^a}|_{x=e^t} = e^{-at} \left(\frac{\Gamma(1+X)}{\Gamma(1+X-a)} \right)_{X=\frac{d}{dt}}$$

$$\log(\frac{d}{dx})|_{x=e^t} = -t + \frac{d}{dX} \left(\log(\Gamma(1+X)) \right)_{X=\frac{d}{dt}}.$$

As an application, we show the group generated by 1-parameter groups \(\{\frac{d^a}{dx^a}|a \in \mathbb{R}\} \) and \(\{x^a|a \in \mathbb{R}\} \) is the crossed product \(\mathbb{R} \ltimes G_{\Gamma}^{\#} \). Here \(G_{\Gamma}^{\#} = \Gamma(1+s+a) \) is the abelian group generated by \(F_{b}^{a}(s) = \overline{\Gamma(1+s+b)}^{a}, b \in \mathbb{R} \) by multiplication. \(c \in \mathbb{R} \) acts on \(F_{b}^{a} \) as the translation \(\tau_c : \tau_c F_{b}^{a}(x) = F_{b+c}^{a} \).

1 Introduction

Fractional calculus (fractional order indefinite integral and differentiation) was already considered by Leibniz. Its first application is Abel’s study of the following dynamical problem: Find the curve \(F(x) \) when the required total time \(f(x) \) for a particle falling down along this curve is given.

\(F(x) \) should satisfy

\[f(x) = \int_{0}^{x} \frac{\sqrt{1 + F'(t)^2}}{\sqrt{2g(x-t)}} dt. \]

Since \(I^n f = \frac{1}{(n-1)!} \int_{0}^{x} (x-t)^{n-1} f(t) dt \) is the \(n \)-th order indefinite integral of \(f \), the above integral can be regarded as the half order indefinite integral of \(\sqrt{1 + F'(x)^2} \). In fact, this equation is solved by using this argument.

Traditionally, fractional calculus is used to analyse phenomena having singularities of type \(x^a \). Fractional order differentiation is a nonlocal operator. Recently, owing to this property, fractional calculus is used to study effects of memories of Brownian motion, which is thought to be useful in mathematical finance.

As for recent studies on applications of fractional calculus, we refer [1],[2],[6],[7],[8],[9],[11] and [15]. Besides these studies, Prof. Nakanishi suggested to use fractional calculus to the study of deformation of canonical commutation relation (CCR) ([4],[12],cf.[13]).
In this paper, we show by the variable change $x = e^t$, fractional Euler differentiation $x^a \frac{d^a}{dx^a}$ is written as follows;

$$\mathfrak{d}_{a,t} = x^a \frac{d^a}{dx^a} |_{x=e^t} = \frac{\Gamma(1 + X)}{\Gamma(1 + X - a)} |_{X=\frac{d}{dt}}.$$

This is a continuous extension of the formula

$$x^n \frac{d^n}{dx^n} |_{x=e^t} = \frac{d}{dt} \left(\frac{d}{dt} - 1 \right) \cdots \left(\frac{d}{dt} - n + 1 \right).$$

$$\{ \frac{d^a}{dx^a} | a \in \mathbb{R} \}$$ is a 1-parameter group. Its generating operator is the logarithm of differentiation $\log(\frac{d}{dx})$;

$$\log(\frac{d}{dx}) f(x) = -(\log x + \gamma) f(x) - \int_0^x \log(x-t) \frac{df(t)}{dt} dt.$$

Here γ is the Euler constant. As for logarithm of differentiation, we have

$$\mathfrak{d}_{\log,t} = \left(\log(\frac{d}{dx}) + \log x \right) |_{x=e^t} = \left(\frac{d}{dX} \log(1 + X) \right) |_{X=\frac{d}{dt}}.$$

Note. For the simplicity, we use \mathfrak{d}_a and \mathfrak{d}_{\log} instead of $\mathfrak{d}_{a,t}$ and $\mathfrak{d}_{\log,t}$, in the rest.

As an application, we show the group G^b_{\log} generated by 1-parameter groups $\{x^a | a \in \mathbb{R} \}$ and $\{ \frac{d^a}{dx^a} | a \in \mathbb{R} \}$ is the crossed product $\mathbb{R} \ltimes G^b_{\Gamma}$ of \mathbb{R}.

Here the abelian group G^b_{Γ} is generated by the functions

$$F_b^a(x) = \frac{\Gamma(1 + x + a)}{\Gamma(1 + x + b)}, \quad a, b \in \mathbb{R},$$

by multiplication. The action of $c \in \mathbb{R}$ to $F_b^a(x)$ is the translation τ_c: $\tau_c F_b^a(x) = F_b^a(x + c) (= F_{b+c}^{a+c}(x))$.

For the convenience of readers, brief review of fractional calculus and logarithm of differentiation together with a proof of the variable change formula of $\log(\frac{d}{dx})$ (Prop.1, (4)) are given in §2. §3 proves variable change formula of fractional Euler differentiation (Th.1, (6)). As an application of (6) and (4), formal adjoint of fractional Euler differentiation is studied in §4. §5 deals with alternative definitions of fractional calculus. (4) and (6) suggest there might exist infinite order differential operator expressions of fractional order and logarithm of differentiations. Such expressions are given
in [4] as applications of Leibniz rules and reviewed in §6 (Th.2, (10),(11)).

We can regard \(\frac{d^a}{dx^a} \) and \(x^a \) as deformed annihilation and creation operators acting on suitable Hilbert space. This is investigated in [4] and reviewed in §7. Corresponding discussions for \(\log(\frac{d}{dx}) \) and \(\log x \) are given in §8 and higher commutation relations in the Lie algebra \(\mathfrak{g}_{\log} \) generated by \(\log(\frac{d}{dx}) \) and \(\log x \) are given as an application of (4) (Prop.3. cf.[4]). \(G_{\log}^q = \mathbb{R} \ltimes G_{\Gamma}^q \) is the main part of the target of the exponential map from \(\mathfrak{g}_{\log} \). As the preliminary of the study of structures of \(G_{\log}^q \) and \(G_{\log} \), the target of the exponential map from \(\mathfrak{g}_{\log} \), we study Laplace transformations of \(\partial_a \) and \(\partial_{\log} \) in §9. This section also contains an alterantive proof of (6). Then we study strucures of \(G_{\log}^q \) and \(G_{\log} \) in §10, the last section.

Acknowledgement. Our original proof of (6) is based on (4) and stated in §9. Then we discovered simple proof of (6) which is stated in §3. Prof. Nakanish also discovered same simple proof of (6) simultaneously.

2 Review on fractional calculus

Definition 1. Let \(a \) be a positive real number. We define the \(a \)-th order indefinite integral (from 0) by

\[
I^a f(x) = \frac{1}{\Gamma(a)} \int_0^x (x-t)^{a-1} f(t)dt.
\]

Note. If \(a \) is a complex number with positive real part, then we can define \(a \)-th order indefinite integral by the same formula.

There are two kinds of definitions of frational order differentiation:

\[
\frac{d^{n-a} f(x)}{dx^{n-a}} = \frac{d^n}{dx^n} I^a f(x), \quad 0 < a < 1,
\]

\[
\frac{d^{n-a} f(x)}{dx^{n-a}} = I^a \left(\frac{d^n f}{dx^n} \right)(x).
\]

The frist is called Riemann-Liouville fractional derivative and the second is called Caputo (or Riesz-Caputo) fractional derivative (cf.[1],[6]). They are different. But if we replace \(f \) be \(f_+; \)

\[
f_+(x) = \begin{cases} f(x), & x > 0, \\ 0, & x \leq 0, \end{cases}
\]

then this ambiguity is resolved. Because we have

\[
I^a f(x) = \frac{1}{\Gamma(a)} (x^a)_+ f_+, \quad f * g = \int_{-\infty}^{\infty} f(x-t)g(t)dt.
\]
As a price, we need to replace the constant function 1 by Y, the Heaviside function. The range of fractional differentiation needs to involve distribution:

$$\frac{df_+}{dx} = \frac{df}{dx} + f(0)\delta,$$

where δ is the Dirac function and $f(0)$ means $\lim_{x \to 0} f(x)$.

If we take the space of Mikusinski’s operators (cf.[10]) as the domain of fractional order differentiations, $\{\frac{d^a}{dx^a} | a \in \mathbb{R}\}$, $\frac{d^{-a}}{dx^{-a}} = I^a$, becomes a 1-parameter group.

Definition 2. We say the generating operator of the 1-parameter group $\{\frac{d^a}{dx^a} | a \in \mathbb{R}\}$ to be the logarithm of differentiation $\log(\frac{d}{dx})$.

Explicitly, $\log(\frac{d}{dx})$ is given by

$$\log(\frac{d}{dx})f(x) = -(\log x + \gamma)f(x) - \int_0^x \log(x-t)\frac{df(t)}{dt}dt.$$

Here γ is the Euler constant and $\frac{df}{dx}$ means $\frac{df_+}{dx}$.

By the variable change $t = xs$, we have

$$I^a x^c = \frac{x^{c+a}}{\Gamma(a)} \int_0^1 (1-s)^{a-1}s^c ds = \frac{\Gamma(1+c)}{\Gamma(1+c+a)} x^{a+c}.$$

Hence we have

$$\frac{d^a}{dx^a} x^c = \frac{\Gamma(1+c)}{\Gamma(1+c-a)} x^{c-a}.$$ \hspace{1cm} (2)

Here, we assume both of $1 + c$ and $1 + c - a$ are not 0 or negative integer.

(2) shows if a is not an integer, then $\frac{d^a}{dx^a} 1 = \frac{1}{\Gamma(1-a)} x^{-a} \neq 0$.

Note. Since $\frac{1}{\Gamma(1+x)} = 0$, if x is a negative integer, $\frac{d^a}{dx^a} x^{a-n}$ vanishes if n is an integer. But in this case, we regard x^{a-n} is defined on \mathbb{R}. If we consider fractional derivatives are defined only for the functions on $\{x|x > 0\}$, then x^{a-n} is replaced to x_+^{a-n}. In this case, we have

$$\frac{d^a}{dx^a} x^{a-1} = \Gamma(a)\delta \neq 0, \quad 0 < a < 1,$$

etc.. Here δ is the Dirac function.
As for logarithm of differentiation, we have
\[
\log\left(\frac{d}{dx}\right)x^c = -(\log x + \gamma - \sum_{n=1}^{\infty} \frac{c}{n(n+c)})x^c,
\]
\[
\log\left(\frac{d}{dx}\right)x^n = -(\log x + \gamma - (1 + \frac{1}{2} + \cdots + \frac{1}{n}))x^n.
\]
Especially, we have \(\log\left(\frac{d}{dx}\right)1 = -(\log x + \gamma) \neq 0\). We also have
\[
\log\left(\frac{d}{dx}\right)(\log x)^n = -(\log x + \gamma)(\log x)^n + \sum_{k=0}^{n-1} \frac{(-1)^{n-k-1}n!\zeta(n-k+1)}{k!}(\log x)^k. \tag{3}
\]
Introducing the operator
\[
\mathfrak{d}_{\log} = -\gamma + \sum_{n=1}^{\infty} (-1)^{n-1}\zeta(n+1)\frac{d^n}{dt^n},
\]
we have
\[
\log\left(\frac{d}{dx}\right)f(\log x) = (-t + \mathfrak{d}_{\log})f(t)|_{t=\log x},
\]
if \(f(t)\) is a power series of \(t\). Since
\[
\log(\Gamma(1+X)) = -\gamma X + \sum_{n=2}^{\infty} (-1)^{n} \frac{\zeta(n)}{n} X^n,
\]
we obtain

Proposition 1. We can write
\[
\mathfrak{d}_{\log} = \left(\frac{d}{dX} \log(\Gamma(1+X))\right)|_{X=\frac{d}{dt}}. \tag{4}
\]

3 Fractional Euler derivative
Frational Euler derivative \(x^a \frac{d^a}{dx^a}\) satisfies
\[
x^a \frac{d^a}{dx^a}(x^b \frac{d^b}{dx^b}) = x^b \frac{d^b}{dx^b}(x^a \frac{d^a}{dx^a}).
\]
But $\{x^a \frac{d^a}{dx^a} | a \in \mathbb{R}\}$ is not a 1-parameter group. Because

$$x^a \frac{d^a}{dx^a} (x^b \frac{d^b}{dx^b}) \neq x^{a+b} \frac{d^{a+b}}{dx^{a+b}}.$$

On the other hand, since

$$\frac{d}{da} (x^a \frac{d^a}{dx^a}) = \log x \cdot x^a \frac{d^a}{dx^a} + x^a \log \left(\frac{d}{dx} \right) \frac{d^a}{dx^a},$$

we have

$$\left. \frac{d}{da} (x^a \frac{d^a}{dx^a}) \right|_{a=0} = \log \left(\frac{d}{dx} \right) + \log x.$$ (5)

Therefore we may say $\log \left(\frac{d}{dx} \right) + \log x$ is the logarithm of Euler differentiation.

By (2), we have

$$(x^a \frac{d^a}{dx^a}) x^c = \frac{\Gamma(1+c)}{\Gamma(1+c-a)} x^c.$$

Hence x^c is an eigenfunction of $\frac{d^a}{dx^a}$ if both of $1+c$ and $1+c-a$ are not equal to 0 or negative integer. x^c also satisfies

$$(\log \left(\frac{d}{dx} \right) + \log x) x^c = (-\gamma + \sum_{n=1}^{\infty} \frac{c}{n(n+c)}) x^c.$$

Theorem 1. By the variable change $\log x = t$, we have

$$\left. (x^a \frac{d^a}{dx^a}) \right|_{x=e^t} = \frac{\Gamma(1+X)}{\Gamma(1+X-a)} \left|_{X=\frac{d}{dt}} \right.$$ (6)

Proof. Since we have

$$\frac{\Gamma(1+c)}{\Gamma(1+c-a)} e^{ct} = \left(\frac{\Gamma(1+X)}{\Gamma(1+X-a)} \right|_{X=\frac{d}{dt}}) e^{ct},$$

we obtain

$$\left. (x^a \frac{d^a}{dx^a} x^c) \right|_{x=e^t} = \left(\frac{\Gamma(1+X)}{\Gamma(1+X-a)} \right|_{X=\frac{d}{dt}}) e^{ct}.$$

Therefore, if $f(x)$ allows Taylor expansion, or more generally, if $f(x) = \int_{-\infty}^{\infty} x^s F(s) ds$, then

$$\left. (x^a \frac{d^a}{dx^a} f(x)) \right|_{x=e^t} = \left(\frac{\Gamma(1+X)}{\Gamma(1+X-a)} \right|_{X=\frac{d}{dt}}) f(e^t).$$
Hence we have Theorem.

Note. If a is not a natural number, then \(\frac{\Gamma(1 + X)}{\Gamma(1 + X - a)} \) allows Taylor expansion at the origin;

\[
\frac{\Gamma(1 + X)}{\Gamma(1 + X - a)} = c_0 + c_1 X + c_2 X^2 + \cdots.
\]

In this case, (6) means

\[
\frac{\Gamma(1 + X)}{\Gamma(1 + X - a)} \bigg|_{X = \frac{d}{dt}} = c_0 + c_1 \frac{d}{dt} + c_2 \frac{d^2}{dt^2} + \cdots.
\]

Hence if the convergence radius of \(\sum_{n=0}^{\infty} c_n X^n \) is \(r \), then \(\partial_a \) can act on finite exponential type functions \(f \) which satisfy estimate \(|f(t)| \leq Me^{q|t|}, q < r \), for some \(M > 0 \).

If \(a = n \), a natural number, then

\[
\Gamma(1 + X) = \Gamma(1 + (X - n) + n) = X(X - 1) \cdots (X - n + 1)\Gamma(1 + X - n).
\]

Hence we have the well known formula

\[
(x^n \frac{d^n}{dx^n}) \bigg|_{x = e^t} = \frac{d}{dt} \left(\frac{d}{dt} - 1 \right) \cdots \left(\frac{d}{dt} - n + 1 \right).
\]

Note. Usually, this formula is shown by using \([\frac{d^m}{dx^m}, x] = m \frac{d^{m-1}}{dx^{m-1}} \), which provides

\[
x^n \frac{d^n}{dx^n} = \prod_{m=0}^{n-1} \left(x \frac{d}{dx} - m \right).
\]

The proof as a corollary of (6) is simpler than this proof.

Since

\[
\frac{d}{da} \left(\frac{\Gamma(1 + X)}{\Gamma(1 + X - a)} \right) = \frac{\Gamma'(1 + X - a)\Gamma(1 + X)}{\Gamma(1 + X - a)^2},
\]

we have

\[
(\log(\frac{d}{dx}) + \log x) \bigg|_{x = e^t} = \frac{\Gamma'(1 + X)}{\Gamma(1 + X)} \bigg|_{X = \frac{d}{dt}}.
\]

Therefore, (4) follows from (6).

Note. (3) is shown directly from the definition of \(\log(\frac{d}{dx}) \). But by using (4), we get (3) easily. Therefore above alternative proof of (4) also provides simpler proof of (3).
4 Formal adjoints of fractional Euler differentiations

If f, g belong to $W^k(\mathbb{R})$, the Sobolev k-space on \mathbb{R}, and $\lim_{|t| \to \infty} \frac{d^m f(t)}{dt^m} = 0$, $0 \leq m \leq k - 1$, then we have

$$(\frac{d^k f}{dt^k}, g) = (f, (-1)^k \frac{d^k g}{dt^k}), \quad (f, g) = \int_{-\infty}^{\infty} f(t)g(t)dt.$$

Hence we obtain

Proposition 2. Let \mathfrak{d}_a^* and \mathfrak{d}_{\log}^* be

\[
\mathfrak{d}_a^* = \frac{\Gamma(1-X)}{\Gamma(1-X-a)}|_{X=\frac{d}{dt}}, \\
\mathfrak{d}_{\log}^* = (-\frac{d}{dX}\log(\Gamma(1-X)))|_{X=\frac{d}{dt}} = \frac{\Gamma'(1-X)}{\Gamma(1-X)}|_{X=\frac{d}{dt}}.
\]

Then we have

$$(\mathfrak{d}_a f, g) = (f, \mathfrak{d}_a^* g), \quad (\mathfrak{d}_{\log} f, g) = (f, \mathfrak{d}_{\log}^* g), \quad \text{(7)}$$

if f, g belong to $W^k(\mathbb{R})$ for all k and

$$\lim_{|x| \to \infty} \frac{d^k f(t)}{dt^k} = 0, \; k = 0, 1, 2, \ldots .$$

By this Proposition, we may say \mathfrak{d}_a^* and \mathfrak{d}_{\log}^* to be formal adjoints of \mathfrak{d}_a and \mathfrak{d}_{\log}. But to consider formal adjoints of fractional Euler differentiations, some remarks are necessary.

Fractional differentiation does not map polynomials to polynomials. So we cannot consider fractional differentiation to be an operator of $L^2(\mathbb{R}_+)$, $\mathbb{R}_+ = \{x|x > 0\}$. But fractional Euler differentiations map polynomials to polynomials and power serieses of convergence radius r to power serieses of same convergence radius. Hence we can regard Euler differentiations to be operators of $L^2(\mathbb{R}_+)$. Since

$$\int_{0}^{\infty} f(x)g(x)dx = \int_{\infty}^{\infty} f(e^t)\overline{g(e^t)}e^tdt,$$

by the variable change $\log x = t$, $L^2(\mathbb{R})$ does not mapped to $L^2(\mathbb{R})$, but mapped to

$$L^2(\mathbb{R}, e^t dt) = \{f| \int_{-\infty}^{\infty} |f|^2 e^t dt < \infty\}.$$
As an operator of $L^2(\mathbb{R}, e^t dt)$, formal adjoint of \mathfrak{d}_a is not \mathfrak{d}_a^*, but $e^{-t} \mathfrak{d}_a^* e^t$, where $e^{\pm t}$ are considered to be linear operators by multiplication. Although $e^{-t} \frac{d^k}{dt^k} e^t$ is a constant coefficients differential operator, $e^{-t} \mathfrak{d}_a e^t$ is not a differential operator. Because \mathfrak{d}_a is an infinite order differential operator. In fact, if we use Laplace transformation and adapt arguments of §9, §10, we have

$$e^{-t} \mathfrak{d}_a^* e^t = \frac{\Gamma(-X)}{\Gamma(-X-a)}|_{X=\frac{d}{dt}}.$$

Since $\Gamma(-X)$ has a pole of order 1 at $X = 0$, this shows $e^{-t} \mathfrak{d}_a e^t$ is not a differential operator, but sum of the indefinite integral operator and infinite order constant coefficients differential operator.

Note. As for $\log(\frac{d}{dx}) + \log x$, we have same conclusion. In this case, we have

$$e^{-t} \mathfrak{d}_{\log}^* e^t = \frac{\Gamma'(X)}{\Gamma(X)}|_{X=\frac{d}{dt}}.$$

5 Alternative definitions of fractional calculus

We have derived (4) from (6). Conversely, we can derive (6) from (4). For this purpose, first we state alternative definitions of fractional calculus.

Definition by differences.

Let $\tau_h: \tau_h f(x) = f(x+h)$ be the translation operator. As the operator on the space of power serieses, we have

$$\tau_h = e^{h \frac{d}{dx}} = 1 + \sum_{n=1}^{\infty} \frac{h^n}{n!} \frac{d^n}{dx^n}.$$

Hence we have $\tau_h^a = \tau_{ah}$ and $\log(\tau_h) = h \frac{d}{dx}$. We set

$$\frac{d^a}{dx^a} f(x) = \lim_{h \to 0} h^{-a} (\tau_h - I)^a f(x),$$

$$\log(\frac{d}{dx}) f(x) = \lim_{h \to 0} (\log(I - \tau_h) + \log h) f(x),$$

where I is the identity; $If = f$. Here, we define

$$(\tau_h - I)^a = \tau_{ah} (I - \tau_{-h})^a$$

$$= \tau_{ah} (I + \sum_{n=1}^{\infty} (-1)^n a(a-1) \cdots (a-n+1) \frac{\tau_{-nh}}{n!})$$

$$\log(\tau_h - I) = \log(\tau_h) + \log(I - \tau_{-h}) = h \frac{d}{dx} + \sum_{n=1}^{\infty} \frac{\tau_{-nh}}{n}.$$
By definitions, \((\tau_h - I)^{a}f(x)\) and \(\log(\tau_h - I)f(x)\) are finite sums if \(f(x) = 0\), \(x < 0\).

By definition, we have

\[
e^{a \frac{d}{dx}} = \frac{d^a}{dx^a}.
\]

Since \(\tau_h = e^{h \frac{d}{dx}}\), we have

\[
\log(\tau_h - I) = h \frac{d}{dx} + \log h + \log(\frac{d}{dx}) + \log(G(h \frac{d}{dx})),
\]

where \(G(X) = \frac{1-e^{-X}}{X}\). Hence we have

\[
\log(\frac{d}{dx}) = \log(\frac{d}{dx}).
\]

Therefore we obtain \(\frac{d^a}{dx^a} = \frac{d^a}{dx^a}\). But the classes of functions on which above definitions work, are not known.

Direct proof of the formula \(e^{a \log(\frac{d}{dx})} = \frac{d^a}{dx^a}\).

Let \(f(z) = \sum_{n=0}^{\infty}c_n z^n\) be a holomorphic function at the origin. We define its Borel transformation \(\mathcal{B}[f]\) by

\[
\mathcal{B}[f](z) = \sum_{n=0}^{\infty} \frac{c_n}{n!} z^n = \frac{1}{2\pi i} \oint e^{\frac{z}{\zeta}} \frac{f(\zeta)}{\zeta} d\zeta.
\]

Borel transformation is linear and satisfies

\[
\frac{d}{dz} \mathcal{B}[f(\zeta)] = \mathcal{B}[\zeta^{-1} f(\zeta)], \quad \mathcal{B}[fg] = \mathcal{B}[f] \# \mathcal{B}[g],
\]

where \(u \# v = \frac{d}{dx} \int_0^x u(x-t)v(t)dt\). Inverse Borel transformation is given by

\[
\mathcal{B}^{-1}[f](x) = \int_0^\infty e^{-t} f(xt) dt.
\]

Since \(\mathcal{B}^{-1}[\log \zeta] = \log z - \gamma\), \(\mathcal{B}^{-1}[\zeta^a] = \Gamma(1+a)z^a\) and \(\mathcal{B}^{-1}[\delta] = z^{-1}\), we define

\[
\mathcal{B}[\log \zeta] = \log z + \gamma, \quad \mathcal{B}[\zeta^a] = \frac{z^a}{\Gamma(1+a)}.
\]

Since we have

\[
\lim_{\epsilon \to 0} \mathcal{B}[\log(\zeta + \epsilon)] = \log z + \gamma, \quad \lim_{\epsilon \to 0} \mathcal{B}[(\zeta + \epsilon)^a] = \frac{z^a}{\Gamma(1+a)},
\]
only on \(\{ z | \Re z > 0 \} \), the domain of these extended Borel transformation should be functions on \(\{ z | \Re z > 0 \} \) or \(\mathbb{C} \setminus \{ x | x < 0 \} \).

It is known ([3], cf. [12])

\[
e^{\# t \log x} = \frac{e^{-\gamma t}}{\Gamma(1 + t)} x^t, \quad e^{\# f} = \sum_{n=0}^{\infty} \frac{f^{\# n}}{n!},
\]

where \(f^{\# n} = f^{\#} \cdots f^{\#} \). Hence main properties of Borel transformation are conserved in this extended Borel transformation ([3]). We define

\[
\frac{d^a}{dz^a} B[f(\zeta)](z) = B[\zeta^{-a} f(\zeta)](z),
\]

\[
\log(\frac{d}{dz})[f(\zeta)](z) = -B[\log \zeta f(\zeta)](z).
\]

Then we have \(e^{a \log(\frac{d}{dz})} = \frac{d^a}{dz^a} \) in one hand, and

\[
-B[\log \zeta f(\zeta)] = -(\gamma u + \int_{0}^{z} \log(z-t) \frac{du}{dt} dt),
\]

if \(u = B[f] \), on the other hand. Hence we have \(e^{a \log(\frac{d}{dx})} = \frac{d^a}{dx^a} \).

6 Leibniz rules and infinite order differential operator expressions

If \(g \) satisfies suitable condition, e.g., \(g \) is a Gevrey class of index \(\alpha < 1 \);

\[
| \frac{d^n}{dx^n} g(x) | < M_x (n!)^\alpha.
\]

then by integration by parts, we have

\[
I^1(fg) = (I^1 f)g - (I^2 f)g' + \cdots + (-1)^{n-1} (I^n f)g^{(n-1)} + \cdots,
\]

We set \(f_a(t) = \frac{(x-t)^{a-1}}{\Gamma(a)} f(t) \), where \(x \) is a parameter. Then we have

\[
(I^n f_a)(x) = \frac{1}{(n-1)! \Gamma(a)} \int_{0}^{x} (x-t)^{n+a-2} f(t) dt
\]

\[
= \frac{\Gamma(n+a-1)}{(n-1)! \Gamma(a)} I^{n+a-1} f(x).
\]

Hence we obtain

\[
I^a(fg) = (I^a f)g - a(I^{a+1} f)g' + \cdots
\]

\[
+ (-1)^{n-1} \frac{a(a+1) \cdots (a+n-1)}{n!} (I^{a+n-1} f)g^{(n-1)} + \cdots.
\]
Then, by using \(\frac{d^m}{dx^m} I^a = \frac{d^{m-a}}{dx^{m-a}} \), we obtain

\[
\frac{d^a}{dx^a} (fg) = \frac{d^a f}{dx^a} g + a \frac{d^{a-1} f}{dx^{a-1}} \frac{dg}{dx} + \cdots + a(a-1) \cdots (a-n+1) \frac{d^{a-n} f}{dx^{a-n}} \frac{d^n g}{dx^n} + \cdots .
\]

(8)

Taking \(\frac{d}{da} \) of this formula, and tends \(a \) to 0, we have

\[
\log(\frac{d}{dx}) (fg) = (\log(\frac{d}{dx}) f) g + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} (I^n f) \frac{d^n g}{dx^n}.
\]

(9)

Leibniz rules (8) and (9) are not symmetric in \(f \) and \(g \), unless \(a \) is an integer (cf.[12]). These formulae valid for continuous \(f \) and Gevrey class function \(g \) of index \(\alpha < 1 \). But by these asymmetry, we obtain the following infinite order differential operator expressions of \(\frac{d^a}{dx^a} \), \(a \) is not a positive integer, and \(\log(\frac{d}{dx}) \) ([4]).

Theorem 2. Let \(f \) be a Gevrey class function of index \(\alpha < 1 \), then

\[
\frac{d^a f}{dx^a} = \frac{x^{-a}}{\Gamma(1-a)} (f + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} a}{(n-a)n!} x^n \frac{d^n f}{dx^n}),
\]

(10)

\[
\log(\frac{d}{dx}) f = -(\log x + \gamma) f + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n \cdot n!} x^n \frac{d^n f}{dx^n}.
\]

(11)

Proof. Since \(f(x) = 1 \cdot f(x) \) and

\[
\frac{d^{a-n}}{dx^{a-n}} 1 = \frac{1}{\Gamma(n+1-a)} x^{n-a}, \quad \log(\frac{d}{dx}) 1 = -(\log x + \gamma),
\]

we have Theorem by (8) and (9).

Note. (10) have no meanings if \(a \) is a natural number. But we have

\[
\lim_{a \to m} \frac{x^{-a}}{\Gamma(1-a)} (f + \sum_{n=1}^{\infty} \frac{(-1)^{n-1} a}{(n-a)n!} x^n \frac{d^n f}{dx^n}) = \frac{d^m f}{dx^m},
\]

if \(x \neq 0 \).

Problem. Derive (6) and (4) directly from (10) and (11).
(10) and (11) show fractional order and logarithm of differentiations can not be defined as a 1-valued operator for functions on \mathbb{R}. As for functions on \mathbb{R}, we need to use

$$\frac{d^a}{dx^a} f(x) = \frac{x_-^a}{\Gamma(1 - a)} f(x) + \sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(n-a)n!} x^n \frac{d^n f(x)}{dx^n}, \quad (12)$$

$$\log_\pm \left(\frac{d}{dx} \right) f(x) = -(\log_\pm x + \gamma) f(x) + \sum_{n=1}^{\infty} \frac{(1)^{n-1}}{n \cdot n!} x^n \frac{d^n f(x)}{dx^n}. \quad (13)$$

Here, we set

$$x_\pm^a = \begin{cases} x^a, & x > 0, \\ e^{\pm i\pi a} |x|^a, & x < 0, \end{cases} \quad \log_\pm x = \begin{cases} \log x, & x > 0, \\ \log |x| \pm \pi i, & x < 0. \end{cases}$$

But fractional Euler differentations and $\log \left(\frac{d}{dx} \right) + \log x$ can be defined for functions on \mathbb{R} (or on \mathbb{C}).

7 Commutation relations and deformed CCR

By (8) and (9), regarding x to be a multiplication operator, we have

$$[\frac{d^a}{dx^a}, x] = a \frac{d^{a-1}}{dx^{a-1}}, \quad [\log(\frac{d}{dx}), x] = I^1.$$

Note. It is known $[F(\frac{d}{dx}), x] = F'(\frac{d}{dx})$, where

$$F(\frac{d}{dx}) = \sum_{n=0}^{\infty} c_n \frac{d^n}{dx^n}, \quad F(x) = \sum_{n=0}^{\infty} c_n x^n.$$

Above formulae show this formula is valid for $F(x) = x^a$ and $F(x) = \log x$.

These formulae are not fit to regard fractional order or logarithm of differentiations as deformed annihilation operators. As for $\frac{d^a}{dx^a}$, $0 < a < 1$, appropriate space of the domain to investigate deformation of CCR is

$$H_a = \left\{ \sum_{n=1}^{\infty} c_n x^{an-1} \mid \sum_{n=1}^{\infty} |c_n|^2 < \infty \right\},$$

([4]. As for deformation of Heisenberg algebras, we refer [13]).

In this definition, $a \neq 0$ is arbitrary and H_1 is the Hardy space H, when it is considered to be a complex Hilbert space. But in the rest, we assume
$0 < a < 1$. In the later discussions, there are no essential differences between H_a as a real Hilbert space and as a complex Hilbert space. Inner product $(f, g), f, g \in H_a$ is defined by

$$(f, g) = \frac{a}{2\pi} \int_{-\pi/a}^{\pi/a} f(z)\overline{g(z)}d\theta.$$

Here $z = re^{i\theta}$ is the complex variable, and the integral is taken on $-\pi/a < \theta < \pi/a$, which is regarded as a cover of the unit circle $\{z||z| = 1\}$. By this inner product, H_a is a Hilbert space and $\{x^{an-1}|n \in \mathbb{N}\}$ is a complete ortho-normal basis of H_a. The map $\rho_a: \rho_a(x^{an-1}) = x^{n-1}$ defines an isometry from H_a to H.

x^a does not belong to H_a. But as the multiplication operator, we can define x^a; $x^a(x^{an-1}) = x^{a(n+1)-1}$. The adjoint $x^{a\dagger}$ is x^{-a}; $x^{-a}(x^{an-1}) = x^{a(n-1)-1}, n \geq 2$. Since $\int_{-\pi/a}^{\pi/a} x^{an-1}\overline{x^{-1}}d\theta = 0$, it should be $x^{-1} = 0$ as an operator on H_a. Hence we set

$$x^{-a}(x^{a-1}) = 0.$$

As an operator on H_a, we set

$$\frac{d^a}{dx^a} x^{a-1} = 0.$$

Owing to this definition, we do not have $\left(\frac{d^a}{dx^a}\right)^m = \frac{d^{am}}{dx^{am}}$ in general. But by this definition, to set

$$e_{a,t}(x) = \sum_{n-1}^{\infty} \frac{t^n}{\Gamma(an)} x^{an-1} = x^{a-1} E_{a,a}(tx^a),$$

where $E_{\alpha,\beta}(x) = \sum_{n=0}^{\infty} \frac{x^n}{\Gamma(n\alpha + \beta)}$ is the generalized Mittag-Leffler function (cf.[5]), we have

$$\frac{d^a}{dx^a} e_{a,t}(t) = te_{a,t}(x).$$

This solution suggests appropriate boundary condition of the equation $\frac{d^a y}{dx^a} = \lambda y$ is

$$y(e^{-\pi i/a}) = te^{2\pi i/a} y(e^{\pi i/a}), \quad E_{a,a}(\lambda) = -t.$$

Of course, these are only special results. As for generalities of fractional differential equations, we refer [14] (cf.[11]).
Let $A_{a,\pm}$ be diagonal form operators on H_{a} defined by

$$A_{a,+}x^{an-1} = \frac{\Gamma(a(n+1))}{\Gamma(an)}x^{an-1}, \quad A_{a,-}x^{an-1} = \frac{\Gamma(an)}{\Gamma(a(n-1))}x^{an-1}.$$

Here, we consider $A_{a,-}x^{a-1} = 0$. Then we have

$$\frac{d^a}{dx^a} = x^{-a}A_{a,-} = A_{a,+}x^{-a}.$$

Hence

$$\frac{d^a}{dx^a} = A_{a,-}x^a = x^aA_{a,+}$$

and

$$[\frac{d^a}{dx^a}, x^a] = A_{a,+} - A_{a,-}.$$

We set $C_{a} = A_{a,+} - A_{a,-}$. It is a p-Schatten class operator (cf.[16]) if $p > \frac{1}{1-a}$. We have $\lim_{a\to 1} \rho_{a}C_{a}\rho_{a}^{-1} = I$ by the strong topology of operators. But $\{\rho_{a}C_{a}\rho_{a}^{-1}|a > 0\}$ does not converge by the uniform topology.

We regard $\frac{d^a}{dx^a}$ and x^{a} as deformed annihilation and creation operators.

Then the Lie algebra \mathfrak{g}_{a} generated by $\frac{d^a}{dx^a}$ and x^{a} is a projective limit of nilpotent Lie algebras, and its higher order elements belong to the Schatten ideal ([4]). Precisely saying \mathfrak{g}_{a} is a real Lie algebra if we consider H_{a} to be a real Hilbert space and complex Lie algebra if we consider H_{a} to be a complex Hilbert space. If necessary we fix \mathfrak{g}_{a} as a real Lie algebra and denote $\mathfrak{g}_{a,\mathbb{C}}$ the complex Lie algebra $\mathfrak{g}_{a} \otimes \mathbb{C}$.

Note. We do not consider topology of \mathfrak{g}_{a}. Hence an element u of \mathfrak{g}_{a} is written as the form

$$u = c_{0}X_{0} + \sum_{k=1}^{m} c_{k}[X_{k_{1}}, \cdots [X_{k_{k}}, X_{k+1}]] \cdots ,$$

where $X_{0}, X_{i_{j}}$ are either $\frac{d^a}{dx^a}$ or x^{a}.

By the variable change $\log x = t$, we have $\frac{d^a}{dx^a} = e^{-at}\delta_{a}, \quad x^{a} = e^{at}$. Hence \mathfrak{g}_{a} is isomorphic to the Lie algebra generated by $e^{-at}\delta_{a}$ and e^{at}. Therefore we have

$$C_{a}|_{x=e^{t}} = e^{-at}\delta_{a}e^{at} - \delta_{a}.$$

Since $e^{-at} \frac{d^n}{dt^n} e^{at} = \sum_{k=0}^{n} \frac{a^k n!}{k!(n-k)!} \frac{d^{n-k}}{dt^{n-k}}$ and $|a| < 1$, C_{a} is changed to an infinite order constant coefficients differential operator by the variable change $\log x = t$.

31
8 Lie algebra generated by logarithm of differentiation and log x

As for \(\log\left(\frac{d}{dx}\right) \), appropriate domain to investigate deformed canonical commutation relation should be spanned by \(\{ (\log x)^n | n = 0, 1, \ldots \} \). We set

\[
H_{\log} = \left\{ \sum_{n=0}^{\infty} c_n (\log x)^n | \sum_{n=0}^{\infty} |c_n|^2 < \infty \right\}.
\]

If we take \(x \) to be a complex variable and set \(x = e^{i\theta}, -\pi < \theta < \pi \), then \(H_{\log} \) is isometric to \(W^{1/2}[-\pi, \pi] \), the Sobolev 1/2-space on \([-\pi, \pi]\). But we do not use this identification in the rest.

We can not regard \(\log\left(\frac{d}{dx}\right) \) to be a deformed annihilation operator. But we can regard \(\mathcal{R} = \log\left(\frac{d}{dx}\right) + \log x + \gamma \) and \(\log x \) to be deformed annihilation operator and creation operator.

Definition 3. We denote the Lie algebra generated by \(\log\left(\frac{d}{dx}\right) \) and \(\log x \) by \(\mathfrak{g}_{\log} \) and the Lie algebra generated by \(\mathcal{R} \) and \(\log x \) by \(\mathfrak{g}_{\mathcal{R}} \).

By definitions, they are isomorphic and

\[
\mathfrak{g}_{\log} \oplus \mathbb{R}I = \mathfrak{g}_{\mathcal{R}} \oplus \mathbb{R}I.
\]

As for commutation relation, we have

\[
[\log\left(\frac{d}{dx}\right), \log x] = [\mathcal{R}, \log x].
\]

To compute higher commutation relations in \(\mathfrak{g}_{\log} \), it is convenient to use variable change \(\log x = t \). Then \(\mathfrak{g}_{\log} \) is isomorphic to the Lie algebra generated by \(-t + \mathfrak{d}_{\log}\) and \(t \). Since \(\mathfrak{d}_{\log} = \left(-t + \mathfrak{d}_{\log} \right) \), we have

\[
\begin{align*}
[t, \cdots [t, \mathfrak{d}_{\log}] \cdots] &= \left(\frac{d^{m+1}}{dX^{m+1}} \log(\Gamma(1+X)) \right) \big|_{X = \frac{d}{dt}} \\
&= (-1)^m (m+1)! \zeta(m+2) I + \sum_{k=1}^{\infty} (-1)^{k+m} \frac{(k+m)!}{k!} \zeta(k+m+1) \frac{d^k}{dt^k}.
\end{align*}
\]

We set \(\mathfrak{d}_{\log} = \mathfrak{d}_{\log,0} \) and

\[
\mathfrak{d}_{\log, m} = \left(\frac{d^{m+1}}{dX^{m+1}} \log(\Gamma(1+X)) \right) \big|_{X = \frac{d}{dt}}.
\]

Then we obtain (cf.[4])
Proposition 3. Regarding \mathfrak{g}_{\log} to be a Lie algebra generated by t and \mathfrak{d}_{\log}, its element u is written uniquely in the form

$$u = at + c_0 \mathfrak{d}_{\log,0} + c_1 \mathfrak{d}_{\log,1} + \cdots + c_m \mathfrak{d}_{\log,m}.$$ \hspace{1cm} (14)

Especially, $[u, v] = 0$, if $u = \sum_k c_k \mathfrak{d}_{\log,k}$ and $v = \sum_k c_k' \mathfrak{d}_{\log,k}$.

In the original \mathfrak{g}_{\log}, we have

$$[\log x, \cdots, [\log x, \log(\frac{d}{dx})] \cdots] = (-1)^m (m+1)!\zeta(m+2)I + N_{\log,m}.$$

Here $N_{\log,m}$ is a generalized nilpotent operator: $N_{\log,m}(\log x)^k = 0$, $k \leq m$.

Special values of the ζ-function appeared in this formula come from the Taylor expansion of $\log(\Gamma(1+x))$. So may not be interesting.

\mathfrak{g}_{\log} is a projective limit of nilpotent Lie algebras. If the exponential map is defined for \mathfrak{g}_{\log}, the image of \mathfrak{g}_{\log} should contain the group generated by the 1-parameter groups $\{ \frac{d^a}{dx^a} | a \in \mathbb{R} \}$ and $\{ x^a | a \in \mathbb{R} \}$.

Definition 4. We denote the group generated by the 1-parameter groups $\{ \frac{d^a}{dx^a} | a \in \mathbb{R} \}$ and $\{ x^a | a \in \mathbb{R} \}$ by G_{\log}^\sharp.

We can clarify the structure of G_{\log}^\sharp as an application of (4) and (6). By using Laplace transformation and Proposition 3, it is shown the target of the exponential map from \mathfrak{g}_{\log} is generated by G_{\log}^\sharp and $e^{a \frac{d^{m+1}}{ds^{m+1}} \log(\Gamma(1+s))}$, $a \in \mathbb{R}$, $m = 0, 1, \ldots$.

Definition 5. The group generated by G_{\log}^\sharp and $e^{a \frac{d^{m+1}}{ds^{m+1}}}$, $a \in \mathbb{R}$, $m = 0, 1, \ldots$ is denoted by G_{\log}.

We can clarify the structure of G_{\log} as applications of (4),(6) and Proposition 3. For this purpose, first we study Laplace transformation of \mathfrak{d}_{\log}, etc., which also provides an alternative proof of (6).

9 Laplace transformations of \mathfrak{d}_{\log} and \mathfrak{d}_a

By the variable change $\log x = t$, the domain $\{x|x>0\}$ is mapped to $\{-\infty < t < \infty\}$. So we need to use birateral Laplace transformation. For the convenience, we set

$$\mathcal{L}[f](t) = \int_{-\infty}^{\infty} e^{st} f(s) ds.$$

If f is a rapidly decreasing function, then

$$t \int_{-\infty}^{\infty} e^{st} f(s) ds = \int_{-\infty}^{\infty} \left(\frac{d}{ds} e^{st} \right) f(s) ds = - \int_{-\infty}^{\infty} e^{st} f'(s) ds.$$
Hence we have

\[(-t + \mathfrak{d}_{\log}) \mathcal{L}[f(s)](t) = \mathcal{L}[\left(\frac{d}{ds} + \frac{\Gamma'(1+s)}{\Gamma(1+s)}\right)f(s)](t). \]

Solution of the equation

\[\frac{dY(s)}{ds} + \frac{\Gamma'(1+s)}{\Gamma(1+s)} Y(s) = \lambda Y(s), \]

is given by

\[Y(s) = C \frac{e^{\lambda s}}{\Gamma(1+s)}, \quad C \in \mathbb{C}. \]

Hence if the inverse Laplace transformation of

\[\frac{e^{\lambda s}}{\Gamma(1+s)} = e^{(\gamma + \lambda)s} \prod_{n=1}^{\infty} ((1 + \frac{s}{n})e^{-\frac{s}{n}}, \]

exists, we obtain solutions of the equation \((-t + \mathfrak{d}_{\log})U(t) = \lambda U(t)\).

An alternative proof of (6).

By using above solution \(Y(s)\), we can derive (6) from (4) as follows:

Since \(e^{a \log(\frac{d}{dx})} = \frac{d^{a}}{dx^{a}}\), if

\[\log(\frac{d}{dx})u_{\lambda}(x) = \lambda u(x), \]

then

\[\frac{d^{a}}{dx^{a}} u_{\lambda}(x) = e^{a \lambda} u_{\lambda}(x). \]

To set \(u_{\lambda}(\exp t) = U_{\lambda}(t)\), by the variable change \(\log x = t\), we have

\[e^{-at} \mathfrak{D}_{a} U_{\lambda}(t) = e^{a \lambda} U_{\lambda}(t). \]

If \(\mathcal{L}[f] = g\) is sufficiently smooth, then we have

\[\mathcal{L}[e^{at} f(t)](s) = e^{-a} \frac{d}{ds} g(s) = g(s - a). \] \hspace{2cm} (15)

By this formula, we obtain

\[\left(\mathfrak{D}_{a}\right) \left| \frac{d}{dt} = s \right. Y_{\lambda}(s) = Y_{\lambda}(s - a). \]

Since \(Y_{\lambda}(s) = e^{\lambda s} (\Gamma(1+s))^{-1}\), we have

\[\left(\mathfrak{D}_{a}\right) \left| \frac{d}{dt} = s \right. = \frac{\Gamma(1+s)}{\Gamma(1+s - a)}. \]

Therefore (6) follows from (4).

Problem. By (6) and (4), we have

\[\frac{d^{a}}{dx^{a}} \big|_{x = e^{t}} = e^{-at} \mathfrak{D}_{a}, \quad \log(\frac{d}{dx}) \big|_{x = e^{t}} = -t + \mathfrak{d}_{\log}. \]

Can we show directly \(e^{a(-t + \mathfrak{d}_{\log})} = e^{-at} \mathfrak{D}_{a}\)?
10 Structures of groups $G_{\log}^\#$ and G_{\log}

(8) shows the commutation relation of x^a and $\frac{d^b}{dx^b}$ is not simple. But by using variable change $\log x = t$ and Laplace transformation, we can investigate on such commutation relations.

For the convenience, we set
\[F_b^a(x) = \frac{\Gamma(1 + x + a)}{\Gamma(1 + x + b)}. \]

For example, we have
\[\mathfrak{d}_a = F_{-a}^0(X)\big|_{X = \frac{d}{dt}}, \quad \mathcal{L}[\mathfrak{d}_a(x)] = F_{-a}^0(x). \]

By definition, we have $F_b^a(x)F_d^c(x) = F_d^c(x)F_b^a(x)$ and
\[F_a^a(x) = 1, \quad F_b^a(x)F_c^b(x) = F_c^a(x). \]

Definition 6. We denote $G_{\Gamma}^\#$, the group generated by $\{F_b^a(x) | a, b \in \mathbb{R}\}$ by multiplication.

By definition, $G_{\Gamma}^\#$ is homomorphic to the quotient group of the free abelian group
\[\mathbb{Z}_{\mathbb{R}^2} = \sum_{(a,b) \in \mathbb{R}^2} \oplus \mathbb{Z}(a, b), \]
by the relations
\[(a, a) = 1, \quad (a, b) + (b, c) = (a, c). \]

By (11), as an operator, $\mathcal{L}[\exp(at)] = \tau_{-a}$. Hence as an operator, we have
\[\mathcal{L}\left[\frac{d^a}{dx^a}\big|_{x = e^t}\right] = \tau_a F_{-a}^0. \]

Regarding F_b^a to be an operator by multiplication, the commutation relation between τ_c and F_b^a is
\[\tau_c F_b^a = F_{b+c}^{a+c} \tau_c, \quad F_b^a \tau_c = \tau_c F_{b-c}^{a-c}. \]

By the variable change $\log x = t$ and Laplace transformation, $G_{\log}^\#$ is isomorphic to the group generated by $\{\tau_c | c \in \mathbb{R}\}$ and $\{\tau_a F_{-a}^0 | a \in \mathbb{R}\}$. By (16), we obtain
\[\tau_{c_1} \tau_{a_1} F_{-a_1}^0 \cdots \tau_{c_n} \tau_{a_n} F_{-a_n}^0 \]
\[= \tau_{a_1 + \cdots + a_n + c_1 + \cdots + c_n} F_{-a_1 - (a_2 + \cdots + a_n + c_2 + \cdots + c_n)} \cdots F_{-a_n}. \]
Therefore we have

Theorem 3. G^\log_Γ *is the crossed product*

\[G^\log_\Gamma \cong \mathbb{R} \ltimes G^\#_\Gamma, \]

(17)

where $c \in \mathbb{R}$ acts on $G^\#_\Gamma$ as the translation τ_c.

Corollary G^\log_Γ is a solvable group of solvable length 2.

Proof. Since we have

\[\tau_c F_{b_1}^{a_1} \cdots F_{b_n}^{a_n} = F_{b_1+c}^{a_1+c} \cdots F_{b_n+c}^{a_n+c}, \]

$G^\#_\Gamma$ is a normal subgroup of G^\log_Γ. Then by (16), we have

\[G^\log_\Gamma / G^\#_\Gamma \cong \mathbb{R}. \]

(18)

Since $G^\#_\Gamma$ is an abelian group, we have Corollary.

Note 1. Since

\[F_b^a \tau_c F_a^b = \tau_c F_b^{a+c} F_a^b \notin \{\tau_a | a \in \mathbb{R}\}, \]

\{\tau_a | a \in \mathbb{R}\} is not a normal subgroup of G^\log_Γ.

Note 2. Let $G_{\Gamma, r_1, \ldots, r_k}$ be the subgroup of G^\log_Γ generated by $\{F_b^a | a - b \in \{r_1, \ldots, r_k\}\}$. Then $G_{\Gamma, r_1, \ldots, r_k}$ is also a normal subgroup of G^\log_Γ.

By Proposition 3, regarding \mathfrak{g}_\log generated by t and \mathfrak{d}_\log, elements obtained by higher commutation relations are linear combination of

\[\mathfrak{g}_\log = \left(\frac{d^{m+1}}{dX^{m+1}} \log(\Gamma(1+X)) \bigg|_{X = \frac{d}{dt}} \right). \]

We denote Laplace transformation of \mathfrak{d}_\log by $g_m(s)$;

\[g_m(s) = \frac{d^{m+1}}{ds^{m+1}} \log(\Gamma(1+s)), \]

and set

\[G_m(s) = e^{g_m(s)}, \quad G_{m,h}(s) = G_m(h+s). \]

By definition, we have

\[G_{m,h}(s)^a = e^{ag_m(s+h)} = e^{a \frac{d^{m+1}}{ds^{m+1}} \log(\Gamma(1+s+h))}. \]

By the map

\[\prod_{i=1}^k G_{m,h_i}^{a_i} \rightarrow \sum_{i=1}^k a_i \langle h_i \rangle, \]
we can identify the group $G_{\log,m}$, generated by $G_m(s)$ and \mathbb{R}, which act as translations, by the multiplication, and $\mathbb{R}^\mathbb{R}$, the \mathbb{R}-vector space having elements of \mathbb{R} as the basis. For the convenience, we denote $\mathbb{R}_m^\mathbb{R}$, the vector space $\mathbb{R}^\mathbb{R}$ identified to $G_{\log,m}$.

We set $G_\Gamma^b = \prod_{m=0}^\infty G_m$. Then

$$G_\Gamma^b \cong \sum_{m=0}^\infty \oplus \mathbb{R}_m^\mathbb{R}.$$

Definition 7. We set

$$G_\Gamma = G_\Gamma^\# \times G_\Gamma^b.$$

(19)

Note. Since G_Γ is an abelian group, we may write $G_\Gamma = G_\Gamma^\# \oplus G_\Gamma^b$.

Since elements of G_Γ are (analytic) functions on \mathbb{R}, elements of \mathbb{R} act on G_Γ as translations. We set

$$G_{\log} = \mathbb{R} \ltimes G_\Gamma.$$

(20)

By definition, we can define the exponential map $\exp : \mathfrak{g}_{\log} \to G_\Gamma$ by $\exp(u) = e^u$, regarding \mathfrak{g}_{\log} is generated by t and \mathfrak{d}_{\log} and the map is defined on its images by Laplace transformation. Therefore we obtain

Theorem 4. We can take G_{\log} as the target of the exponential map from \mathfrak{g}_{\log}. It is a solvable group of derived solvable length 2.

Proof. Since we have $\exp(\mathfrak{g}_{\log}) \subset G_{\log}$ and

$$G_{\log}/G_\Gamma \cong \mathbb{R},$$

we have Theorem, because G_Γ is an abelian group.

Note 1. In these discussions, we regard \mathfrak{g}_{\log} to be a real Lie algebra. As for complex Lie algebra $\mathfrak{g}_{\log} = \mathfrak{g}_{\log}^\mathbb{C}$, we have same resuluts, replacing $G_\Gamma^\#$ the group gennrated by $\{F^a_b(z)\mid a, b \in \mathbb{C}\}$, which is denoted by $G_\Gamma^{\#,\mathbb{C}}$, etc., and set

$$\mathfrak{g}_{\log} = \mathbb{C} \ltimes G_\Gamma^{\#,\mathbb{C}},$$

etc..

Note 2. We do not consider topologies of G_{\log}, etc.. Our realization of G_{\log} is not so useful to the study of its algebraic structure. But to give good topologies to \mathfrak{g}_{\log} and G_{\log} so that the completion of \mathfrak{g}_{\log} becomes the Lie algebra of the completion of G_{\log}, our realizations must be useful.
References

