<table>
<thead>
<tr>
<th>Title</th>
<th>Hamilton-Jacobi equations and Euclidean Sobolev inequality (Viscosity Solutions of Differential Equations and Related Topics)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>FUJITA, Yasuhiro</td>
</tr>
<tr>
<td>Citation</td>
<td>数理解析研究所講究録 (2010), 1695: 1-4</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2010-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/141643</td>
</tr>
<tr>
<td>Type</td>
<td>Departmental Bulletin Paper</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
</tbody>
</table>

Kyoto University
Hamilton-Jacobi equations and Euclidean Sobolev inequality

Yasuhiro FUJITA*

1 Introduction

The result of this note is a special case of [3], and the readers should refer to it for more detailed results and their proofs.

Let \(\Omega \) be a bounded and Lebesgue measurable set in \(\mathbb{R}^n \). Let \(0 < \alpha < \beta < \infty \). Then, as is well-known, the following inequality holds:

\[
\left| \Omega \right|^{-1/\alpha} \| f \|_{\alpha, \Omega} \leq \left| \Omega \right|^{-1/\beta} \| f \|_{\beta, \Omega} \leq \| f \|_{\infty, \Omega}, \quad f \in L^\infty(\Omega)
\]

where \(|\Omega| \) is the Lebesgue measure of \(\Omega \) and \(\| \cdot \|_{\beta, \Omega} \) is the \(L^\beta(\Omega) \)-norm \((0 < \beta < \infty)\) with respect to the Lebesgue measure in \(\mathbb{R}^n \). Furthermore, this inequality is optimal in the sense that all inequalities in (1.1) are reduced to equalities when \(f \) is a constant function on \(\Omega \). This inequality show a norm-monotone property of \(\{ |\Omega|^{-1/\beta} \| f \|_{\beta, \Omega} \}_{0 < \alpha < \infty} \).

However, as far as we know, there is no inequality corresponding to (1.1) when a bounded and Lebesgue measurable set \(\Omega \) in \(\mathbb{R}^n \) is replaced by the whole domain \(\mathbb{R}^n \). A reason for it is that when \(\Omega = \mathbb{R}^n \), we have \(|\Omega|^{-1/\beta} = 0 \) for all \(0 < \beta < \infty \).

The goal of this note is to provide an inequality corresponding to (1.1) when a bounded and Lebesgue measurable set \(\Omega \) in \(\mathbb{R}^n \) is replaced by the whole domain \(\mathbb{R}^n \). This inequality is obtained by using the Euclidean logarithmic Sobolev inequality and Hamilton-Jacobi equations. We use the inequalities obtained by [4, 5], and minimize this inequality with respect to some parameter, and finally get the desired inequality by letting another parameter tend to \(\infty \).

2 Preliminaries

In this section, we collect some results of [4, 5]. For \(p \geq 1 \), we denote by \(W^{1,p}(\mathbb{R}^n) \) the space of all weakly differentiable functions \(f \) on \(\mathbb{R}^n \) such that \(f \) and \(|Df| \) are in \(L^p(\mathbb{R}^n) \).

Throughout this note, the integral without its domain is understood as the one over \(\mathbb{R}^n \).

*Department of Mathematics, University of Toyama, Toyama 930-8555, Japan. Supported in part by Grant-in-Aid for Scientific Research, No. 21540168, 18204009, JSPS.
Lemma 2.1 Let $p \geq 1$. Then, we have the following Euclidean logarithmic Sobolev inequality:

$$\int |f|^p \log |f|^p \, dx \leq \frac{n}{p} \log \left(L_p \int |Df|^p \, dx \right)$$

for $f \in W^{1,p}(\mathbb{R}^n)$ with $\int |f|^p \, dx = 1$.

Here,

$$L_p = \frac{p}{n} \left(\frac{p-1}{e} \right)^{p-1} \pi^{-p/2} \left(\frac{\Gamma(\frac{p}{2} + 1)}{\Gamma(n \frac{p-1}{2} + 1)} \right)^{p/n},$$

and this is the best possible constant satisfying (2.1).

We denote by $\| \cdot \|_\alpha$ the $L^\alpha(\mathbb{R}^n)$-norm with respect to the Lebesgue measure in \mathbb{R}^n.

Lemma 2.2 Let $p > 1$. For $f \in \text{Lip}(\mathbb{R}^n)$, let $u \in \text{Lip}(\mathbb{R}^n \times [0, \infty))$ be a viscosity subsolution of the Hamilton-Jacobi equation

$$u_t(x, t) + \frac{1}{p} |Du(x, t)|^p = 0 \quad \text{in} \quad \mathbb{R}^n \times (0, \infty), \quad u = f \quad \text{on} \quad \mathbb{R}^n \times \{0\}.$$

If there is a constant $\alpha > 0$ such that $e^f \in L^\alpha(\mathbb{R}^n)$, then $e^{u(\cdot, t)} \in L^\beta(\mathbb{R}^n)$ for any $\beta \in (\alpha, \infty)$ and $t \in (0, \infty)$. Furthermore, we have

$$\|e^{u(\cdot, t)}\|_\beta \leq \|e^f\|_\alpha \left(\frac{n L_p e^{p-1} (\beta - \alpha)}{p^\delta t} \right)^{\frac{n-\alpha}{p} \cdot \frac{n-\beta}{p}} \frac{\alpha^{\frac{\beta-\alpha}{p}}}{\beta^{\frac{n-\alpha}{p} \cdot \frac{\beta-\alpha}{p}}}, \quad t > 0,$$

where $q > 1$ is the exponent conjugate of p, i.e., $(1/p) + (1/q) = 1$.

3 A result

Let $\theta > 0$. For $\alpha > 0$, we set

$$\mathcal{L}_{\alpha, \theta} = \left\{ f \in \text{Lip}(\mathbb{R}^n) : \text{Lip}(f) \leq \theta, \ e^f \in L^\alpha(\mathbb{R}^n) \right\},$$

where Lip(f) is the Lipschitz constant of f, i.e., Lip$(f) = \sup_{x \neq y} |f(x) - f(y)|/|x - y|$. Let us denote by ω_{n-1} the surface area of the unit ball in \mathbb{R}^n. We set

$$k_n = \left(\frac{1}{\omega_{n-1} (n-1)!} \right)^{1/n}.$$

Now, we state our result of this note and give a sketch of its proof.

Theorem 3.1 Let $\alpha, \theta > 0$. For $f \in \mathcal{L}_{\alpha, \theta}$, we have the following inequality:

$$\|e^f\|_\infty \leq \|e^f\|_\beta (k_n \theta \beta)^{n/\beta} \leq \|e^f\|_\alpha (k_n \theta \alpha)^{n/\alpha}, \quad \alpha \leq \beta \leq \infty.$$

Inequality (3.3) is optimal in the sense that equality holds when $f(x) = C - \theta |x|$ for some constant $C \in \mathbb{R}$.
Remark. Note that $\lim_{\beta \to \infty} (k_n \theta)^{n/\beta} = 1$. Hence, the family
\[\{ \| e^f \| _\beta \ (k_n \theta)^{n/\beta} \}_{\alpha < \beta < \infty} \]
interpolates continuously and monotonically between
\[\| e^f \| _\alpha \ (k_n \theta)^{n/\alpha} \] \text{ and } \| e^f \| _\infty.

Sketch of Proof. Let $f \in L_{\alpha, \theta}$. Then, the function $v(x, t) = f(x) \ - \ (\theta^p t / p)$ is a subsolution of (2.3), so that $v \leq u$ on $\mathbb{R}^n \times [0, \infty)$ by [7]. By Lemma 2.2, we have, for any $\beta \in (\alpha, \infty)$ and $t \in (0, \infty)$,
\[
\| e^f \| _\beta \leq \| e^f \| _\alpha \ e^{\theta^p t / p \ t - \frac{n \theta^p}{p \ \theta^p} \ \theta^p} \ e^{\frac{nL_p e^{p-1}(\beta - \alpha)}{p^p}} \ \alpha^{\frac{n}{\alpha \beta} (\frac{\alpha}{p} + \frac{\beta}{q})} \ \beta^{\frac{n}{\alpha \beta} (\frac{\beta}{p} + \frac{\alpha}{q})}, \quad t > 0,
\]
where $q > 1$ is the exponent conjugate of p, i.e., $(1/p) + (1/q) = 1$. By minimizing the right-hand side of (3.4) with respect to the t-variable, we have
\[
\| e^f \| _\beta \leq \| e^f \| _\alpha \ \left(\frac{eL_p^{1/p}}{p} \right)^{\frac{n}{\alpha \beta} (\frac{\alpha}{p} + \frac{\beta}{q})} \ \alpha^{\frac{n}{\alpha \beta} (\frac{\alpha}{p} + \frac{\beta}{q})} \ \beta^{\frac{n}{\alpha \beta} (\frac{\beta}{p} + \frac{\alpha}{q})}.
\]
Hence, we obtain
\[
\| e^f \| _\beta \ (k_p^{(n)} \theta^\beta)^{n/\beta} \leq \| e^f \| _\alpha \ (k_p^{(n)} \theta^\alpha)^{n/\alpha},
\]
where
\[
k_p^{(n)} = \frac{eL_p^{1/p}}{p} = \left(\frac{n}{eq} \right)^{1/q} \left[\Gamma \left(\frac{n}{q} + 1 \right) \right]^{-1/n} \frac{e}{n\sqrt{\pi}} \left[\Gamma \left(\frac{n}{2} + 1 \right) \right]^{1/n}.
\]
Now, letting p tend to ∞ in (3.7), i.e., letting q tend to 1 in (3.7), we conclude that
\[
\lim_{p \to \infty} k_p^{(n)} = \lim_{q \to 1} \left(\frac{n}{eq} \right)^{1/q} \left[\Gamma \left(\frac{n}{q} + 1 \right) \right]^{-1/n} \frac{e}{n\sqrt{\pi}} \left[\Gamma \left(\frac{n}{2} + 1 \right) \right]^{1/n} = \frac{1}{\sqrt{\pi}} \left(\frac{n}{\omega_{n-1}(n-1)!} \right)^{1/n} = k_n.
\]
The proof is completed. \[\square \]

References

