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ABSTRACT 

A crystal-plasticity finite-element analysis of the loading-unloading process under uniaxial 

tension of a rolled magnesium alloy sheet was carried out, and the mechanism of the inelastic 

response during unloading was examined, focusing on the effects of basal and nonbasal slip 

systems. The prismatic and basal slip systems were mainly activated during loading, but the 

activation of the prismatic slip systems was more dominant. Thus the overall stress level during 

loading was determined primarily by the prismatic slip systems. The prismatic slip systems were 

hardly activated during unloading because the stress level was of course lower than that during 

loading. On the other hand, because the strength of the basal slip systems was much lower than 

that of the prismatic slip systems, the basal slip systems would be easily activated under the 

stress level during unloading in the opposite direction when their Schmid’s resolved shear 

stresses changed signs because of the inhomogeneity of the material. These results indicated that 

one explanation for the inelastic behavior during unloading was that the basal slip systems were 

primarily activated owing to their low strengths compared to that of the prismatic slip systems. 

Numerical tests using the sheets with random orientations and with the more pronounced texture 

were conducted to further examine the mechanism. 
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1. Introduction 

Magnesium (Mg) alloys are the lightest materials used for structural components, and their 

specific strength and stiffness are high (Mordike and Ebert, 2001). Moreover, their functional 

properties such as recyclability (Mordike and Ebert, 2001; Chino et al., 2006a) and 

electromagnetic shielding (Mordike and Ebert, 2001; Chino et al., 2006a; Kim et al., 2008) are 

also superior. Mg alloys have recently received attention because of the increasing demand for 

lightweight materials for automobile and electrical devices (Mordike and Ebert, 2001) to reduce 

their environmental impact.  

Conventionally, applications made of Mg alloys are manufactured by die casting and 

thixoforming (Kim et al., 2008; Kaneko and Sugamata, 2004; Lee et al., 2007). The press 

forming of Mg alloy sheets has recently attracted attention because it can further expand the use 

of Mg alloys for structural components. Many studies on the press forming of Mg alloy sheets 

(Kim et al., 2008; Kaneko and Sugamata, 2004; Lee et al., 2007; Doege and Droder, 2001; Chen 

et al., 2003; Lee et al., 2002; Chen and Huang, 2003; Bruni et al., 2006; Hama et al., 2010a) have 

been carried out, and various components are manufactured by press forming, such as the 

housing of laptop computers and cellular phones, and automobile body structures.  

To increase the number of applications of press forming, it is essential to understand the 

mechanical properties of Mg alloy sheets. They are significantly different from those of 

conventional structural sheet metals such as steel and aluminum alloys because of the hexagonal 

close-packed (hcp) structure. For instance, the stress-strain curves obtained by uniaxial tensile 

and compressive tests of rolled Mg alloy sheets at room temperature are notably different (Lou et 

al., 2007). This strong asymmetric behavior arises from the direction-dependent { }1 0 1 2  

twinning, because a strong basal texture with most of the c-axes aligned in the sheet normal 



direction is initially formed in the rolled Mg alloy sheets (Lou et al., 2007; Chino et al., 2006b). 

The strong basal texture also yields poor stretch formability of Mg alloy sheets regardless of 

temperature because of the small through-thickness strain (Chino et al., 2008a; Koike, 2005).  

Another characteristic behavior of Mg alloy sheets is a strong inelastic response during 

unloading, which is the main topic of this study. Figure 1 shows the stress-strain curves obtained 

from uniaxial tensile tests of Mg alloy, mild steel, and aluminum sheets. Clearly the Mg alloy 

sheet exhibits a strong inelastic deformation during unloading, and the gradient during unloading 

is apparently smaller than Young’s modulus E. Such inelastic behavior during unloading can also 

be observed in other metals such as uranium (Jones and Munro, 1953), zirconium (Reed-Hill et 

al., 1965), and steels (Pérez, et al., 2005; Cleveland and Ghosh, 2002; Luo and Ghosh, 2003). 

Cáceres et al. (2003) and Mann et al. (2007) first examined this behavior in detail in a cast Mg 

alloy and reported that the inelastic strain increases up to a plastic strain of about 1–2 % and 

slightly decreases at larger strains. More recently, Muránsky et al. (2009) carried out a cyclic 
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Fig. 1 Inelastic behavior during unloading in Mg alloy, mild steel, and aluminum sheets. 



loading-unloading test of an extruded AZ31 Mg alloy and showed that its inelastic response 

during unloading is more pronounced under compression than tension. Li and Enoki (2008) 

reported similar behavior in pure Mg.  

Generally it is understood that such inelastic behavior during unloading in metals has several 

origins such as the presence of mobile dislocations (Reed-Hill et al., 1965; Pérez, et al., 2005; 

Cleveland and Ghosh, 2002), twinning (Jones and Munro, 1953; Reed-Hill et al., 1965; Cáceres 

et al., 2003; Mann et al., 2007), and stress-induced phase transformations (Goo et al., 1985). 

Researchers have experimentally investigated the cause of this behavior in pure Mg and Mg 

alloys using in situ neutron diffraction (Muránsky et al., 2009), metallographic observation 

(Mann et al., 2007), and acoustic emission (Li and Enoki, 2008). They have concluded that the 

observed inelastic behavior can be understood in terms of the partial reversal of { }1 0 1 2  

twinning, i.e., untwinning, upon unloading. Muránsky et al. (2009) presumed that the untwinning 

process upon unloading is driven by a peculiar internal redistribution of stresses. Although the 

role of untwinning in inelastic behavior during unloading has been investigated in previous 

studies (Cáceres et al., 2003; Mann et al., 2007; Muránsky et al., 2009), the effects of other 

factors such as basal and nonbasal slip have not been examined in detail. For instance, if the 

untwinning were to be induced by the peculiar internal redistribution of stresses during unloading, 

basal slip would also be induced during unloading because of their low strengths. However, the 

effects of basal slip have not been investigated and are still unclear. Koike (2009) recently 

explained, based on a simple analysis, that this inelastic behavior cannot be explained solely by 

the reversal of twinning and that the basal slip systems in the hcp structure should also affect the 

inelastic behavior. This seems reasonable, but it should be carefully examined either 

experimentally or theoretically. 



 The above survey indicates that the mechanism of the inelastic behavior during unloading is 

still unclear and is open to discussion. Furthermore, because this behavior plays an important role 

in determining the amount of springback in press forming, as discussed in many previous studies 

(e.g., Luo and Ghosh, 2003; Yoshida and Uemori, 2003; Morestin and Boivin, 1996), it is worth 

investigating.  

Crystal-plasticity models are powerful tools for analyzing numerically the interaction between 

mesoscopic crystalline and macroscopic deformation in metals. Recently, the deformation of hcp 

metals including Mg alloys have been studied using either finite-element methods (Staroselsky 

and Anand, 2003; Graff et al., 2007; Prakash et al., 2009; Tang et al., 2009; Mayama et al., 2009), 

self-consistent models (Choi et al., 2009; Proust et al., 2009; Clausen et al., 2008; Agnew and 

Duygulu, 2005; Turner and Tomé, 1994; Lebensohn and Tomé, 1993), a Taylor model (Lévesque 

et al., 2010; Wu et al., 2007; Salem et al., 2005; Styczynski et al., 2004), or a combination of 

approaches (Walde and Riedel, 2007). These studies showed that the stress-strain response and 

texture evolution of Mg alloys can be reasonably predicted at least for monotonic deformation. A 

crystal-plasticity analysis of the unloading process of Mg alloys would also be effective for 

examining the mechanism of the inelastic behavior, but such a study has not yet to our 

knowledge been carried out.  

This paper is concerned with a crystal-plasticity finite-element analysis of the loading-

unloading process of a Mg alloy sheet with a rolling texture. First, the simulation results for the 

behavior in loading-unloading under uniaxial tension in the rolling direction (RD) were 

compared with the corresponding experimental results. Subsequently, the mechanism of the 

inelastic behavior during unloading was examined in detail in terms of macroscopic and 



mesoscopic crystalline deformation, and particular attention was focused on the effect of basal 

and nonbasal slip.  

 

2. Crystal-Plasticity Finite-Element Formulation 

2.1 Virtual Work 

The formulation used in the crystal-plasticity finite-element method code developed in this 

study is briefly described below. An updated Lagrangian rate formulation is used to describe the 

finite deformation. The rate form of the equilibrium equations and boundary conditions at time t 

is equivalently expressed by the principle of virtual velocity in the form 

( )
1

T :
V S

dV dSxΠ v f v⊗∇ = ⋅∫ ∫  δ δ ,                (1)  

where V denotes the domain occupied by the body and S denotes its boundary at time t. S1 is the 

part of the boundary S on which the nominal surface traction f is prescribed. δv is the virtual 

velocity field satisfying the condition δv = 0 on the velocity boundary S2. Π is the first Piola-

Kirchhoff stress tensor. The superscript T denotes the transpose. Assuming that all the rate-form 

relations are preserved from time t to t+∆t, where ∆t is a small time increment, an incremental 

form of the principle of virtual velocity can be written in the form (Kawka and Makinouchi, 

1995; Hama et al., 2008) 

( ) ( ){ }
1 1

2 : : : ,
V S S V

t dV t dS dS dVσσD D LσL f v f vσL∆ − ⋅ δ + ⋅ δ = ∆ ⋅δ + ⋅δ − δ∫ ∫ ∫ ∫          (2) 

where σ  is the Jaumann rate of the Cauchy stress tensor, L is the velocity gradient tensor, and D 

is the strain rate tensor, which is the symmetric part of L. The second and third terms of the right-

hand side remain in order to cancel the nonequilibrated forces arising from the explicit time-



marching algorithm. To prevent an excessive increase of the nonequilibrium between external 

and internal forces, the generalized rmin-strategy is employed to limit the size of the increment. 

 

2.2 Constitutive Formulation for Rate-Dependent Crystal-Plasticity Model 

The crystal-plasticity model employed in this study follows the formulations developed in the 

literature (Graff et al., 2007; Mayama et al., 2009; Pierce et al., 1983; Asaro and Needleman, 

1985). We assume that the velocity gradient L consists of elastic and plastic parts, respectively 

denoted Le and Lp, in the form 

e pL L L= + .                 (3) 

The plastic velocity gradient Lp is related to the slip rate ( )αγ  of the α slip system in the form 

( ) ( ) ( )( )p

1

N

L s m
=

= ⊗∑  α α α

α

γ ,               (4) 

where the unit vectors ( )s α  and ( )m α  are the slip direction and the slip plane normal, respectively, 

and N is the number of slip systems in a grain. Decomposing Eq. (4) into symmetric and 

asymmetric parts yields the plastic strain rate Dp and the plastic spin Wp as 

( ) ( )p

1

N

D p
=

= ∑  α α

α

γ , with ( ) ( ) ( ) ( ) ( )( )1
2

p s m m sα α α α α= ⊗ + ⊗ ,           (5) 

( ) ( )p

1

N

Wω
=

= ∑  α α

α

γ , with ( ) ( ) ( ) ( ) ( )( )1
2

ωs m m sα α α α α= ⊗ − ⊗ .          (6) 

The stress is assumed to be determined by the elastic strain rate De, thus the elastic constitutive 

equations can be given as  

e e e p p e:σσWσσWσWσσW C D= − ⋅ + ⋅ = + ⋅ − ⋅ = ,           (7) 

where C is the elastic constitutive moduli. Introducing Eq. (5) into the third equation in (7) gives 



( ) ( )e

1
: :

N

σC D C p
=

 = −  
 
∑  α α

α

γ .              (8) 

Introducing Eqs. (6) and (8) into the second equation in (7) yields 

( ) ( ) ( ) ( )( )
1

: :
N

σC D C pωσσω
=

= − + ⋅ − ⋅∑  α α α α

α

γ .            (9) 

The crystalline slip is assumed to follow Schmid’s law, and the slip rate ( )αγ  is assumed to 

be given by a visco-plastic power law using Schmid’s resolved shear stress ( )ατ  as 

( ) ( ) ( )

( )
( ) ( )( ) ( ) ( ) ( ) ( ) ( )

1

kin
kin Y

0 Y

sign sσm
m

a a, , q h
α αα

α α α α β
αβα

β

τ τγ τ τ τ τ γ
γ τ

−
= − = ⋅ ⋅ = ∑





,            (10) 

where ( )
kin
ατ  is the resolved back stress of the α slip system, ( )

Y
ατ  is the current strength of the α 

slip system with ( )
Y 0
ατ τ=  initially, 0γ  is a reference strain rate, m is the rate sensitivity exponent, 

and qαβ is the self (α = β) and latent (α ≠ β) hardening moduli. The rate of hardening is h, and 

the hardening laws will be explained in the next section.  

         The resolved back stress ( )
kin
ατ  is given in the form (Harder, 1999; Xie et al., 2004; 

Nakamachi et al., 2007) 

 ( ) ( ) ( ) ( ) ( )a ,sσmσpkin kin kin
α α α α

α

τ Ω= ⋅ ⋅ = ∑ ,       (11) 

where σkin is the back stress tensor and ( )αΩ is the scalar kinematic variable of the α slip system. 

The evolution of ( )αΩ  due to the short-range dislocation interaction is assumed as 

( ) ( ) ( ) ( )c dα α α αΩ γ Ω γ= −   ,        (12) 

where c and d are the direct hardening and dynamic recovery coefficients, respectively. Because 

a hardening behavior of slip system is different depending on the family of slip systems in hcp 



metals, the coefficients c and d may also be different depending on the family of slip systems. 

However their identifications for each family are presently very difficult owing to the lack of 

knowledge on the cyclic loading behavior. Therefore for the sake of simplicity the coefficients c 

and d are assumed to be the same regardless of the family of slip systems.  

 

2.3 Treatment of Slip and Twinning Systems 

It is of great importance, in particular for hcp metals, to select appropriate families of slip and 

twinning systems to carry out a realistic crystal-plasticity analysis. Many studies have 

investigated the deformation mechanisms in Mg and its alloys experimentally (e.g., Reed-Hill 

and Robertson, 1958; Yoshinaga and Horiuchi, 1964) and numerically (e.g., Styczynski et al., 

2004; Agnew et al., 2003). Surveys of the literature can be found in references Lou et al. (2007) 

and Graff et al. (2007). Graff et al. (2007) concluded based on their literature survey that the use 

of families of basal slip, any <a> slip and one <a+c> slip, and tensile twinning systems seems to 

be necessary although the deformation mechanisms in Mg and its alloys are still open to 

discussion. In this study, three families of slip systems—basal <a> slip, prismatic <a> slip, and 

pyramidal-2 <a+c> slip—and one family of { }1 0 1 2  tensile twinning systems are used to 

model the mechanical behavior of a Mg alloy sheet. There are 3 basal, 3 prismatic, 6 pyramidal-2, 

and 6 twinning systems. Table 1 shows the slip/twinning plane normal and slip direction vectors 

for these systems.  

Depending on the family of slip systems, two evolution laws are used for the rate of hardening 

h in the forms (Graff et al., 2007) 

 

 



 

 

 

 

 

 

 

 

0h h= ,                   (13) 

0 0
0 1 exp hh h

∞ ∞

   
= − −   

   

τ γ
τ τ

,                   (14) 

where γ  is the cumulative shear strain on all the slip systems and is given by 

( ) dt= ∑∫  α

α

γ γ .                        (15) 

Linear hardening (Eq. (13)) is assumed for the basal slip, and Voce hardening (Eq. (14)) for the 

prismatic and pyramidal-2 slip.  

As for a tensile twinning model, we employ the method first proposed by Van Houtte 

(1978) and then employed for Mg alloys by researchers (e.g., Staroselsky, et al., 2003;  Mayama, 

et al., 2009). Twinning is assumed to have a polar character, where each system can be activated 

only by tension of the c-axis, and is modeled as follows. When a grain is twined entirely, it 

undergoes the shear strain due to twinning refγ . On the other hand, when part of a grain is twined, 

the shear strain arises in the grain can be approximately given as a function of the volume 

fraction of the twins if we assume that the shear in the grain is uniform (Chin, et al., 1969; Van-

Houtte, 1978). Using this approximation, the shear strain that arises in a grain due to twinning is 

Table 1. Plane normal and slip direction vectors of slip and 
twinning systems used in the present study.

( )0 0 0 1

{ }1 0 1 0

{ }1 1 2 2

{ }1 0 1 2

1 1 2 0

1 1 2 0

1 1 2 3

1 0 1 1

Slip/twinning plane Slip direction/shear direction
 due to twinning

Basal

Prismatic

Pyramidal-2

Twinning

Table 1. Plane normal and slip direction vectors of slip and 
twinning systems used in the present study.

( )0 0 0 1

{ }1 0 1 0

{ }1 1 2 2

{ }1 0 1 2

1 1 2 0

1 1 2 0

1 1 2 3

1 0 1 1

Slip/twinning plane Slip direction/shear direction
 due to twinning

Basal

Prismatic

Pyramidal-2

Twinning



given by ( ) ( )
twin reffα αγ γ= , where ( )f α is the volume fraction of the α twinning system, and ( )

twin
αγ  is 

the cumulative shear strain on the α twinning system. Because this shear is similar to the shear 

caused by an activated slip system, the shear strain rate induced by twinning can be calculated in 

the similar way as that for slip deformation using eq. (10). Equation (13) is used for the rate of 

hardening h.  

        The lattice rotation due to twinning is modeled as follows. A pseudo-random threshold 

value ( )
thf α is initially determined between 0.3 and 1.0 for each twinning system (Staroselsky, et 

al., 2003;  Mayama, et al., 2009). During calculation, the volume fraction of the α twinning 

system ( )f α  is compared with ( )
thf α  at each time increment, and if ( ) ( )

thf fα α≥  is satisfied, the 

entire grain is rotated to a specific twinning orientation. The lattice rotation tensor due to 

twinning Rtw is given in the form 

( ) ( )2R m m Itw α α= ⊗ − ,            (16) 

where I is the unit tensor, and ( )m α is the plane normal vector for the α twinning system.  

In this study, we assume that untwinning can be ignored, although this assumption may lead 

to a poor prediction accuracy of the inelastic behavior. This assumption is mainly because there 

is no well-established numerical model that can be used to predict the strain-path change 

behavior including the untwinning of Mg alloys (Proust et al., 2009). On the other hand, because 

the uniaxial tension of a rolled Mg alloy sheet is to be calculated in this study as will be 

described below, the activation of twinning may be small. Furthermore, we will focus on the 

effects of basal and nonbasal slip on the inelastic behavior, and the untwinning assumption will 

lead to a clearer understanding of these effects.  



The above rate-dependent crystal-plasticity model is incorporated into each Gauss point in 

the static finite-element method. The rate tangent modulus method (Pierce et al., 1983) is used 

for the explicit time integration of the constitutive model. The material parameters used in Eqs. 

(10), (13) and (14) will be determined in the following sections. Using the twinning model 

described above, refγ can also be viewed as a material parameter that should be determined, and 

will also be determined in the following sections. 

 

3. Experimental Procedure 

       To determine the material parameters described above and to verify the simulation results, 

monotonic uniaxial tensile and compressive tests and a loading-unloading test under uniaxial 

tension were carried out using a commercial rolled Mg alloy sheet of AZ31B (Mg-3%Al-1%Zn) 

with a thickness of 0.8 mm produced by the Osaka Fuji Corporation. The material was annealed 

at 350 ℃ for 1.5 h to obtain an O temper before the experiment. Tensile specimens were 

machined parallel to the rolling direction. The experiment was carried out at room temperature. 

A strain gauge (Kyowa Electronic Instruments Co., KFEM) was used to measure the strains 

during loading and unloading. The tests were carried out at an initial strain rate of 0.0007 s-1. The 

experimental data were recorded by a data logger approximately every 10 ms. It should be noted 

that the in-plane compressive test was carried out using comb-shaped tools to give compressive 

forces in the thickness direction of the specimen (Kuwabara et al., 2009). 

 

4. Material Modelling 

For a crystal-plasticity finite-element analysis, it is important to choose an appropriate finite-

element model in terms of realistic computational time and reasonable prediction of mechanical 



behavior. Diard et al. (2005) reported that a polycrystalline model with a simplified 138 

orientations may be sufficient to obtain reasonable stress-strain curves for a given texture. Graff 

et al. (2007) showed that a finite-element model with 8 x 8 x 8 = 512 eight-node brick elements, 

each having an individual crystallographic orientation, is sufficient to predict stress-strain curves 

for a textured Mg rolled sheet in a channel-die compression. The finite-element model used in 

the present study was a cube that had ten uniform eight-node isoparametric brick elements using 

selective reduced integration in each direction, as shown in Fig. 2. Thus, the total number of 

elements was 10 x 10 x 10 = 1000. The same initial crystallographic orientation was assigned to 

 

 

 

 

 

 

 

 

 

 

all eight Gauss integration points in an element, thus the model had 1000 initial crystallographic 

orientations. Figure 3 shows the initial (0001) pole figure used in the simulation model. The 

initial crystallographic orientations were artificially created using the procedure proposed by 

Mayama et al. (2009) to simulate the rolling texture of Mg alloy sheets (Chino et al., 2008a; 

Graff et al., 2007; Agnew and Duygulu, 2005).  
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Fig. 2 Finite element model used in the 
simulation. 

Fig. 3 (0001) pole figure used in the 
simulation model with a rolling texture. 
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A loading-unloading simulation under uniaxial tension along RD was carried out. The x-, y-, 

and z-axes in Fig. 2 were defined to be the rolling direction (RD), transverse direction (TD), and 

normal direction (ND), respectively, thus the majority of c-axes tended to align in the z direction 

(ND). The following boundary conditions were used: the planes x = 0, y = 0, and z = 0 were fixed 

in the x, y, and z directions, respectively, and the displacement rate boundary conditions were 

given in RD, i.e., the plane x = l was extended.  

We assumed isotropic elasticity with Young’s modulus E = 42 GPa and Poisson ratio ν = 0.3 

obtained by a uniaxial tensile test (Hama et al., 2010a) of the AZ31 Mg alloy sheet. The rate  

 

 

 

 

 

 

sensitivity exponent was set to m = 0.02 and the reference strain rate to 0 0 001.=γ s-1. The choice 

of m will be discussed in Section 5.1. The self-hardening parameters were set to 1, while the 

latent-hardening parameters qαβ shown in Table 2 were adopted; these were taken from the 

literature (Graff et al., 2007).  

The other hardening parameters used in Eqs. (13), and (14) were identified as follows. We 

used the hardening parameters indicated in the literature (Graff et al., 2007) as initial values. In 

the present model, the initial yield stress in the stress-strain curve under tension was determined 

primarily by 0τ of the basal and prismatic slip systems, and the hardening curve after yielding 

was determined primarily by τ∞  and 0h of the prismatic slip systems. The parameters of the 

Table 2. Latent-hardening parameters qαβ used in the 
present study (Graff et al., 2007) .

Basal Prismatic Pyramidal-2 Twinning
Basal 0.2 0.5 0.5 0.5

Prismatic 0.2 0.2 0.2 0.5
Pyramidal-2 1.0 1.0 0.2 0.25

Twinning 1.0 1.0 0.2 0.25

Table 2. Latent-hardening parameters qαβ used in the 
present study (Graff et al., 2007) .

Basal Prismatic Pyramidal-2 Twinning
Basal 0.2 0.5 0.5 0.5

Prismatic 0.2 0.2 0.2 0.5
Pyramidal-2 1.0 1.0 0.2 0.25

Twinning 1.0 1.0 0.2 0.25



pyramidal-2 slip systems affected in particular the hardening curve at high strains. The 

parameters of the tensile twinning systems affected the stress-strain curve under compression. 

Based on the above results, we first calibrated the parameters of the basal, prismatic, and 

pyramidal-2 slip systems by trial and error to achieve a reasonable fit with experimental stress-

strain curve under monotonic uniaxial tension. Then the parameters of the tensile twinning 

systems including γref were calibrated to achieve a fit with the stress-strain curve under 

monotonic uniaxial compression. During this process, minor adjustments of other parameters 

were also carried out. The above processes were repeated several times and the parameters were 

finally determined as shown in Table 3. γref was 0.1. The coefficients of kinematic hardening 

used in Eq. (12) were set to zero when determining the parameters shown in Table 3. The effect 

of kinematic hardening on the unloading behavior will be discussed in section 5.1. The simulated 

and experimental stress-strain curves are shown in Fig. 4. They are consistent with the literature 

(Graff et al., 2007; Proust, et al., 2009; Clausen et al., 2008; Lévesque et al., 2010) with regard to 

the rank order of the initial CRSS values and the fact that the easiest and hardest slip modes are  

 

 

 

 

 

 

 

 

 

Fig. 4 Stress-strain curves obtained by the simulation: (a) uniaxial tension and (b) 
uniaxial compression. 
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basal <a> and pyramidal-2 <a+c>, respectively. The tendency in the simulated stress-strain curve 

under monotonic compression is different especially at strains higher than -0.07. This difference 

may be owing to the fact that some mechanisms that may influence the stress-strain curve at 

large strain are not taken into account in the model. One of them may be compressive twinning 

systems that are activated at high strains (Chino et al., 2008b). On the other hand, because the 

loading-unloading behavior under uniaxial tension up to a strain of about 3% is analyzed in detail 

in this study as will be described below, the effect of this difference on our results may be 

negligible.  

To see the sensitivity of mesh discretization and initial crystallographic orientations to the 

stress-strain curve, Fig. 5 shows the stress-strain curves obtained using five sets of initial rolling 

textures for various numbers of elements. Five sets of initial rolling textures used here were  
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Fig. 5 Stress-strain curves obtained using five sets of initial orientations with various numbers of 
elements. (a) 125 (=5x5x5) elements, (b) 343 (=7x7x7) elements, and (c) 1000 (=10x10x10) 
elements. 
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Fig. 6 (0001) pole figures in various deformation stages: (a) Texture after tension along RD 
(0.1 tensile strain), (b) Texture after compression along RD (0.07 compressive strain).   
 



created by changing pseudo-random numbers (Mayama et al., 2009). The stress-strain curve 

tends to saturate as the number of elements increases, and the curves obtained with 1000 

elements are almost the same up to a strain of about 9 %. This result is consistent with the 

literature (Tadano, 2010). From the above results, we can reasonably say that our present model 

is acceptable to investigate the deformation up to a strain of about 3 %.   

     Figure 6 shows the (0001) pole figures in various deformation stages obtained by the 

simulation. Both results are qualitatively in good agreement with the literature (Lou, et al., 2007).  

    Although the above results show the validity of the calibrated hardening parameters 

shown in Table 3, it should be noted that we cannot guarantee that these parameters give the best 

fit and are unique for the material used in this study. For instance, a very similar stress-strain 

curve shown in Fig. 4 (a) can be obtained using another set of hardening parameters (Hama et al., 

2010b), in which the hardening parameters for the pyramidal-2 slip systems are notably different. 

Nonetheless, activities of the slip and twinning systems obtained by this set of hardening 

parameters were qualitatively in good agreement with the present results that are shown below.  

 

5. Results and Discussion 

5.1 Macroscopic Stress-Strain Curve 

The stress-strain curve obtained by the loading-unloading simulation under uniaxial tension is 

shown in Fig. 7. The simulation result shows clear inelastic behavior during unloading, although 

the magnitude of the hysteresis is smaller than in the experiment. Cyclic loading-unloading tests 

were carried out for various strains. The variations with the stress of the instantaneous gradient 

dσ/dε during unloading obtained by the experiment and the simulation are shown in Figs. 8 and 9, 

respectively. The strain at the beginning of unloading is hereafter termed the unloaded strain. The 



gradient was calculated using two data points for every 100 successive data points in the 

experiment and for every data point in the simulation. The horizontal axes of Figs. 8 and 9 are 

the stress nondimensionalized by the stress at the beginning of unloading σ0, and the vertical 

axes are the instantaneous gradient nondimensionalized by Young’s modulus E.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 7 Comparison of simulated and experimental inelastic behavior during 
unloading. 
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Fig. 8 Variation in instantaneous gradient dσ/dε during unloading obtained by the experiment in the 
unloaded strain range: (a) from 0.002 to 0.0095 and (b) from 0.01 to 0.025. 
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The overall trend of the variation in the experiment (Fig. 8) is as follows. At unloaded 

strains of 0.002 and 0.004, the instantaneous gradient is nearly constant during unloading 

because the sheet is still almost elastic (Fig. 8 (a)). As the unloaded strain increases above 0.004, 

the variation changes as follows: the instantaneous gradient decreases rapidly at the beginning of 

unloading, then decreases only slightly at the middle stage, and finally decreases rapidly again at 

the end of unloading. A similar trend is observed in other materials (Cleveland and Ghosh, 2002). 

The amount of decrease in the instantaneous gradient at the middle stage becomes large as the 

unloaded strain increases, but this saturates at an unloaded strain of about 0.01 and the variation 

curve does not change thereafter (Fig. 8 (b)). A similar saturation trend has been reported in the 

literature (Cáceres et al., 2003; Mann et al., 2007).  

In the simulation result (Fig. 9), the variation curve is not in good agreement with the 

experiment except at the very beginning where the instantaneous gradient decreases rapidly, and 

the magnitude of inelastic behavior is smaller than in the experiment. On the other hand, the 

observations that the decrease in the instantaneous gradient becomes large as the unloaded strain 

Fig. 9 Variation in instantaneous gradient during unloading obtained by the simulation 
for m = 0.02 in the unloaded strain range: (a) from 0.001 to 0.009 and (b) from 0.01 to 
0.027. 
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increases (Fig. 9 (a)) and the variation curve saturates at an unloaded strain of about 0.01 (Fig. 9 

(b)) are in good agreement with the experiment. This shows that the simulation results are 

qualitatively acceptable. 

There may be several reasons for these inconsistencies between the experiment and 

simulation results, including untwinning, kinematic hardening of the slip systems and the simple 

boundary conditions given to the sheet model. To investigate the effect of kinematic hardening 

on the variation curve numerically, the coefficients for kinematic hardening used in Eq. (12) 

were set to c = 200 and d = 30 and the hardening parameters were re-characterized accordingly 

as shown in Table 4. The stress-strain curves obtained considering kinematic hardening are 

shown in Fig. 4. Cyclic loading-unloading tests were carried out considering kinematic hardening 

and the variations with the stress of the instantaneous gradient dσ/dε during unloading are shown 

in Fig. 10. The result obtained considering kinematic hardening gives close agreement with that 

without considering kinematic hardening. The simulations were carried out using several sets of  
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Fig. 10 Variation in instantaneous gradient during unloading obtained by the simulation considering 
kinematic hardening for m = 0.02 in the unloaded strain range: (a) from 0.001 to 0.009 and (b) from 
0.01 to 0.027. 
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coefficients for kinematic hardening, in which c was ranging from 0 to 200 and d was 

characterized accordingly, but the result remained almost the same. However we cannot conclude 

that kinematic hardening does not play an important role in the unloading behavior in this 

simulation condition solely from the above results because the kinematic hardening model 

employed in this study was very simplified as explained in section 2.2 and the coefficients for 

kinematic hardening should be in fact determined from a cyclic stress-strain curve. Further 

investigation on the effect of kinematic hardening is necessary using a more sophisticated 

kinematic hardening model. This will be future work. 

       To examine the effect of the rate sensitivity exponent m, the simulations were also carried 

out for m = 0.1 and 0.0005. Figures 11 and 12 show the variations in the instantaneous gradient 

with the stress during unloading for m = 0.1 and 0.0005, respectively. The variation at the initial 

stage apparently depends on the value of m: the strain range in which the instantaneous gradient 

rapidly decreases becomes small as m decreases and becomes negligible at m = 0.0005. The 

variation curves at the middle and end of unloading are almost independent of the value of m. We 

selected m = 0.02 because, of the above three values, this value gives the most appropriate 

variation curve for the sheet material and the experimental conditions.  

 

 

Table 4. Calibrated material parameters in Eqs. (13) and (14) 
with the coefficients of kinematic hardening c=200 and d=30.
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5.2 Activity of Slip Systems 

In the following, the mechanism of the inelastic behavior during unloading is examined from a 

mesoscopic point of view using the simulation results. The evolution of the activities of each 

family of slip systems during loading and unloading is first investigated. The activity of each 

Fig. 11 Variation in instantaneous gradient during unloading obtained by the simulation for m = 0.1 
in the unloaded strain range: (a) from 0.001 to 0.009 and (b) from 0.01 to 0.027. 

Fig. 12 Variation in instantaneous gradient during unloading obtained by the simulation for m = 
0.0005 in the unloaded strain range: (a) from 0.001 to 0.009 and (b) from 0.01 to 0.027. 
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family of slip systems i is evaluated by the plastic strain increment contributed by the family of 

slip systems i, summed over all grains in the form (Tomé et al., 1991): 

( )

( )( )

n k
i

a family ofn allgrains k slipsystems i

,

,

r γ= ∆∑ ∑ ,               (17) 

where n is the number of grains; and k is the number of slip systems of the family i. It should be 

noted that the so-called relative activity is not used in this study because the magnitude of plastic 

strain increment varies drastically during loading and unloading. The simulated evolution of the 

plastic strain increment of each family with logarithmic strain during monotonic uniaxial tension 

is shown in Fig. 13 for reference. The activation of the basal slip systems is dominant initially. 

The prismatic slip systems are then activated and the activations of these two families become 

dominant during the deformation. On the other hand, the activations of the tensile twinning 

systems and the pyramidal-2 slip systems are small throughout the deformation. Owing to twin 

reorientation, the plastic strain increments fluctuate instantaneously at some strains higher than 

about 6 %. 

 

 

 

 

 

 

 

 

 

 Fig. 13 Plastic strain increment contributed by family of slip systems during uniaxial tension. 
 

0

0.4

0.8

1.2

1.6

2

0 0.05 0.1 0.15

Logarithmic strain

Prismatic

Basal

Tensile twinning Pyramidal-2

Pl
as

tic
 st

ra
in

 in
cr

em
en

t c
on

tri
bu

te
d 

by
 fa

m
ily

 o
f s

lip
 sy

st
em

s 

0

0.4

0.8

1.2

1.6

2

0 0.05 0.1 0.15

Logarithmic strain

Prismatic

Basal

Tensile twinning Pyramidal-2

Pl
as

tic
 st

ra
in

 in
cr

em
en

t c
on

tri
bu

te
d 

by
 fa

m
ily

 o
f s

lip
 sy

st
em

s 



 

 

 

 

 

 

 

 

 

 

 

Figure 14 shows the simulated evolution of the plastic strain increment during the loading-  

unloading as a function of time. In Fig. 14, the sheet is unloaded every strain of 0.003 and the 

figure shows the evolution in the strain range between 0.012 and 0.024, during which two 

loading-unloading cycles occurred. The activation of the basal slip systems is dominant initially, 

and then the prismatic slip systems start to be activated. A similar tendency is also observed at 

the beginning of the monotonic uniaxial tension (Fig. 13). When the sheet starts to be unloaded, 

the activation of the prismatic slip systems suddenly vanishes and the activation of the basal slip 

systems again becomes dominant. The activation of the pyramidal-2 slip system is negligible 

during unloading. These trends remain unchanged during unloading, and are the same for the two 

cycles. The tensile twinning systems are slightly activated when the loading direction is inverted. 

It should be noted that the twinning systems activated during loading are different from those 

activated during unloading. The above result shows that the basal slip and tensile twinning 

Fig. 14 Plastic strain increment contributed by family of slip systems during loading-unloading 
in the strain range from 0.012 to 0.024. 
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systems are activated at the very beginning of unloading, and the basal slip systems is primarily 

activated thereafter. This indicates that the inelastic behavior during unloading observed in the 

simulation is primarily due to the activation of the basal slip systems; the contributions of the 

prismatic slip, and pyramidal-2 slip systems are negligible. This also exhibits that the clear 

inelastic behavior shown in Fig. 9 can arise without considering untwinning although the 

magnitude of the hysteresis is smaller than in the experiment (Figs. 8 and 9).  

Although the activity of the basal slip systems is large during both loading and unloading, 

the deformation mode may be different because the direction of the macroscopic displacement 

rate boundary conditions is opposite. Therefore, the sliding direction of the slip systems during 

the loading-unloading cycle is examined. The average sliding direction of each family of slip 

systems over all the grains is evaluated by 

( )

( )( )

( )

( )( )

n k

a family ofn allgrains k slipsystems is
i n j

all families ofn allgrains j slipsystems

r

,

,

,

γ

γ

∆

=
∆

∑ ∑

∑ ∑
,               (18) 

whre the denominator is the plastic strain increment contributed by all the families, summed over  

 

 

 

 

 

 

 

 

 Fig. 15 Signed activities of families of slip systems during loading-unloading in the strain range 
from 0.012 to 0.024. 
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all the grains, and j is the total number of slip systems. Equation (18) is termed the signed 

activity. Figure 15 shows the evolution of the signed activities during the same period covered in 

Fig. 14. Note that the comparison of the magnitude of s
ir  among the families given by Eq. (18) is 

meaningless because every slip increment ( )n k,γ∆  refers to a different local coordinate system. 

Therefore, we focus particularly on the signs of s
ir . 

During loading, the basal slip, prismatic slip, and tensile twinning systems are activated in the 

positive direction. When the loading direction is inverted, the activation of the prismatic slip 

systems suddenly vanishes, as also observed in Fig. 14. On the other hand, the basal slip systems 

are still activated during unloading, but the average sliding direction is negative. This shows that 

during unloading the basal slip systems are activated in a direction opposite to that during 

loading. The tensile twinning systems are also activated during unloading, but the direction is of 

course the same as during loading, because the untwinning is not taken into account in the 

present study.  

 

5.3 Evolution of Stress and Activity of Slip Systems in a Grain 

Figures 14 and 15 indicate that the partial reversal of the basal slip systems may be one of the 

causes of the inelastic behavior during unloading. To examine this hypothesis in more detail at 

the grain level, similar analyses were carried out for four representative integration points. Note 

that similar results were observed for many integration points, from which these points were 

arbitrarily chosen. The initial orientations of these points are indicated as A, B, C, and D in Fig. 3. 

The initial crystal local frame ie , which is schematically shown in Fig. 16, of the integration 

points is given in the global coordinate system shown in Fig. 2 as 
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Fig. 16 Crystal local coordinate system      . ei
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Fig. 17 Variations in slip increment in each slip system and Cauchy stress component τxz. (a) 
Integration point A, (b) B, (c) C, and (d) D. 
 



The arrows 1, 2, and 3 in Fig. 16 indicate the positive slip directions of the basal and prismatic 

slip systems. Figure 17 shows the variation in the slip increment in each basal slip system during 

the same period covered in Fig. 14. For the point A, the basal-1 slip system is activated during 

both loading and unloading, but the slip direction is inverted with the inversion of the loading 

direction. Similarly, the basal-3 slip system is activated in the positive direction during loading 

and in the negative direction during unloading. The prismatic-3 slip system is activated during 

only loading. A similar tendency arises in the points B, C, and D. The tensile twinning systems 

are activated a little during only loading in point B. The activation of the pyramidal-2 slip 

systems is negligible in the all points. Although the initial orientations are notably different in 

these points, a tendency observed is clearly similar to that shown in Figs. 14 and 15.  

To examine the inversion of the slip direction of the basal-1 slip system, Fig. 18 shows 

the evolution of the Cauchy stress components at these integration points. The stress components 

refer to the local coordinate system ie shown in Fig. 16, thus τxz corresponds to Schmid’s 

resolved shear stress of the basal-1 slip system. Most of the components increase and decrease 

alternately with the loading-unloading cycle. Some, including Schmid’s resolved shear stress of 

the basal-1 slip system, τxz, even change their signs during loading and unloading. This trend is 

clear in points A and C. Such stress evolution in the grains may arise from the inhomogeneity of 

the material. Because the activation of the prismatic slip systems is dominant during loading as 

shown in Fig. 14, the overall stress level during loading is determined primarily by the prismatic 

slip systems. However the prismatic slip systems are hardly activated during unloading because 

the stress level during unloading is of course lower than that during loading. On the other hand, 

because the strength of the basal slip systems is much lower than that of the prismatic slip 

systems as shown in Table 3, they can be activated under the stress level during unloading. More  
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Fig. 18 Variations in Cauchy stress components in the local coordinate system     . (a) 
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precisely, the basal slip systems would be easily activated in the opposite direction when their 

Schmid’s resolved shear stresses change sign during unloading. This is supported by the fact that 

the slip increment of the basal-1 system has a strong correlation with τxz, as shown in Fig. 17 (a) 

and (c). We conclude that one explanation for the inelastic behavior during unloading is that the 

basal slip systems are easily activated because their strength is much lower than that of the 

prismatic slip systems which are the dominant activated systems during loading. This also 

indicates that the effect of kinematic hardening of the slip systems on the unloading behavior 

should be examined in detail to further understand the mechanism as discussed in section 5.1. 

 

5.4 Effect of Initial Texture 

       The above results indicate that the inelastic behavior during unloading is induced by the 

inhomogeneity of the material. If this hypothesis is correct, the decrease in the instantaneous 

gradient during unloading may change in accordance with the degree of inhomogeneity, i.e., the 

inelastic deformation during unloading would be more pronounced when the sheet material has 

more random crystallographic orientations and would be decreased when the sheet material has a 

stronger basal texture. To confirm this, a loading-unloading simulation using sheets with random 

crystallographic orientations and a more pronounced texture was carried out. Figure 19 shows the 

initial (0001) pole figure of the simulation model with the more pronounced texture.  

         The stress-strain curves obtained by the loading-unloading simulation with the rolling 

texture (Fig. 3), the random orientations, and the more pronounced texture are shown in Fig. 20. 

Clearly, the sheet with random crystallographic orientations exhibits larger inelastic deformation 

during unloading than that with rolling texture, whereas inelastic deformation during unloading  

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 19 (0001) pole figure used in the simulation model with a more pronounced texture. 
 

Fig. 20 Comparison of simulated stress-strain curve among three different initial 
crystallographic orientations. 
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is very small in the sheet with the more pronounced texture. Figures 21 and 22 show the variation 

of the instantaneous gradient dσ/dε with the stress obtained with the more pronounced texture 

and the random crystallographic orientations. For the random crystallographic orientations, the 

Fig. 21 Variation in simulated instantaneous gradient dσ/dε during unloading with a more 
pronounced texture in the unloaded strain range: (a) from 0.001 to 0.009 and (b) from 0.01 to 0.027. 
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Fig. 22 Variation in simulated instantaneous gradient dσ/dε during unloading with random 
crystallographic orientations in the unloaded strain range: (a) from 0.001 to 0.009 and (b) from 
0.01 to 0.027. 
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overall trend of the variation curve is similar to that for the rolling texture (Fig. 9). However, the 

decrease in the instantaneous gradient is much larger than that obtained with the rolling texture. 

On the other hand, in case of the more pronounced texture, inelastic deformation during  
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Fig. 23 Plastic strain increment contributed by family of slip systems during loading-
unloading in the strain range from 0.012 to 0.024. (a) Results with random 
crystallographic orientations, and (b) results with more pronounced texture. 
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unloading is negligible. Figure 23 shows the simulated evolution of the plastic strain increment 

during the same period covered in Fig. 14. A tendency in the evolution of the plastic strain 

increment obtained with the random orientations is similar to that of the rolling texture (Fig. 14), 

but the magnitude of the plastic strain increment of the basal slip systems during unloading is 

larger than that of the rolling texture. On the other hand, the activation of the slip and twinning 

systems during unloading obtained with the more pronounced texture is very small. The above 

results clearly show that inelastic deformation during unloading observed in our results is 

attributable to the activation of the basal slip systems that is induced by the inhomogeneity of the 

material. Actually, the above tendency shown in Fig. 20 is also observed experimentally. 

Muránsky et al. (2009) reported that the inelastic behavior under uniaxial tension using an 

extruded Mg alloy is much less pronounced than that reported by Cáceres et al. (2003) using a 

cast Mg alloy. They concluded that this difference is induced by the fact that twinning is 

suppressed by the strong extrusion texture. Our simulation results clearly show that, besides 

tensile twinning, the activation of the basal slip systems is also one of the reasons for this 

difference.  

 

6. Conclusions 

In this study, the loading-unloading behavior of a Mg alloy sheet under uniaxial tension was 

simulated using the crystal-plasticity finite-element method. The mechanism of the inelastic 

behavior during unloading was examined in detail in terms of macroscopic and mesoscopic 

deformation, focusing on the effects of basal and nonbasal slip systems. The variation with stress 

of the instantaneous gradient during unloading was investigated for a macroscopic stress-strain 



curve, and the activity of each family of slip systems was examined for mesoscopic deformation. 

The following conclusions were drawn. 

(1) Clear inelastic behavior arises during unloading in the simulation result, but the magnitude of 

the hysteresis is smaller than in the experiment. The variation with the stress of the 

instantaneous gradient obtained by the simulation is not in agreement with the experimental 

result. However, the trends that the instantaneous gradient decreases as the unloaded strain 

increases and that the variation curve saturates at an unloaded strain of about 0.01 are in good 

agreement. 

(2) The slip and tensile twinning systems are activated during not only loading but also 

unloading. For instance, the prismatic slip systems are activated during only loading, whereas 

the basal slip systems are activated during both loading and unloading. On the other hand, the 

average sliding direction of the basal slip systems over all the grains during unloading is 

opposite to that during loading. The above tendencies also arise in each basal slip system in 

the grains. The mechanism of this behavior can be explained as follows. The overall stress 

level during loading is determined primarily by the prismatic slip systems because the 

activation of the prismatic slip systems is dominant during loading. Because the strength of 

the basal slip systems is much lower than that of the prismatic slip systems, they can be 

activated under the stress level during unloading. More precisely, the basal slip systems 

would be easily activated in the opposite direction when their Schmid’s resolved shear 

stresses change sign during unloading because of the inhomogeneity of the material. These 

results indicate that one explanation for the inelastic behavior during unloading is that, 

because of the inhomogeneity of the material, the basal slip systems are easily activated 

owing to their low strength compared to that of the prismatic slip systems.  



(3) As expected from the above results, the activation of the basal slip systems and inelastic 

behavior during unloading change in accordance with the degree of inhomogeneity: the sheet 

with random orientations exhibits larger inelastic deformation and more pronounced 

activation of the basal slip systems during unloading than that with rolling texture, whereas 

inelastic deformation and activation of the basal slip systems during unloading is very small 

in the sheet with the more pronounced texture. These results show that inelastic deformation 

during unloading observed in our results is attributable to the activation of the basal slip 

systems that is induced by the inhomogeneity of the material. 

 

The partial reversal of the tensile twinning systems may be an important factor in the inelastic 

behavior during unloading. However, to understand clearly the effect of basal and nonbasal slip 

on inelastic behavior we used a simple { }1 0 1 2  tensile twinning model in which untwinning 

is not taken into account. In future work, a more sophisticated tensile twinning model will be 

implemented and more elaborate studies of the inelastic behavior will be carried out. 

 It would also be interesting to use the crystal-plasticity finite-element method to carry out 

similar analyses of the inelastic behavior during unloading for BCC and FCC materials such as 

steel and aluminum alloys. This will also be future work. 
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