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An integral formula for powers of the Bergman kernel

on representative bounded homogeneous domains
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Abstract. The representative domain gives a nice realization for a
bounded homogeneous domain. For the classical domain, its representa-
tive domain is a constant multiple of the standard realization. We show
that the integral of the negative power K ~° of the normalized Bergman
kernel K of the domain equals the reciprocal of a polynomial of s, called
the Hua polynomial, whose roots are negative rational numbers deter-
mined explicitly from structure of the holomorphic automorphism group
of the domain.

Introduction.

In [5], Hua proved fascinating formulas about harmonic analysis on classical do-
mains. For instance, if we write R;(m,n) (1 < n < m) for the classical domain
{Z € Mat(m,n;C); I — ZZ* is positive definite} of type I, we find the following
integral evaluation in [5, p. 40]:
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where dV' denotes the Lebesgue measure with respect to the natural complex co-

/ det(I — ZZ*) dV(2) =
R;(m,n)

ordinate. In particular, we get the volume Vol(R;(m,n)) of the domain R;(m,n)
by putting A = 0. Furthermore, Hua showed similar integral formulas for the other
classical domains, where the results are always expressed as quotients of products of
the Gamma functions. Now we observe that the right-hand side of (1) is rewritten

as
mnH LA +7) nn
F'A+m+n+1-—73) H;;l()\ + J)ment1-2j

where (a), denotes the Pochhammer polynomial: (a), = a(a +1)---(a +p — 1).
Note that the denominator is a polynomial of A with the degree being Z;‘:l(m +
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n+ 1 — 2j) = mn = dimc Ry(m,n). This observation is valid for each classical
domain. Indeed, using theory of Jordan triple system, Yin, Lu and Roos [13] gener-
alized Hua’s result to bounded symmetric domains as follows. Let & be the Harish-
Chandra realization of an irreducible bounded symmetric domain of dimension N,
and NV (Z, W) be the associated generic minimal polynomial (if S = R;(m,n), then
N(Z,W) = det(I — ZW*)). Then it is shown [13, (2.5)] that

/ Nz z2pav(z) = PODvop)  (®r > —1),
S p(A)
where p()\) is a polynomial of degree N, called the Hua polynomial, whose roots are
negative half integers determined explicitly.

In this article, we shall consider further generalization of Hua’s result to a bounded
homogeneous domain (BHD) U. Since there is no Jordan triple system correspond-
ing to a non-symmetric BHD, it is a non-trivial question what the generalization
should be. We recall that, for the symmetric case Y = S, the Bergman kernel
Ks(Z,W) equals Vol(S) !N (Z, W)™ where ~s is a certain positive integer. Thus,
for a general BHD U, we substitute the reciprocal {Vol(d)Ky(Z, W)}~ of the nor-
malized Bergman kernel for the generic minimal polynomial N (Z, W). On the other
hand, results in [6] suggest that the representative domain can be regarded as a stan-
dard realization of BHD like the Harish-Shandra realization of bounded symmetric
domain. Eventually, we obtain the following result: Let U/ be a representative BHD

of dimension N. Then we can determine rational numbers a1, az,...,an so that
_s Vol(U .
[k oravi = 2! @s>—mine), @
u F(s)
i s
= 14+ —).
where F(s) H( + ai) (3)

i=1
Let D be a (not necessarily bounded) domain biholomorphic to the representative

BHD U. Thanks to a canonical nature of the Bergman kernel Ky (Theorem 1), the
formula (2) is equivalent to

/; lF(S)KD(z,w)S+1|2KD(z,z)-SdV(z) = F(S)Kp(w,w)""l (4)

(w € D, Rs > — minay),

which implies that the weighted Bergman space LZ(D, Kp(z, z)~*dV (z)) has the re-
producing kernel given by F(s)Kp(z,w)**!. We should notice that the statement
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in this form is already known essentially in [4] (see also [10]) where D is a homoge-
neous Siegel domain, and F(s) is expressed as a quotient of products of the Gamma,
functions (see Section 3). Nevertheless, we think that the formulation (2) in terms
of the representative domain as well as the expression of F(s) as a polynomial is

worth claiming to be new.

§1. Preliminaries.

1.1. Let D C CV be a bounded complex domain, and Kp the Bergman kernel of
D. If Kp(z,w) # 0 for z,w € D, we set

2
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Tp(z,w) := ( log Kp(z,w)) ; € Mat(N, C).

Take p € D and assume that Kp(z,p) # 0 for all z € D. Then we define the
Bergman mapping o, : D — CVN by

-1/2

Kp(z,w
UP(Z) = T’D(p’p) gradu’) logﬁlw:p (Z € D))

(p,
where grad,, f(w) := *(2L, 2L .. 8L ) for an anti-holomorphic function fonD. A

dw,’ Bwz """ " ! B

domain U is called a representative domasn if it is the image o,(D) of some Bergman
mapping o, : D — CV.

1.2. In what follows, we assume that a bounded domain D is homogeneous, that is,
the holomorphic automorphism group Aut(D) acts on D transitively. The notion of
the representative domain works very well for such BHDs. Since Kp(z,p) # O for any
z, p € D in this case, the Bergman mapping o, : D — C¥ is always well-defined.
It is shown in [12, Theorem 4.7] and [6, Theorem 3.3 that 0,(D) is a bounded
domain and o, gives a biholomorphism from D onto o,(D). Thus, any BHD D is
realized as a representative BHD U, which is unique up to unitary linear transform
by (6, Proposition 2.1, Lemma 3.2]. A representative BHD / is characterized by the
following properties: (U1) 0 € ¥, and (U2) T(¢,0) = Ix (V¢ € U). For example,
V2A = {2€C;|2| <2} is a representative domain. In general, the Harish-
Chandra realization of an irreducible bounded symmetric domain (e.g. a classical
domain) coincides with a constant multiple of the representative domain.

1.3. For a representative BHD U, we see from [6, Proposition 3.8] that

KGO =gy (e, ©)
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which is equivalent to the mean value property

FO) = o | FOV©Q) (e 22e)

From this observation, we can deduce the following general formula.

Theorem 1. For a (not necessarily bounded) domain D biholomorphic to a repre-
sentative BHD U and a biholomorphism ® : D — U, putting a := ®~1(0) € D, one

has
1  Kp(z,w)Kp(a,a)’

Ku(®(2), 2()) = Gen Koo ) Ko (a, )

(z, w € D). (6)

Proof. By the transformation rule of the Bergman kernel, we have
Kp(z,w) = Ky(®(2), ®(w)) det J(®, z)det J(®, w).

In particular, putting w = a, we have by (5)

_ det J(®, z)det J(P, a)

KD(Z, a)

Vol(U)
Similarly, we see that
det J(®, a)det J(®, w)
K. = .
v(a,w) Vol(U)
Furthermore, for the case z = w = a, we have
| det J(D,a)|?
K =
v(a,a) Vol(U)
Substituting these equalities, we obtain (6). a

§2. Main result.

For a representative BHD U, structure of the holomorphic automorphism group
Aut(U) is rather complicated in general, while the Lie algebra b of the Iwasawa sub-
group (maximal connected split solvable Lie subgroup) B C Hol(i) has a specific
root space decomposition (Theorem 2). The subgroup B is unique up to inner auto-
morphisms in Aut(i/), so that the structure of B and b are canonically determined
from the BHD . Our main result is stated in terms of the dimensions of the root

subspaces of b.
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2.1. Since the group B acts on the domain U simply transitively ([11]), we have
the linear isomorphism ¢: b3 Y +— Y -0 € Tyld = CV. Let us transfer the complex
structure and the Bergman metric (ds)o on Told to b by means of ¢.. Let j: b — b
be a linear map defined in such a way that ¢(jY) = v/=1(Y) (Y € b), and (-|)s
an inner product on b given by (Y1|Y3)s := ds(¢(Y1), t(Y2))o (Y1, Y2 € b). Let a be
the orthogonal complement of the subspace [b,b] C b with respect to (-|:)s. Then
a is a commutative Cartan subalgebra of the solvable Lie algebra b. For a € a*,
we denote by b, the root subspace b, :={Y € b; [C,Y] = a(C)Y (VC € a) }. The
number 7 := dima is called the rank of b.

Theorem 2 ([9, Chapter 2, Section 3]). There ezists a basis {a1,...,0-} of a*
such that b = b(1) & b(1/2) & b(0),

® &
b0)=a® D Bam-anz b(1/2)= D bay,

1<k<m<r 1<k<r
& &
b(1) = Z bo, D Z b(am+ar)/2-
1<k<r 1<k<m<r

Let {Ay,---, A,} be the basis of a dual to {a1,...,ar}, and put By := —jA; (k =
1,...,7). Then b,, = RE. One has 76(0) = b(1), jb(1/2) = b(1/2) and

[b(p),b(g)] C b(p+q) (if p> 1, then b(p) := {0}). (7)

forp,gq=20,1/2 1.

We note that some root spaces b(q,,+q,)/2 0T bqo, /2 may be zero.
2.2. Fork=1,...,7, we set

Pk = Zdim blag—-ai)/2y U = Z dimba,,—ay)/2, bk = (dim bak/g)/2.

i<k m>k

Then we state our main result as follows.

Theorem 3. Putting

P(s):=[](s2+px + ac + ) + 1+ 0/2) 14 py 40y (8)
k=1
one has PO
Vol Kuc, 0y av(©) = Vol ), ©)
u S

where s is a complex number for which the real part of every factor of P(s) is positive.
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The polynomial F(s) in (2) is P(s)/P(0). Indeed, the degree of P(s)is > ,_,(1+
Pr+qr) = dimb(0)+(dim b(1/2))/2 = (dim b)/2, which is nothing but N = dimc .
For the case U is (a constant multiple of) R;(m,n), we have py = 2(k — 1), gx =
2(n — k) and by = m — n, so that Theorem 3 is compatible with (1).

§3. Evaluation of integrals on a homogeneous Siegel domain.

The solvable group B acts on the representative BHD U/ simply transitively,

while we shall see that the same B acts on a certain Siegel domain D as an affine
transformation group. The domain D is biholomorphi‘c toU. This is a generalization
of the relation between the upper half plane and the unit disc in the complex plane
C. In this section, making use of Theorem 1, we reduce the integral (9) over U to
integrals over the Siegel domain D, whose evaluation is essentially due to Gindikin
[3] and [4].
3.1. Thanks to (7), we see that b(0) and b(1) are a subalgebra and a commutative
ideal of b respectively, and that the group B(0) := exp b(0) of B acts on b(1) by the
adjoint representation. Putting £ := E} + ---+ E, € b(1), we set Q2 := B(0) - E C
b(1). Then € is a regular open convex cone in b(1), on which the group B(0) acts
simply transitively. The linear map j|p(1/2) gives a complex structure on the space
b(1/2). We definite the Hermitian map @ : b(1/2) x b(1/2) — b(1)¢ on the complex
vector space (b(1/2),7) by Q(u,v’) = ([Ju,v'] + iu,u’])/4. Let us consider the
Siegel domain D C b(1)¢ x (b(1/2),J) given by

D:={Z = (z,u) € b(l)c x (b(1/2),7); Sz — Q(u,u) € N}.
An action of the solvable group B on D is defined by
bo - (z,u) := (ho - 2+ zo +1Q(ho - u, up) + 1Q(uo, uo)/2, ho - u + up) ((z,u) € D)

for by = exp(zo + up)ho € B (zo € b(1), uo € b(1/2), hy € B(0)). It is easy to
check that the point ag := (¢F, 0) belongs to D. Then we can describe the Bergman
mapping C := 04, : D = U concretely ([6], [8])-

Noting that b(0) = .a & [b(0), b(0)], we define a one-dimensional representation
Xg : B(0) — C* for ¢ = (01,...,0,) € C" by Xo(exp C) := eX(C) (C € a). Let
A, be a smooth function on the cone Q given by Ay (h - E) := X(h) (h € B(0)).
This A, can be expressed as a product of powers of rational functions, and it can

be extended as a holomorphic function on the complex domain Q + ib(1). Define
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d=(di,....,d:) by de == 14 (px +q)/2 (k = 1,...,7). Then A_y4(z)dz is an
invariant measure on 2 with respect to the action of B(0).

Proposition 4 ([3, Lemma 5.1]). The Bergman kernel Kp of the homogeneous
Siegel domain D is given by

z.—_
21

where Cp is a constant independent of Z and Z'.

KD(Z7 Zl) = CDA-—(24+_§)( z - Q(U,U,)) (Z = (Z,U), Z = (z','u,') € D))

3.2. Let E* € b(1)* be the linear form on b(1) given by (z, E*) = Y| _, zxx for
elements £ = Y}, Tk Bk + Y1 chomer Xmk € b(1) (zkk € R, Xink € b(apmtar)/2)-
Then E* belongs to the dual cone Q* := {¢ € b(1)*; (z,£) > 0 (Vz € T\ {0})} of
2. Moreover, for any £ € Q2*, there exists a unique h € B(0) for which £ = E* o h.
Therefore, we can define a function §, by d,(E* o h) := x,(h) (h € B(0)).

Proposition 5 ({3, Theorem 2.1, Proposition 2.3]). (i) For a parameter ¢ =
(01,...,0.) € C, the integral Tq(c) := [, e @EIA,_4(z)dz converges if and only
if Rox > pr/2 (k= 1,...,7). In this case, one has Tq(g) = Cr [[;_, [(ok — px/2),
where Cr s a constant independent of o. Moreover, one has

1
~ Ta(o)

(ii) The integral ya-(g) = [,.e B8, _4(£)dx converges if and only if Roy >
a/2 (k=1,...,7), and in this case, ya-(g) = Ta(c+ (p—q)/2) = Cr [T;_, T(ox —
qx/2). Moreover, one has

5-g(€) [0 s@as €en), (10)

—_ 1 —-(Z,f) y
Bog®) = —= [0 ye)de (e +ib(2), (11)
(iii) For £ € Q*, one has
[ e @u9aw) = Coby(e) (12)
b(1/2)

where Cq is a constant independent of €.

3.3. By the transformation rule of the Bergman kernels, we have Ky(¢,¢) dV(¢) =
Kp(Z,Z)dV(Z) for the change of variable ( = C(Z) (Z € D). This together with
Theorem 1 tells us that the left-hand side of (9) equals
Vol(U)
Kp(ao, ap)*+?

/D |\Kp(Z, a0)™ P Kp(Z, Z)~* dV (2),
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which is rewritten as

z+1F z—Zz
Cp Vol(U)/ |A_(s1)2a+8) ( 5; )2 A s2g4t) ( 5 — Qu,w))dV(2)
D

owing to Proposition 4. In order to evaluate this integral, we consider the change

of variable
Z = (z+1iy +1Q(u,u), u) € D (z € b(1), y € Q, u e b(l/2)).

For simplicity, we assume that the real part of s are large enough for the convergene
of the integrals in Proposition 5. First of all, by (11) and the Plancherel formula,

we have

z+1iFE
/ IA-—(3+1)(24+I_7)( : )|2d33
b(1) 21

o
Yo-((s+1)(2d+ b

)2 / e~ B g, 1) 2ar)-2a(E) dE,

where N; := dim b(1). Next, by (12) we have

z+1iFk
/ / 'A—(s+1)(24+9)( % )'zdx dV(“)
b(1/2) Jb(1) 2

_ (4m)MCq
- ((s +1)(2d + b))?

/ e FrVO5 00 1) 2ars)(€) dE.
Q‘

Furthermore, we see from (10) that

z+iFE
// / IA—(s+1)(2¢+g)( % )l2As(24+g)(y) dz dV(u) dy
2 Ju(1/2) Jb(1) [

_ (Am)MCglq(s(2d +b) + d)
 yae((s+1)(2d + b))?

_ (4m)MCqla(s(2d + b) + d)
 re((s+1)(2d+b)

/ e PG o1 1y2arp)-al(€) dE

where we use Proposition 5 (ii) for the second equality. Therefore, the left-hand side

of (9) is equal to
I'a(s(2d+b) +d)

Ya-((s +1)(2d + b))
up to a constant multiple, and this is nothing but the reciprocal of P(s) in (8) thanks

to Proposition 5 (i) and (ii). Hence we obtain Theorem 3.
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