ENDOMORPHISMS OF PROJECTIVE VARIETIES AND THEIR INVARIANT HYPERSURFACES

DE-QI ZHANG

ABSTRACT. We consider surjective endomorphisms f of degree > 1 on projective manifolds X of Picard number one and their f^{-1}-stable hypersurfaces V. When $X = \mathbb{P}^n$ with $n = 3$, we show that V is a hyperplane (i.e., $\deg(V) = 1$) but with four possible exceptions; it is conjectured that $\deg(V) = 1$ for any $n \geq 2$; cf. [8], [3]. For general X, we show that V is rationally chain connected. Also given is an optimal upper bound for the number of f^{-1}-stable prime divisors on (not necessarily smooth) projective varieties.

1. ENDOMORPHISMS OF \mathbb{P}^3

We work over the field \mathbb{C} of complex numbers. We start with the consideration of endomorphisms of the projective three space. The main result of this section is Theorem 1.1 below.

Theorem 1.1. Let $f : \mathbb{P}^3 \to \mathbb{P}^3$ be an endomorphism of degree > 1 and V an irreducible hypersurface such that $f^{-1}(V) = V$. Then either $\deg(V) = 1$, i.e., V is a hyperplane, or $V = V_i := \{S_i = 0\}$ is a cubic hypersurface given by one of the following four defining equations S_i in suitable projective coordinates:

1. $S_1 = X_3^3 + X_0X_1X_2$;
2. $S_2 = X_0^2X_3 + X_0X_1^2 + X_2^3$;
3. $S_3 = X_0^2X_2 + X_1^2X_3$;
4. $S_4 = X_0X_1X_2 + X_0^2X_3 + X_1^3$.

We are unable to rule out the four cases in Theorem 1.1 but see Examples 2.8 (for V_1).

Remark 1.2. (1) The non-normal locus of V_i ($i = 3, 4$) is a single line C and stabilized by f^{-1}. Let $\sigma : V_i' \to V_i$ ($i = 3, 4$) be the normalization. Then V_i' is the (smooth) Hirzebruch surface F_1 (i.e., the one-point blowup of \mathbb{P}^2); see [1, Theorem 1.5], [17].

(2) V_1 (resp. V_2) is unique as a normal cubic (or degree three del Pezzo) surface of Picard number one and with the singular locus $\text{Sing}V_1 = 3A_2$ (resp. $\text{Sing}V_2 = 2000$ Mathematics Subject Classification. 37F10, 32H50, 14E20, 14J45.

Key words and phrases. endomorphism, iteration, projective space.

The author is supported by an ARF of NUS.
E_6; see [20, Theorem 1.2] and [10, Theorem 4.4] (for the anti-canonical embedding of V_i in \mathbb{P}^3). V_1 contains exactly three lines (of triangle-shaped) whose three vertices form the singular locus of V_1. And V_2 contains a single line on which lies its unique singular point. f^{-3} (replaced by its cube) fixes the singular point(s) of V_i ($i = 1, 2$).

(3) f^{-1} (or its power) does not stabilize the only line L on V_2 by using [15, Theorem 4.3.1] since the pair (V_2, L) is not log canonical at the singular point of V_2. For V_1, we do not know whether f^{-1} (or its power) stabilizes its three lines.

We now sketch the proof of Theorem 1.1.

By [16, Theorem 1.5], we may assume that $V \subset \mathbb{P}^3$ is an irreducible rational singular cubic hypersurface.

We first consider the case where V is non-normal. Such V is classified in [6, Theorem 9.2.1] to the effect that either $V = V_i$ ($i = 3, 4$) or V is a cone over a nodal or cuspidal rational planar cubic curve B. The description in Remark 1.2 on V_3, V_4 and their normalizations, is given in [17, Theorem 1.1], [1, Theorem 1.5, Case (C), (E1)].

We can rule out the case where V is a cone over B.

Next we consider the case where $V \subset \mathbb{P}^3$ is a normal rational singular cubic hypersurface. By the adjunction formula, $-K_V = -(K_{\mathbb{P}^3} + V)|V \sim H|V$ which is ample, where $H \subset \mathbb{P}^3$ is a hyperplane. Since K_V is a Cartier divisor, V has only Du Val (or rational double, or ADE) singularities. Let $\sigma : V' \rightarrow V$ be the minimal resolution. Then $K_{V'} = \sigma^*K_V \sim \sigma^*(-H|V)$. For $f : \mathbb{P}^3 \rightarrow \mathbb{P}^3$, we can apply $f|V$ to the result below.

Lemma 1.3. Let $V \subset \mathbb{P}^3$ be a normal cubic surface, and $f_V : V \rightarrow V$ an endomorphism such that $f_V^*(H|V) \sim q(H|V)$ for some $q > 1$ and the hyperplane $H \subset \mathbb{P}^3$. Let $S(V) = \{(\text{irreducible})G \subset V \mid G^2 < 0\}$ be the set of negative curves on V, and set $E_V := \sum_{E \in S(V)} E$. Replacing f_V by its power, we have:

1. If $f_V^*G \equiv aG$ for some Weil divisor $G \neq 0$, then $a = q$. $f_V^*(L|V) \sim q(L|V)$ for every divisor L on \mathbb{P}^3. Especially, $\deg(f_V) = q^2$; $K_V \sim -H|V$ satisfies $f_V^*K_V \sim qK_V$.
2. $S(V)$ is a finite set. $f_V^*E = qE$ for every $E \in S(V)$. So $f_V^*E_V = qE_V$.
3. A curve $E \subset V$ is a line in \mathbb{P}^3 if and only if E is equal to $\sigma(E')$ for some (-1)-curve $E' \subset V'$.
4. Every curve $E \in S(V)$ is a line in \mathbb{P}^3.
5. We have $K_V + E_V = f_V^*(K_V + E_V) + \Delta$ for some effective divisor Δ containing no line in $S(V)$, so that the ramification divisor $R_{f_V} = (q - 1)E_V + \Delta$. In particular, the cardinality $\#S(V) \leq 3$, and the equality holds exactly when $K_V + E_V \sim_\mathbb{Q} 0$; in this case, f_V is étale outside the three lines of $S(V)$ and $f_V^{-1}(\text{Sing } V)$.

DE-QI ZHANG
INVARIANT HYPERSURFACES

Remark 1.4. In the proof of Theorem 1.1, we can actually show: if $f_V : V \to V$ is an endomorphism (not necessarily the restriction of some $f : \mathbb{P}^3 \to \mathbb{P}^3$) of $\deg(f_V) > 1$ of a Gorenstein normal del Pezzo surface with $K_V^2 = 3$ (i.e., a normal cubic surface), then V is equal to V_1 or V_2 in Theorem 1.1 in suitable projective coordinates.

2. SUMMARY OF MAIN RESULTS

Below is the summary of our recent paper [23]. Theorem 2.1 \sim Theorem 2.4 are our main results.

Theorem 2.1. Let X be a locally factorial normal projective variety of dimension $n \geq 2$ and Picard number one, and with only log canonical singularities, and let $f : X \to X$ be a surjective endomorphism with $\deg(f) = q^n > 1$. Then we have:

1. There are at most $n + 1$ prime divisors $V_i \subset X$ with $f^{-1}(V_i) = V_i$.
2. There are $n + 1$ of such V_i if and only if: $X = \mathbb{P}^n$, $V_i = \{X_i = 0\}$ ($1 \leq i \leq n + 1$) (in suitable projective coordinates), and f is given by

$$f : [X_0, \ldots, X_n] \longrightarrow [X_0^q, \ldots, X_n^q].$$

We refer to S. -W. Zhang [21, Conjecture 1.3.1] for the Dynamic Manin-Mumford conjecture etc. solved for the (X, f) in Theorem 2.1 (2).

A projective variety X is **rationally chain connected** if every two points $x_i \in X$ are contained in a connected chain of rational curves on X. When X is smooth, X is rationally **chain** connected if and only if X is **rationally connected**, in the sense of Campana, and Kollár-Miyaoka-Mori.

Theorem 2.2. Let X be a projective manifold of dimension $n \geq 2$ and Picard number one, $f : X \to X$ an endomorphism of degree > 1, and $V \subset X$ a prime divisor with $f^{-1}(V) = V$. Then X, V and the normalization V' of V are all rationally chain connected.

In Theorem 2.2, the smoothness and Picard number one assumption on X are necessary (cf. Remark 2.6 and Example 2.9). Theorem 2.2 is known for $X = \mathbb{P}^n$ with $n \leq 3$ (cf. [8], [16]). In Theorem 2.2, X is indeed a Fano manifold. See Remark 2.6 for the case when X is singular.

Corollary 2.3. With the notation and assumptions in Theorem 2.2, both X and V are simply connected, while V' has a finite (topological) fundamental group.

A morphism $f : X \to X$ is **polarized** (by H) if $f^*H \sim qH$ for some ample line bundle H and some $q > 0$; then $\deg(f) = q^{\dim X}$. For instance, every non-constant endomorphism of a projective variety X of Picard number one, is polarized; an f-stable subvariety
$X \subset \mathbb{P}^{n}$ for a non-constant endomorphism $f : \mathbb{P}^{n} \to \mathbb{P}^{n}$, has the restriction $f|X : X \to X$ polarized by the hyperplane; the multiplication map $m_{A} : A \to A, x \mapsto mx$ (with $m \neq 0$) of an abelian variety A is polarized by any $H = L + (-1)^{*}L$ with L an ample divisor, so that $m_{A}^{*}H \sim m^{2}H$.

In Theorems 2.1 and 2.4, we give upper bounds for the number of f^{-1}-stable prime divisors on a (not necessarily smooth) projective variety; the bounds are optimal, and the second possibility in Theorem 2.4(2) does occur (cf. Examples 2.8 and 2.9). One may remove the condition (*) in Theorem 2.4, when $\rho(X) = 1$, or X is a weak \mathbb{Q}-Fano variety, or the closed cone $\overline{NE}(X)$ of effective curves has only finitely many extremal rays (cf. Remark 2.6); here $N^{1}(X) := \text{NS}(X) \otimes_{\mathbb{Z}} \mathbb{R}$ is the Néron-Severi group (over \mathbb{R}) and $\rho(X) := \text{rank}_{\mathbb{R}}N^{1}(X)$ is the Picard number of X. We refer to [11, Definition 2.34] for the definitions of Kawamata log terminal (klt) and log canonical singularities.

Theorem 2.4. Let X be a projective variety of dimension n with only \mathbb{Q}-factorial Kawamata log terminal singularities, and $f : X \to X$ a polarized endomorphism with $\text{deg}(f) = q^{n} > 1$. Suppose ($*$) : either $f^{*}|N^{1}(X) = q$ id, or $n \leq 3$. Then we have (with $\rho := \rho(X)$):

1. Let $V_{i} \subset X$ ($1 \leq i \leq c$) be prime divisors with $f^{-1}(V_{i}) = V_{i}$. Then $c \leq n + \rho$. Further, if $c \geq 1$, then the pair $(X, \sum V_{i})$ is log canonical and X is uniruled.
2. Suppose that $c \geq n + \rho - 2$. Then either X is rationally connected, or there is a fibration $X \to E$ onto an elliptic curve E so that every fibre is normal rationally connected and some positive power f^{k} descends to an $f_{E} : E \to E$ of degree q.
3. Suppose that $c \geq n + \rho - 1$. Then X is rationally connected.
4. Suppose that $c \geq n + \rho$. Then $c = n + \rho$, (for some $t > 0$)

$$K_{X} + \sum_{i=1}^{n+\rho}V_{i} \sim_{\mathbb{Q}} 0, \quad (f^{t})^{*}|\text{Pic}(X) = q^{t} \text{id},$$

f is étale outside $(\cup V_{i}) \cup f^{-1}(\text{Sing} X)$ (and X is a toric surface with $\sum V_{i}$ its boundary divisor, when $\dim X = 2$).

Theorems 2.4 and 2.1 motivate the question below (without assuming the condition (*) in Theorem 2.4), where the last part is also Shokurov's conjecture (cf. [18, Theorem 6.4]).

Question 2.5. Suppose that a projective n-fold ($n \geq 3$) X has only \mathbb{Q}-factorial Kawamata log terminal singularities, $f : X \to X$ a polarized endomorphism of degree > 1, and $V_{i} \subset X$ ($1 \leq i \leq s$) prime divisors with $f^{-1}(V_{i}) = V_{i}$. Then, is it true that $s \leq n + \rho(X)$, and equality holds only when X is a toric variety with $\sum V_{i}$ its boundary divisor?

Remark 2.6. (1) In Theorem 2.2, it is necessary to assume that $\rho(X) = 1$ (cf. Example 2.9), and X is smooth or at least Kawamata log terminal (klt). Indeed, for every projective
cone Y over an elliptic curve and every section $V \subset Y$ (away from the vertex), there is an endomorphism $f : Y \to Y$ of $\deg(f) > 1$ and with $f^{-1}(V) = V$ (cf. [15, Theorem 7.1.1, or Proposition 5.2.2]). The cone Y has Picard number one and a log canonical singularity at its vertex. Of course, V is an elliptic curve, and is not rationally chain connected. By the way, Y is rationally chain connected, but is not rationally connected.

(2) Let X be a projective variety with only klt singularities. If the closed cone $\overline{\text{NE}}(X)$ of effective curves has only finitely many extremal rays, then every polarized endomorphism $f : X \to X$ satisfies $f^*|N^1(X) = q$ id with $\deg(f) = q^{\dim X}$, after replacing f by its power, so that we can apply Theorem 2.4 (cf. [16, Lemma 2.1]). For instance, if X or (X, Δ) is \mathbb{Q}-Fano, i.e., X (resp. (X, Δ)) has only klt singularities and $-K_X$ (resp. $-(K_X + \Delta)$) is nef and big, then $\overline{\text{NE}}(X)$ has only finitely many extremal rays.

(3) By Example 2.8, it is necessary to assume the local factoriality of X or the Cartier-ness of V_i in Theorem 2.1 (2) even when X has only klt singularities. We remark that a \mathbb{Q}-factorial Gorenstein terminal threefold is locally factorial. For Theorem 2.1(2), one may also use Fujita’s theory to prove $X \simeq \mathbb{P}^n$, but our method is useful even when V_i’s are only \mathbb{Q}-Cartier (cf. Theorem 2.4).

2.7. A motivating conjecture. Here are some motivations for our paper. It is conjectured that every hypersurface $V \subset \mathbb{P}^n$ stabilized by the inverse f^{-1} of an endomorphism $f : \mathbb{P}^n \to \mathbb{P}^n$ of $\deg(f) > 1$, is linear. This conjecture is still open when $n \geq 3$ and V is singular, since the proof of [3] is incomplete as we were informed by an author. The smooth hypersurface case was settled in the affirmative (in any dimension) by Cerveau - Lins Neto [4] and independently by Beauville [2]. See also [16, Theorem 1.5 in its arXiv version: arXiv:0908.1688v1].

From the dynamics point of view, as seen in Dinh-Sibony [5, Theorem 1.3, Corollary 1.4], $f : \mathbb{P}^n \to \mathbb{P}^n$ behaves nicely exactly outside those f^{-1}-stabilized subvarieties. We refer to Fornaess-Sibony [8], and [5] for further references.

A smooth hypersurface X in \mathbb{P}^{n+1} with $\deg(X) \geq 3$ and $n \geq 2$, has no endomorphism $f_X : X \to X$ of degree > 1 (cf. [2, Theorem]). However, singular X may have plenty of endomorphisms f_X of arbitrary degrees as shown in Example 2.8 below. Conjecture 2.7 asserts that such f_X can not be extended to an endomorphism of \mathbb{P}^{n+1}.

Example 2.8. We now construct many polarized endomorphisms for some degree $n + 1$ hypersurface $X \subset \mathbb{P}^{n+1}$, with X isomorphic to the V_i in Theorem 1.1 when $n = 2$. Let $f = (F_0, \ldots, F_n) : \mathbb{P}^n \to \mathbb{P}^n$ ($n \geq 2$), with $F_i = F_i(X_0, \ldots, X_n)$ homogeneous, be any endomorphism of degree $q^n > 1$, such that $f^{-1}(S) = S$ for a reduced degree
$n + 1$ hypersurface $S = \{S(X_0, \ldots, X_n) = 0\}$. So S must be normal crossing and linear: $S = \sum_{i=0}^{n} S_i$ (cf. [16, Thm. 1.5 in arXiv version]). Thus we may assume that $f = (X^0_0, \ldots, X^d_0)$ and $S_i = \{X_i = 0\}$. The relation $S \sim (n + 1)H$ with $H \subset \mathbb{P}^n$ a hyperplane, defines

$$
\pi : X = \text{Spec } \oplus_{i=0}^{n} \mathcal{O}(-iH) \rightarrow \mathbb{P}^n
$$

which is a Galois $\mathbb{Z}/(n + 1)$-cover branched over S so that $\pi^*S_i = (n + 1)T_i$ with the restriction $\pi|T_i : T_i \rightarrow S_i$ an isomorphism.

This X is identifiable with the degree $n + 1$ hypersurface $\{Z^{n+1} = S(X_0, \ldots, X_n)\} \subset \mathbb{P}^{n+1}$ and has singularity of type $z^{n+1} = xy$ over the intersection points of S locally defined as $xy = 0$. Thus, when $n = 2$, we have $\text{Sing } X = 3A_2$ and X is isomorphic to the V_1 in Theorem 1.1 (cf. Remark 1.2). We may assume that $f^*S(X_0, \ldots, X_n) = S(X_0, \ldots, X_n)^q$ after replacing $S(X_0, \ldots, X_n)$ by a scalar multiple, so f lifts to an endomorphism $g = (Z^q, F_0, \ldots, F_n)$ of \mathbb{P}^{n+1} (with homogeneous coordinates $[Z, X_0, \ldots, X_n]$), stabilizing X, so that $g_X := g|X : X \rightarrow X$ is a polarized endomorphism of $\deg(g_X) = q^n$ (cf. [16, Lemma 2.1]). Note that $g^{-1}(X)$ is the union of q distinct hypersurfaces $\{Z = \zeta^iS(X_0, \ldots, X_n)\} \subset \mathbb{P}^{n+1}$ (all isomorphic to X), where $\zeta := \exp(2\pi\sqrt{-1}/q)$.

This X has only Kawamata log terminal singularities and $\text{Pic } X = (\text{Pic } \mathbb{P}^{n+1})|X (n \geq 2)$ is of rank one (using Lefschetz type theorem [12, Example 3.1.25] when $n \geq 3$). We have $f^{-1}(S_i) = S_i$ and $g_X^{-1}(T_i) = T_i$, where $0 \leq i \leq n$. Note that $(n + 1)T_i = \pi^*S_i$ is Cartier, but T_i is not Cartier (cf. Theorems 2.1).

When $n = 2$, the relation $(n + 1)(T_1 - T_0) \sim 0$ gives rise to an étale-in-codimension-one $\mathbb{Z}/(n + 1)$-cover $\tau : \mathbb{P}^n \simeq \overline{X} \rightarrow X$ so that $\sum_{i=0}^{n} \tau^*T_i$ is a union of $n + 1$ normal crossing hyperplanes; indeed, τ restricted over $X \setminus \bigcup T_i$, is its universal cover (cf. [13, Lemma 6]), so that g_X lifts up to \overline{X}. A similar result seems to be true for $n \geq 3$, by considering the 'composite' of the $\mathbb{Z}/(n + 1)$-covers given by $(n + 1)(T_i - T_0) \sim 0$ ($1 \leq i < n$); see Question 2.5.

The simple Example 2.9 below shows that the conditions in Theorem 2.4 (2) (3), or the condition $\rho(X) = 1$ in Theorem 2.2, is necessary.

Example 2.9. Let $m_A : A \rightarrow A (x \mapsto mx)$ with $m \geq 2$, be the multiplication map of an abelian variety A of dimension $u \geq 1$ and Picard number one, and let $g : \mathbb{P}^u \rightarrow \mathbb{P}^u ([X_0, \ldots, X_u] \mapsto [X^0_0, \ldots, X^u])$ with $v \geq 1$ and $q := m^2$. Then $f = (m_A \times g) : X = A \times \mathbb{P}^u \rightarrow X$ is a polarized endomorphism with $f^*|N^1(X) = \text{diag}[q, q]$, and f^{-1} stabilizes $v + 1$ prime divisors $V_i = A \times \{X_i = 0\} \subset X$ and no others; indeed, f is étale outside $\bigcup V_i$. Note that X and $V_i \simeq A \times \mathbb{P}^{u-1}$ are not rationally chain connected, and $v + 1 = \dim X + \rho(X) - (1 + \dim A)$.

2.10. The results of Favre [7], Nakayama [15] and Wahl [19] are very inspiring about the restriction of the singularity type of a normal surface imposed by the existence of an endomorphism of degree > 1 on the surface. For the proof of our results, the basic ingredients are: a log canonical singularity criterion, a rational connectedness criterion of Qi Zhang [24] and its generalization in Hacon-McKernan [9], the equivariant MMP in our early paper [22], and the characterization in Mori [14] on hypersurfaces in weighted projective spaces.

Acknowledgement. I thank N. Nakayama for the comments and informing me about Shokurov’s conjecture (cf. 2.5) and Wahl’s result [19, Corollary, page 626], and the following colleagues for the opportunity of conference / colloquium talks in December 2009: the organizer H. Sumi of Integrated Research of Complex Dynamics and Related Fields, I. Shimada of Hiroshima University and K. Oguiso of Osaka University.

REFERENCES

DEPARTMENT OF MATHEMATICS
NATIONAL UNIVERSITY OF SINGAPORE, 10 LOWER KENT RIDGE ROAD, SINGAPORE 119076
E-mail address: matzdq@nus.edu.sg