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1. INTRODUCTION

This article is based on joint work with Michael Ruzhansky (Imperial College
London). Let us first recall some basics on Helmholtz equation and its radiation
conditions first, which is relevant to our main results described later in Section.

Let

L = —A : Laplacian on R",

and consider the Helmholtz equation
(L-=ANv=g, (A>0,g9¢€C).
Note that the solution is not unique because the eigenfunction of Dirichlet problem
exists. At least the inverse
v=(L-X)"g
should be one of the solution, but it does not exists for A > 0 since
R(z) = (L — 2)™! : resolvent

is defined only for z € C \ [0,00) as the element of £(L?, L%). But the following
limiting absorption principle holds:

Theorem 1 (Agmon [1]). The “weak limit”
R(A £40) = lim R(X + i¢)
e\0

exists in L(L2, L% ,) for k > 1/2. Here L2 is the set of functions g such that the norm

lgllzz = (/ |(:v>’°g(x)|2dx) 1/2; (@) = (1+ |22) "

is finite.

Then v = R(A+1i0)g is a unique solution to Helmholtz equation under Sommerfeld’s
radiational condition

v = O(r—(n_l)/Q)’
8, F ivA)w = O(r—(m+D)/2)

for r = |x| = oo, or more weakly

ve L?, (k>1/2)
8, FivA)v € L% (<)
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Then we call
u = R(A+10)f : outgoing solution,
u = R(A —{0)f : incoming solution.

In other words, the radiation condition distinguishes outgoing and incoming solutions.
The limiting absorption principle is justified by the resolvent estimate

sup [ R(A £ 1e)g]l12, < Callgllz

for A > 0 and k& > 1/2. More generally, we have
I DR\ £ i0)g]l,2 . < Callgll,z
for A#0, |o| <2, and k > 1/2.
Furthermore, if n > 2, we have the uniform resolvent estimates
(1.1) sup [||D|R(A £i0)gll 2 < Cllgll .z,
A€R

or equivalently
(1.2) iuglla(X, D)R(A £i0)a(X, D)*gl|;2 < Cllgll
€

for o(X, D) = (z) *|D|'/2, where k > 1/2. It is not true for k < 1/2.

Uniform resolvent estimates (1.1) and (1.2) are also used to show time-space esti-
mates for Schrodinger equations. By taking partial Fourier transform F;, in t for the
Schrodinger equation:

(i0; + L) u(t, z) = f(t, x)
we have the Helmholtz equation:
(L = 7) (Fas)(r, ) = (Fof)(r, ).
Hence we can expect that resolovent estimates imply estimates for Schrédinger equa-
tion. In fact, we have

Theorem 2 (Kato [8]). : Uniform resolvent estimate
sup [[AR(X £ i0)A%g||x < Cllgllx
XeR

implies the smoothing estimate

[Au(t, ©)l| 2, x) < Clle(@)lx
for the solution to the Schorddinger equation

{ (i0; + L) u(t,z) = 0,
u(0,z) = o(x).
(Here X is a separable Hilbert space.)
Similarly, the uniform estimate
sup [[AR(A £40)gllx < Cliglly
A€R

implies the estimate
|| Au(t, x)”L?(Rt:X,) < C”f(tvx)”Lz(Rt:Yz)
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for the solution to the Cauchy problem
(10, + L) u(t, z) = f(t, z),
u(0,z) = 0.
In fact, the solution is given by the formula
u(t,z) = iF*R(t — i0)Fyf ¥ (t,z) + iF ' R(T + i0)Ff (¢, z),
where f* is the function f multiplied by the characteristic function of the set {t €
R; +t > 0}.
The objective of this article is to explain the following;:

e In uniform resolvent estimates (1.1) and (1.2), the critical case K = 1/2 or
more general combination of the order for the weight can be attained if we
assume a structure on o(X, D).

e The structure is related to a radiation condition.

e Such consideration is useful in the nonlinear problems in Schrédinger equa-
tions.

2. MAIN RESULTS

We generalise the operator to understand the meaning of the structure well, which
will clarify and exhibit geometric quantities responsible for resolvent estimates in the
critical case. We set

L=a(D)=Fta§)F
The case a(£) = |€|? corresponds to the usual Laplacian. We always assume:
° a(§) € C*(R"\0), a(£)>0.
e a(A§) =Ha(§) (A>0,£#0).

e the Gaussian curvature of
T.={€€eR":a(§) =1}
never vanishes.
Let {(z(t),£(t)) : t € R} be the classical orbit associated to L = a(D), that is, the
solution of the ordinary differential equation
{ (1) = (Va)(£(t), €(t) =0,
z(0) =0, ¢£(0) =k,
and consider the set of the path of all classical orbits
T, ={(z(¢),&(t)): te R, k€ R"\ 0}

= {(AVa(£),€): A€ R, £ € R"\ 0}

= {(z,€) e T*"R"\ 0: z A Va(§) = 0}.
Here the outer product a A b of vectors

a=(ay,az,...,a,), b=_(b1,bq,...,by)

is defined by
aAb= (a,-bj - Cljb,'),‘<j.
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For example, in the Laplacian case a(£) = |¢|?, we have
I,={(z,§) e T*"R*\0: z A& =0}
Furthermore we use the notation
o(z,€) e C™ (R;‘ x (Rg \ 0)),
o(z,€) ~ (2)¢] <= { o(z,A) = No(z,€); (A > 0,€ #0),
080 (,€)] < Calx)*'*l€l"

We simply write o(z,€) ~ |€] if a = 0 and b = 1. Then we have the following main
theorems:

Theorem 3. Suppose o(x,€) ~ (z)”/?|¢|Y/? and
o(z,€) =0 on I,.
Then we have
sup [lo(X, D)R(A £10)a(X, D)"gll 2 < Cligll.;
for —-1<l<1lifn>3and -1/2<1<1/2ifn=2.

Remark 1. For uniform resolvent estimate (1.2), this theorem says that structure
allows the critical case k = 1/2 even on more general spaces X = L.

Theorem 4. Suppose o(x,&) ~ |£| and
o(z,&) =0 on T,.

Then we have

1/2+1

sup |o(X, D)R(A £ 0)gl2 < Cllgll,z
AER /2+l

for0<l<1lifn>3and0<1<1/2 ifn=2.
Remark 2. Suppose just o(z, &) = |€| without structure. Then we have only
sup [lo(X, D)R(A £0)gllzz, , , < Clglzz,,,, ¢>0)

by estimate (1.1).

3. HERBST-SKIBSTED’S RESOLVENT ESTIMATE

We will explain the relation between the structure condition in our main results
and Sommerfeld’s radiation condition.
Let S(z,)\) be the solution of eikonal equation,

a(VS(z,\))+V(z)=Xx (A>0)

for L = a(D) + V(x). (We take V = 0 in our context.) Let p = —iV be the
momentum operator and set

Y(A) =pF VS(z, ).
The quantization of () is given by
y =pF VS(z,a(D)).
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Theorem 5 (Herbst-Skibsted [6]). Let L = —A(+V). Then, for l < 1, we have the
(quantum) result

sup [[7 R(A £ 0)x(I1DDgll.2, ,,, < Cllgley,
where x € C°(Ry). The (classical) result
Y(A)R(X £ i0) € E(L§/2_,, L?-1/2+z)
by Isozaki [7] can be derived from this quantum result.
Note that ||g]| L e < |lgll 2, and the estimate in Theorem 4 is a better one in

this sense.
In the case L = — A, we have

Y(A) = —iVF VA

=, 3=DF 4|D|.
o] 2]

Then we remark a:
ilm—l ‘v(A) = 8, FivA.

Hence the classical result in Theorem 5 implies
(Or FiVA)R(A £140) € L(LE)5, L2 1)241)

(Sommerfeld’s radiation condition).
We also remark that the symbol o(z, ) of the operator 7 satisfies the half structure

o(z,€) = 0 on I'E,
where
I'* = {(A\Va(£),€) : z € R*\ 0, £\ > 0}.
The quantum result in Theorem 5 means that each half structure implies the estimates
for R(A +i0) and R(X — i0) respectively, while our result Theorem 4 means that full
structure implies both.

4. ESTIMATES FOR SCHRODINGER EQUATIONS

As we have already discussed in Section 1, resolvent estimates automatically imply
estimates for the (generalised) Schrodinger equation. By Theorem 3, we have

Corollary 6. Suppose o(z,£) ~ (x)_l/?|§|1/2 and
o(z,&) =0 on T,.
Then the solution to the homogeneous equation
(i0; + L) u(t,z) = 0,
{ u(0,z) = p(z)
has the estimate

“ (z)'o(X, D)u

< C” !
L2(RexRE) (e)'e

for —-1<l<lifn>3and -1/2<1<1/2 ifn=2.

L2(R")
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Remark 3. This estimate with | = 0 is a critical case of the smoothing estimate
||(99>_S|Dx|l/2u“1,2(ntxnn) C”‘PHLZ’(R")
for s > 1/2. (Ben-Artzi and Klainerman [3], etc).
By Theorem 4, we have similarly
Corollary 7. Suppose o(z,§) ~ |€| and
o(z,) =0 on T,.
Then the solution to the inhomogeneous equation
(i8¢ + L) u(t, z) = f(t,x),

{ u(0,z) =0

has the estimate

H (z)"Y?Mo (X, D)u

< C“ <$>1/2+l

Lz(RtXRn) Lz(RtXR;:‘)

for0<l<lifn>23and0<i<1/2 ifn=2.
Combining Corollaries 6 and 7, we have
Corollary 8. Letn >3, 5,§> 0, and 0 <[l < 1. Suppose
o(z,€) ~[&] and o(z,€) =0 onT,.
Then the solution to the equation
(i0; + L) u(t,z) = f(¢, x)
{ w(0,2) = ¢(a).

has the estimate

H(z)'l/HIU(X, Dx)'u,l

H(HJ)
< CH (x>l(D1:>2s+§+1/2§0‘

C’“( 1/2+zf‘

5. NONLINEAR SCHRODINGER EQUATION

L2(Rg) Hy(H})

What is the condition of the initial data ¢(z) for the equation
{ (i, + D) ult, z) =|Vu(t, )|V
u(0,z) = p(z), teR, z€R”
to have time global solution? Here are some answers:

e N > 3 (Chihara [4]). Smooth, rapidly decay, and sufficiently small.
e N > 2 (Hayashi-Miao-Naumkin [5]).0 € H™2+5 rapidly decay, and suffi-
ciently small.

Can we weaken the smoothness assumption for ¢(z)? The next results says that the
answer is “Yes” if the non-linear term has a structure replacing |Vul|" by

(<x>w> '
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Theorem 9. Supposen > 3, s > (n+3)/2, and N > 4. Assume that (z)(D;)°p € L?
and its L?-norm is sufficiently small. Then the equation

(i6, + L) u(t, z) =|o(X, Dz )ul™

u(0,z) = p(z), t€R,z€R",
where

{U(:r,§) =0 on T4,
o(z,€) ~ [€l.

has a time global solution u € C°(R, x R}).

To prove Theorem 9, we just use Corollary 8 with f = |o(X, D)u|", but we need
to show the estimate

[t /**1(X, Dyul"|

<“( )" 1/2+1 a(X, Dy)u |

H$(H3) H?(H3)

to have an appropriate a priori estimate. The key fact is that the space Hf(Hﬁ) is
an algebra if s > 1/2 and § > n/2. Then we have

|()**10(X, Doyul"|

<H(x)(1/2+l)/Na(X D )ul

H(HE) H(HE)

<||(@)** (X, Do)u \

H(HE)
if (1/2+1)/N < —1/2 41 or equivalently

N +1

Thus we have a priori estimate

H(:c)_l/zﬂo(X, Dz)u‘

H(H3)
< C“ <$>1<Dz>2s+§+1/290

+ C” (z) "o (X, Dz)ul

L?(R3) Hy(HH)N

6. GENERAL IDEA OF THE PROOF OF MAIN THEOREMS

The proof of Theorems 3 and 4 consists of the following two procedure:
e First reduce the problem to the case of Laplacian:

a(D;) = -—A,
e Then replace o(X, D) by a special operator which commutes with R(X & i0):

T

o(X,D) = -—AD

(z)

These idea can be realized due to a recent progress on the global L2-boundedness and
the calculus of a class of Fourier integral operators, which was made by Ruzhansky

and the author ([9], [10]).
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Fourier integral operators

Let
Tu(@)= [ [ 09y, Ouly) dyde (v € R,
then we have the following Egorov’s theory:
o If ¢(x,y,&) satisfies (locally) the “graph condition”

A= {(.’L‘, ¢.’L’7y7 _¢y) . ¢§ = 0}
={(z,¢),x(z,£)} c T"R" x T*R"

with some x(z,€) and p(z,y,&) = 1, we have (microlocally) the relation
T-A(X,D)=B(X,D)- T+ (lower),
B(z,£) = (Ao x)(z,£)

Hence, by taking a phase function appropriately, properties of the operator B(X, D)
can be extracted from those of the well known operator A(X, D). As a special case,
if we take

¢(z,y,€) =2 -&—y-(€),

where

_ s Val®)
¥(E) = VaO gy

we have the exact relation
T -(-A)=a(D)-T.

If we use this idea to prove main theorems, we need to answer the question when T
is globally L2-bounded.

Here is an previous answer which was used to construct the fundamental solution
of Schrodinger equation by “Feynman’s path integral”.

Theorem 10 (Asada-Fujiwara [2]). Assume that all the derivatives of p(z,y,&) and
all the derivatives of each entry of the matriz

 (8,0,6 8,00
D(¢) = (agang agaiqs)

are bounded. Also assume that
|det D(¢)| = C > 0.
Then T is L*(R™)-bounded.

But unfortunately, our important case

fails to satisfy the boundedness of 0;0,¢. However if we assume extra decaying
properties for phase and amplitude, we can show the (weighted) L?-boundedness and
various calculus:
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A class of phase and amplitude functions

We consider the Fourier integral operators of the form

Tyu(z) = / / '@ Erewp(z, y, )u(y)dydE.

with the phase function

We assume
|det 8,0¢(y,€)| > C >0
18268 0(4,)| < Caple) O (18] £0),

but we do not assume the boundedness of

aﬁafd)(l‘; Y, E) = afafép(y, E)

For the amplitude function, we introduce the following classes:

Definition 1. suppose m, m’', k € R. Amplitude p(z,y, £) is of the class A;"’"’I, ’RZ"""
respectively if
(820507 p(%,, €)| < Capa(z)™ ' (y)™ l(e) 1,
|028587p(2,y,€)| < Capy ()™ ()™ 7P (g)*.
We set

m m-m'/ m’ m __ m—m'/,m’
k = Um’GRAk ) Rk —Um’eRRk .

Boundedness and Calculus

Theorem 11. Suppose m, p € R. Let p(z,y,£) € RT. Then we have the bounded-
ness

T, : L2,,,(R") —» L2(R™).

m+pu

Theorem 12. Suppose m,k € R. Let p(z,y,€) € AT. Then we have the decompo-
sition
T, =Ty, +T;;
po(y,§) = P(=0p(y,6),v,8) € AY, r(z,y,€) € R
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Canonical transformation

For the C"*°-diffeomorphism 1 : R® \ 0 — R™ \ 0 such that ¥(\&) = Ap(€) (A > 0,
& #0), we set

TIu(z) = F~' [Fu(¥(€))] (z)

1 ot
- G / / €=V y () dy de

(neglecting a cut-off function of the origin).

Corollary 13. Suppose m € R. Let a(x,€) € AT. We set
a(z,€) = a(zy' (v71(€)), v 7(8)).
Then we have a(z,&) € AT and
a(X,D)-I=1-aX,D)+R
where

R : L?

m—1+p

(R™) — Li(R")
for all p € R.

Change of variables

For the C*°-diffeomorphism « : R*\ 0 — R" \ 0 such that x(A\¢) = A&(&) (A > 0,
£ #0), we set

Ju(z) = (uo k)(z)

e L [ e Ouln(y) du

=(_271r_)n /n /n ei(@E—R"1(y)€) | ‘det (m“l)'(y)lu(y)dydf

(neglecting a cut-off function of the origin).

Corollary 14. Suppose m € R. Let a(z,£) € AT. We set
(z,€) = a(k(2), £x'(2)).
Then we have a(z,&) € AT and
J-a(X,D) =a(X,D)-J+R,

where
R : Lﬁz_H“(R") — Li(R”)
for all u € R.
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Outline of the proof of Theorems 3 & 4

By using the boundedness and calculus of Fourier integral operators of our class
(Corollary 13), we can replace

O’(X,D) - <—I'>—/\D

in the following sense:
lo(X, Dyl x < C(1l(z A Dyullya,_, +llullzz,_, )

where o(z, &) € AT vanishes on 'y = {(z,€§) : £ A§ = 0}.
By the change of variables

k(z) = (J:', W) = (zy...,Tn-1),

for x = (z1,z2...,Z,), it can be reduced to show
10X, Dyull 2 < C(I1O(X, Dyullzz_, +lulz_,)

by Corollary 14, where b(z,£) = o(k(z),&K'(z)7!) € AT and O(z,€) = k(z) A
£k'(r)~!. Note that x maps the hyperplain z, = 1 to the sphere |z| = 1. Here we
have

0i;(z, &) = 7:&j — ;& (i<j<mn),
@in(mag) =~V "E?z - lxIIZEi (7‘ < n)
and, all we have to show is just the estimate

n—1

16(X, D)u”L2(R") <C Z I DiU”L;-’,,(Rv)'
i=1

Since b(z,£) =0 on {(z,&) : ¢ = 0}, we have by Taylor’s theorem

n—1

b(z,&,&n) = b(2,0,8,) + > ri(x, )&
n—1 =
= Z T'-i(l', E)gi)
i=1
where

ri(z, €) = / (Beb)(z, 66 £,) € A

Using Theorem 11 to assure the boundedness of r;(X, D), we have the desired esti-
mate.
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