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Abstract

This paper is concerned with stability analysis of a networked control system,
wherein communication from the controller to the plant input is through
a digital channel subject to packet-dropouts and finite level quantization.
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the effect of packet-dropouts, the controller transmits tentative plant input
sequences. Within this setup, we derive a sufficient condition for small �∞

signal �∞ stability of the networked control system. This condition requires
the maximum number of consecutive packet-dropouts to be bounded. We
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and the step size of the quantizer and the maximum number of consecutive
packet-dropouts.
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1. Introduction

Networked control systems (NCSs) are composed of sets of plants and
controllers which are connected with each other through shared communi-
cation networks. In NCSs, the control performance of the entire systems is
affected by network properties such as graph topology [1], data rate [2, 3],
packet-dropouts [4, 5, 6] and delays [7, 8].

Recently, some works have discussed the stability of the single-loop NCSs
affected by both packet-dropouts and quantization in stochastic settings
[9],[10],[12]. Tsumura, Ishii and Hoshina [9] and Niu et al. [10] indepen-
dently studied the mean-square stability of the NCS in the case of a loga-
rithmic quantizer with an infinite number of quantization levels, and clarified
the trade-off between the coarseness of the quantizer and the stability of the
NCS. For finite-level quantizers, Matveev and Savkin [12] obtained a neg-
ative result, namely, they showed that an unstable linear plant subject to
arbitrarily and uniformly small external disturbances can never be almost
surely stabilized in the presence of packet-dropouts.

In contrast with the above previous works, this paper will take an alter-
native look at the stability analysis of NCSs with both packet-dropouts and
quantization To be more specific, we will consider a deterministic setting,
and study stability of NCSs where

• the number of connective packet-dropouts is bounded, and

• the quantizer has only a finite number of quantization levels.

Within the setup considered, a buffering mechanism [15, 16, 17, 18] is incor-
porated into the NCS to cope with the adverse effect of packet-dropouts: the
controller transmits packets consisting of predictions of quantized control in-
puts, and the buffer at the actuator side determines the current control input
based on the buffered packet and transmission outcomes.

For the analysis of the NCS with both finite level quantization and packet-
dropouts, we will employ the notion of small �p signal �p stability, which was
recently proposed by Ishido and Takaba [21] for the purpose of stability
analysis of quantized feedback systems. Based on this framework, we will
derive a sufficient condition for the small �∞ signal �∞ stability of the NCS in
terms of the number of quantization levels of the quantizer and the maximum
number of consecutive packet-dropouts.

The results of the present work complement those of [15, 17, 18] by taking
into account perturbations and quantization effects, and also those presented
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recently in [16]. In the latter work, the controller is based upon model pre-
dictive control ideas, and no quantization effects were considered.

The remainder of this manuscript is organized as follows: In Section 2, we
describe the NCS to be studied. Section 3 revises the notion of small �∞ signal
�∞ stability. In Section 4, we derive a linear fractional transformation model
of the NCS. This model is used, in Section 5, to derive sufficient conditions for
stability of the NCS. A numerical example is included in Section 6. Section 7
draws conclusions.

Notation. The sets of real numbers, positive integers, and non-negative in-
tegers are denoted via R, N, and Z+, respectively.

The ∞-norm of a vector x ∈ R
n is given by ‖x‖∞ = max1≤i≤n |xi|. We

also define the 1-norm of a matrix A ∈ R
n×m by ‖A‖1 := max1≤i≤n

∑m
j=1 |aij|,

where aij is the (i, j)-th component of A.
The function space �∞ is defined by

�∞ :=

{
f : Z+ → R

n

∣∣∣∣ sup
t∈Z+

‖f(t)‖∞ < ∞
}

.

This function space is equipped with the norm ‖f‖�∞ := supt∈Z+
‖f(t)‖∞.

If a map H is unbiased finite gain �∞ stable, its �∞ gain is denoted by
‖H‖�∞-ind, i.e.,

‖H‖�∞-ind = inf{γ > 0 | ‖Hu‖�∞ ≤ γ‖u‖�∞ ∀u ∈ �∞}.

2. System Description

We consider a NCS with an unreliable communication channel affected
by packet-dropouts, as depicted in Fig. 1. To alleviate the effect of packet-
dropouts, the NCS incorporates a buffering mechanism in the feedback loop
(see, e.g., [15, 16]). However, unlike the setting studied in [15, 16], we here
explicitly take quantization effects into account. More precisely, the encoder-
controller sends out quantized values of current and finite step future control
signals at each time instant. We will give a detailed system description below.
Plant P : The plant P is a discrete-time linear time-invariant system whose
state-space representation is given by

x(t + 1) = Ax(t) + Bu(t) + w(t), t ∈ N. (1)
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Figure 1: NCS with quantized control values and packet-dropouts

The signals x(t) ∈ R
n, u(t) ∈ R and w(t) ∈ R

n are the plant state, the
actuator input and the process disturbance, respectively. The initial state
x(0) is assumed to be zero.
Channel: The communication channel is affected by packet-dropouts. The
packet-dropout is characterized in terms of the discrete variable s(t) defined
by

s(t)=

{
1 if a packet-dropout does not occur at time t,
0 if a packet-dropout occurs at time t.

(2)

Whenever packet-dropouts do not occur, the channel transmits the current
control packet to the buffer Buff without errors or delays.

In the sequel, we will denote the time instants when the transmission is
successfully completed (i.e. a packet is not dropped) with {t0, t1, t2, · · · }, and
assume t0 = 0. We thus have

s(t) = 1 ⇔ ( t = ti for some i ∈ Z+ ). (3)

Controller-Encoder En: Throughout this work, we will assume that no
acknowledgments of receipt are available. Thus, the controller-encoder En
does not know whether previous data packets were successfully received or
not.

To compensate for possible future packet dropouts, at every time t ∈ N

the controller-encoder transmits a control packet, say μ(t) ∈ R
N to the buffer.

The value N ∈ N is given and represents the packet size and also the buffer
length. The control packet is composed of quantized potential control inputs
for the current time instant and N − 1 future time instants:

μ(t) =

⎡
⎢⎢⎢⎣

q(û(t; t))
q(û(t + 1; t))

...
q(û(t + N − 1; t))

⎤
⎥⎥⎥⎦ , (4)

û(t + i; t) = Kx̂(t + i; t), i ∈ {0, · · · , N − 1}, (5)
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Figure 2: Uniform quantizer q

where û(t + i; t) ∈ R and x̂(t + i; t) ∈ R
n are the i-step predictions of the

(unquantized) control input and the plant state based on the current state
x(t), respectively, and where K ∈ R

1×n is a static state-feedback gain.
In (4), the function q : R → V := {0,±d,±2d, · · · ,±md} denotes a uni-

form static quantizer, where d ∈ R and m ∈ N are positive constants. As
shown in Fig. 2, the quantizer produces a quantized symbol by rounding its
input to the nearest discrete value in V:

q(u) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

md, if
(
m − 1

2

)
d ≤ u,

(m − 1)d, if
(
m − 3

2

)
d ≤ u <

(
m − 1

2

)
d,

...
...

0, if − 1
2d ≤ u < 1

2d,
...

...
−md, if u < − (

m − 1
2

)
d.

(6)

The constant d is the step size, whereas M := 2m + 1 is the number of
quantization levels.1

The state predictions x̂(t + i; t) (i = 1, 2, · · · , N − 1) are calculated re-
cursively based on the current state x(t) and the plant dynamics as follows:

x̂(t + i; t) =

{
x(t), if i = 0,

Ax̂(t + i − 1; t) + Bq(û(t + i − 1; t)), if i = 1, · · · , N − 1.

(7)

1Due to quantization, each control packet μ(t) can take only one of MN different values,
and can, thus, be expressed via N log2 M bits.
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Buffer Buff: The buffer Buff provides the actuator values based on the
received channel symbols. The state of the buffer is updated every time it
successfully receives the packet μ. To be more precise, the dynamics of Buff
is described by

b(t) = s(t)μ(t) + (1 − s(t))Sb(t − 1), b(−1) = 0, (8)

where b(t) ∈ R
N denotes the state of Buff, and

S :=

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
...

. . . . . . . . .
...

0 · · · 0 1 0
0 · · · · · · 0 1
0 · · · · · · · · · 0

⎤
⎥⎥⎥⎥⎥⎦
∈ R

N×N (9)

is a shift matrix. Then, the plant input u(t) is given by

u(t) =
[
1 0 · · · 0

]
b(t), (10)

see Fig. 1.
The buffering technique adopted here was used, e.g., in [16] to study

Input-to-State Stability [14] of a related NCS, where the control packets
are designed without quantizations by adapting the model predictive control
framework. In this paper, we complement [16] through the study of the
NCS subject to packet-dropouts as well as finite-level quantization of control
signals.

To put our subsequent analysis into context, it is worth recalling that, in
the presence of finite-level quantization, finite gain �p stability of the closed-
loop system cannot be established [13]. Thus, in this paper, we are interested
in a weaker version of stability, namely small �∞ signal �∞ stability. This
notion was introduced in [19, 20] and is briefly revised in the following section.

3. Small �∞ Signal �∞ Stability

We briefly revise some basic results on small �∞ signal �∞ stability which
was introduced in [19, 20].

Definition 1. (small �∞ signal �∞ stability) A map H is said to be small
�∞ signal �∞ stable if there exist positive constants ε and γ such that

[[ ‖u‖�∞ ≤ ε ⇒ ‖Hu‖�∞ ≤ γε ]] , ∀u ∈ �∞. (11)

6



H1

H2
� �

�
� ���

�r2

z1 e1 r1

z2e2
+

+

Figure 3: Feedback system for stability analysis

The quantities γ and ε are called the attenuation level and the input bound,
respectively.

The feedback system in Fig. 3 is called small �∞ signal �∞ stable if there
exist positive constants ε and γ such that

[[ ∥∥∥∥
[
r1

r2

]∥∥∥∥
�∞

≤ ε ⇒
∥∥∥∥
[
z1

z2

]∥∥∥∥
�∞

≤ γε

]]
, ∀r1, r2 ∈ �∞.

We next briefly summarize some connections between the small �∞ signal
�∞ notion and other stability notions:

Remark 1. (i) The small �∞ signal �∞ stability in Definition 1 is the local
version of the �∞ stability (see Definition 2 in Appendix A). In fact,
the small �∞ signal �∞ stability implies �∞ boundedness of the output
only for the inputs with small �∞ norm while �∞ stability guarantees
the �∞ boundedness of the output for all �∞ inputs.

(ii) Although the small �∞ signal �∞ stability is, in general, a weaker notion
than the traditional �∞ stability as described above, in the special case
of linear maps, these stability notions are equivalent (see Theorem 1 in
[21]).

(iii) The small �∞ signal �∞ stability notion differs from finite gain �∞

stability[22] and local �∞ stability [23] (see Definition 3 and 4 in Ap-
pendix A for the definitions of these notions), in that it does not use
the notion of �∞ gains. Instead, the attenuation level of a map, is ex-
pressed in terms of the ratio of the local upper bounds of the �p norms
of input-output signals.

In [19, 20], the current authors derived a sufficient condition for small �∞

signal �∞ stability of the feedback system in Fig. 3. For our current purposes,
these conditions can be summarized as follows:
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Figure 4: Linear fractional representation of the NCS

Proposition 1 ([19, 20]). Consider the feedback system in Fig. 3, and as-
sume that the following three conditions hold:

(i) H1 : e1 
→ z1 is strictly causal and is unbiased finite �∞ stable with gain
not greater than a positive constant γ1, namely

‖z‖�∞ ≤ γ1‖e1‖�∞ , ∀e1 ∈ �∞ (12)

(ii) For H2 : e2 
→ z2, there exist positive constants ε2 and γ2 such that

[[ ‖e2‖�∞ ≤ ε2 ⇒ ‖z2‖�∞ ≤ γ2ε2 ]] , ∀e2 ∈ �∞. (13)

(iii) γ1γ2 < 1.

Then, the feedback system is small �∞ signal �∞ stable. In particular,

[[ ∥∥∥∥
[
r1

r2

]∥∥∥∥
�∞

≤ ε ⇒ (‖z1‖�∞ ≤ δ1 and ‖z2‖�∞ ≤ δ2)

]]
, ∀r ∈ �∞

holds for

ε =
(1 − γ1γ2)ε2

1 + γ1

, δ1 =
(1 + γ2)γ1ε2

1 + γ1

, δ2 = γ2ε2. (14)

4. Linear fractional transformation model of the NCS

The NCS in Fig. 1 is nonlinear and time-varying due to quantization,
packet-dropouts, and buffering. To study the stability of the NCS, we will
first extract the nonlinearity (denoted by q̃) associated with the quantization
error to re-formulate the feedback system of Fig. 1 as a linear fractional
transformation of Fig. 4, where the “nominal” subsystem G is linear and
time-varying.
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It follows from (3), (4), (8), (9) and (10) that the plant inputs at the time
instants

N = ∪i∈N{ti, ti + 1, . . . , ti+1 − 1}
are given by

u(t) = q(û(t; ti)), t ∈ {ti, ti + 1, . . . , ti+1 − 1}. (15)

Thus, the plant model (1) can be rewritten as

x(t + 1) = Ax(t) + Bq(û(t; ti)) + w(t), t ∈ {ti, ti + 1, . . . , ti+1 − 1}. (16)

If we denote the quantization error at each time instant t ∈ N via

v(t) := q(û(t; ti)) − û(t; ti), t ∈ {ti, ti + 1, . . . , ti+1 − 1}, (17)

then it follows from (7) and (17) that

x̂(t + 1; ti) = Ax̂(t; ti) + B
(
û(t; ti) + v(t)

)
= AK x̂(t; ti) + Bv(t), t ∈ {ti, ti + 1, . . . , ti+1 − 2}, (18)

Moreover, (7) and (16) give that

x(t) = x̂(t; ti) +

t−ti∑
l=1

Al−1w(t − l), t ∈ {ti, ti + 1, . . . , ti+1 − 1}, (19)

and thus,

x̂(ti+1; ti+1) = x(ti+1)

= x̂(ti+1; ti) +

ti+1−ti∑
l=1

Al−1w(ti+1 − l)

= AK x̂(ti+1 − 1; ti) + Bv(ti+1 − 1; ti)

+

ti+1−ti∑
l=1

Al−1w(ti+1 − l), i ∈ N. (20)

It follows from (5), (18), (19) and (20) that the NCS in Fig. 1 can be described
in terms of the linear fractional transformation of a linear subsystem G and
the static nonlinear function q̃, as depicted in Fig. 4.
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The nonlinearity q̃ is a static map defined by

q̃(û) = q(û) − û, (21)

and, thus, represents the quantization error, as illustrated in Fig. 5. It can
be easily verified from (6) that q̃ satisfies[[

‖û‖�∞ ≤ Md

2
⇒ ‖q̃(û)‖�∞ ≤ d

2

]]
, ∀û ∈ �∞. (22)

In other words, q̃ has small �∞ signal �∞ stability with attenuation level 1/M
and input bound Md/2 (see Definition 1 in Section 3).

To characterize the subsystem G in Fig. 4, it is convenient to introduce
a state vector ξ(t) and control signal û(t) via:

ξ(t) := x̂(t; ti), û(t) := û(t; ti), t ∈ {ti, ti + 1, . . . , ti+1 − 1}, i ∈ N (23)

This allows us to describe G in state-space form via

G :

⎧⎨
⎩

ξ(t + 1) = AKξ(t) + Bv(t) + F1w(t),
û(t) = Kξ(t),
x(t) = ξ(t) + F2w(t),

(24)

where F1 and F2 are linear time-varying maps defined by

F1 : w 
→

⎧⎪⎨
⎪⎩

0, if t ∈ {ti, ti + 1, . . . , ti+1 − 2},
ti+1−ti∑

l=1

Al−1w(ti+1 − l), if t = ti+1 − 1,
(25)

F2 : w 
→

⎧⎪⎨
⎪⎩

0, if t = ti,
t−ti∑
l=1

Al−1w(t − l), if t ∈ {ti + 1, ti + 2, . . . , ti+1 − 1}. (26)

Interestingly, the map G: (v, w) 
→ (u, x) can be decomposed as

G =

[
G00 G01 ◦ F1

G10 G11 ◦ F1 + F2

]
, (27)

where G00, G01, G10 and G11 are LTI maps with impulse responses

g00(t) =

{
0, if t = 0,

KAt−1
K B, if t ∈ N,

g01(t) =

{
0, if t = 0,

KAt−1
K , if t ∈ N,

g10(t) =

{
0, if t = 0,

At−1
K B, if t ∈ N,

g11(t) =

{
0, if t = 0,

At−1
K , if t ∈ N,
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Figure 5: Nonlinearity associated with quantization error

respectively. It is easily seen from these equations that the effect of packet-
dropouts is confined in the time-varying maps F1 and F2.

5. Stability Analysis of the Networked Control System

With Section 4 as a background, analyzing stability of the NCS gives rise
to the problem of studying small �∞ signal �∞ stability of the closed-loop
map from w to x in Fig. 1. For this purpose, we will make the following
assumptions:

Assumption 1. The number of consecutive packet-dropouts is bounded by
the buffer length N , i.e., we have:

1 ≤ ti+1 − ti ≤ N, ∀i ∈ N. (28)

Assumption 2. The matrix AK := A + BK is Schur stable.

If Assumption 1 is satisfied, then the buffer length N amounts to the
maximal number of consecutive packet-dropouts. Assumption 2 implies that
the controller gain K in (5) stabilizes the plant model (1) in the absence of
dropouts or quantization constraints.

Now, we are in a position to state our stability analysis problem in precise
terms: 2

2Note that the condition (29) is different from the small �∞ signal �∞ stability of the
feedback system in Fig. 3.
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Under Assumptions 1 and 2, we wish to derive a sufficient condi-
tion for the existence of positive constants ε and γ such that

[[ ‖w‖�∞ ≤ ε ⇒ ‖x‖�∞ ≤ γε ]] , ∀w ∈ �∞ (29)

for any sequences of packet-dropouts satisfying Assumption 1.
Furthermore, if the stability condition is satisfied, we wish to
characterize the relation (trade-off) between the attenuation level
γ and the parameters M , d and N .

We will hereafter use the linear fractional representation derived in the
previous section to obtain a sufficient condition for achieving (29) for the
NCS in Fig. 1 (equivalently in Fig. 4).

5.1. Preliminaries

A key property of the linear fractional transformation model presented
in Section 4 is that, if Assumption 2 holds, then the LTI maps G00, G01,
G10 and G11 are stable and have finite �∞ gains (�1 norms of their impulse
responses). Furthermore, it is easy to see that F1 and F2 also have finite �∞

gains:

Lemma 1. Suppose that Assumption 1 holds. Then, the maps F1 and F2

defined in (25) and (26) are unbiased finite gain �∞ stable, and

‖F1‖�∞-ind ≤ κ, ‖F2‖�∞-ind ≤ κ (30)

hold for

κ :=
N−1∑
l=0

‖Al‖1 < ∞. (31)

Proof. See Appendix B.

As we can see, the linear fractional transformation model provides im-
portant information for the stability analysis of the NCS in Fig. 1.

Firstly, by virtue of the buffering technique, the adverse effect of packet-
dropouts is isolated from the feedback loop. Indeed, the maximal length N of
consecutive packet-dropouts is contained only in the stable feedforward maps
F1 and F2. This implies that packet-dropouts play no role in deteriorating
stability of the NCS.
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Figure 6: Feedback interconnection of G00 and q̃

Secondly, since G00 is a strictly causal map and q̃ is a static nonlinear
function, the feedback system in Fig. 4 is well-posed. Thus, we can define
the closed-loop map from w to x.

5.2. Main Results

Lemma 2 stated below shows that, since all 4 components of G are finite
gain �∞ stable, the stability analysis of the overall NCS reduces to investigat-
ing the stability of the feedback interconnection between G00 and q̃ in Fig. 6.
To state our result, we denote the �∞ gains of the components of G via

γ00 := ‖G00‖�∞-ind, γ01 := ‖G01‖�∞-ind,

γ10 := ‖G10‖�∞-ind, γ11 := ‖G11‖�∞-ind. (32)

Lemma 2. Assume that the feedback interconnection of G00 and q̃ in Fig. 6
is small �∞ signal �∞ stable, i.e., there exist positive constants εr, δu δv such
that[[ ∥∥∥∥

[
r1

r2

]∥∥∥∥
�∞

≤ εr ⇒ (‖û‖�∞ ≤ δu and ‖v‖�∞ ≤ δv)

]]
, ∀r1, r2 ∈ �∞. (33)

Then, the feedback system in Fig. 4 satisfies

[[ ‖w‖�∞ ≤ ε ⇒ ‖x‖�∞ ≤ γε ]] , ∀w ∈ �∞ (34)

for any sequences of packet-dropouts satisfying Assumption 1, where

ε =
εr

γ01κ
, γ =

γ01κ ((γ11 + 1)εrκ + γ10δv)

εr

, (35)

and κ is defined in (31).
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Proof. From (27), the input-output relations in Fig. 4 are described by

v = q̃(û), (36)

û = G00v + (G01 ◦ F1)w, (37)

x = G10v + (G11 ◦ F1 + F2)w. (38)

On the other hand, Lemma 1 gives

‖G01 ◦ F1‖�∞-ind ≤ ‖G01‖�∞-ind‖F1‖�∞-ind ≤ γ01κ, (39)

‖G11 ◦ F1 + F2‖�∞-ind ≤ ‖G11‖�∞-ind‖F1‖�∞-ind + ‖F2‖�∞-ind ≤ γ11κ + κ.
(40)

It is easily seen by taking r1 := 0, r2 := (G01◦F1)w, u′ := u in Fig. 6 that the
small �∞ signal �∞ stability of the feedback interconnection (G00, q̃) implies
that

‖G01 ◦ F1w‖�∞ ≤ εr ⇒ (‖û‖�∞ ≤ δu and ‖v‖�∞ ≤ δv) (41)

holds for the feedback system of (36)-(38) in Fig. 4.
Now, we assume that ‖w‖�∞ ≤ ε where ε is defined by (35). To complete

the proof, we only need to establish boundedness of ‖x‖�∞ .
It follows from (39) that

‖G01 ◦ F1w‖�∞ ≤ ‖G01 ◦ F1‖�∞-ind‖w‖�∞ ≤ γ01κε = εr. (42)

We then have ‖v‖�∞ ≤ δv from (41) and (42). Therefore, we conclude from
(38) and (40) that

‖x‖�∞ ≤ ‖G00‖�∞-ind‖v‖�∞ + ‖G11 ◦ F1 + F2‖�∞-ind‖w‖�∞

≤ γ00δv + (γ11 + 1)κε

= γε < +∞, (43)

where γ := γ00δv/ε + (γ11 + 1)κ.

Having established Lemma 2, we will next present the main result of this
paper, namely a sufficient condition for the small �∞ signal �∞ stability of
the closed-loop map from w to x in Fig. 4. Our result, stated in Theorem 1,
also quantifies the disturbance attenuation level in terms of the parameters
of the quantizer and the buffer length.
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Theorem 1. Suppose that Assumptions 1 and 2 hold. If

γ00 < M, (44)

then the NCS in Fig. 1 satisfies

[[ ‖w‖�∞ ≤ ε ⇒ ‖x‖�∞ ≤ γε ]] ∀w ∈ �∞ (45)

for any packet-dropout sequences satisfying Assumption 1, where

ε =
(M − γ00)d

2γ01(γ00 + 1)κ
, (46)

γ =
γ01κ (γ10(γ00 + 1) + (γ11 + 1)(M − γ00)κ)

M − γ00

. (47)

Proof. Suppose that (44) holds. Since G00 is strictly causal, it follows from
(44), (22), and Proposition 1 that the feedback interconnection of G00 and q̃
in Fig. 6 is small �∞ signal �∞ stable. In particular, we have

[[‖r‖�∞ ≤ εr ⇒ (‖u‖�∞ ≤ δu and ‖v‖�∞ ≤ δv)]] , ∀r ∈ �∞,

where the constants

εr =
(M − γ00)d

2(1 + γ00)
, δu =

(M + 1)γ00d

2(1 + γ00)
, δv =

d

2
(48)

are obtained by substituting γ1 := γ00, γ2 := 1/M and ε2 := Md/2 into (14).
Consequently, we conclude from Lemma 2 that the NCS in Fig. 1, equiv-

alently Fig. 4, satisfies (45), where ε and γ in (46), (47) are obtained by
substituting (48) into (35).

Theorem 1 establishes that small �∞ signal �∞ stability of the closed-loop
map from w to x in the presence of bounded packet dropouts and finite level
quantization can be guaranteed if a large enough number of quantization
levels M is available. Whilst the condition (44) does not depend on the step
size d, this quantizer parameter does affect the input bound ε in (46). Since
the input bound ε is monotonically increasing with respect to d, compensating
for a large disturbance w(t) requires a large step size d. This observation is
rather intuitive, since, with large d, the control signal is allowed to take
large values as shown in (6). Note also that the upper bound on ‖x‖�∞ also
depends on d through the input bound ε in (34).
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Our stability condition (44) also indicates that stability of the closed-
loop map from w to x is independent of the maximum number of consecutive
packet dropouts N , provided sufficient control inputs are contained in each
control packet, see Assumption 1. However, the disturbance attenuation level
of the closed-loop map from w to x is strongly affected by N . In fact, it can be
seen from (31) and (47) that, for open-loop unstable plants, the attenuation
level γ is exponentially increasing with respect to N . This suggests that
the magnitude of the state x may become extremely large, if the network
introduces too many consecutive packet-dropouts. The latter observation is
hardly surprising, since, during periods of consecutive dropouts, the plant is
unavoidably left in open loop.

6. Numerical Examples

6.1. Example 1 (scalar plant)

Consider a scalar plant described by

x(t + 1) = ax(t) + u(t) + w(t), a > 1.

We choose the stabilizing (deadbeat) feedback gain K = −a, providing AK =
A + BK = 0. In this case, the �∞ gains in (32) are given by

γ00 = a, γ01 = a, γ10 = 1, γ11 = 1,

and the sufficient stability condition (44) becomes

M > a. (49)

It then follows from (31), (46) and (47) that the parameters κ, ε and γ are
given by

κ =
N−1∑
l=0

al =
aN − 1

a − 1
, (50)

ε =
(M − a)d

2(a + 1)κ
=

(M − a)d

2(a + 1)

a − 1

aN − 1
, (51)

γ =
aκ((a + 1) + 2(M − a)κ)

M − a
=

a(a + 1)

M − a

aN − 1

a − 1
+ 2a

(
aN − 1

a − 1

)2

. (52)
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Interestingly, it turns out that, for scalar plant models, the stability con-
dition (49) is tight. In fact, it is known that M ≥ a is a necessary condition
to stabilize the scalar system over a rate-limited channel, even when there
are no packet-dropouts (N = 1); see, e.g., [3].

As a special case, suppose that a = 2.99. Then, the stability condition
(49) becomes M > 2.99, which corresponds to a quantizer with at least three
levels. For this fixed a, the associated trade-off between the attenuation level
γ in (52) and the maximal number of consecutive packet-dropouts N for a
quantizer with M = 11 quantization levels is illustrated in Fig. 7. As can be
seen from that figure and (52), for a fixed M , γ exponentially increases in
N .

In Fig. 8, the relation between γ and M for fixed N = 2 is illustrated.
It can be seen from that figure that when M is close to γ00 = a = 2.99, the
attenuation level γ becomes very large. On the other hand, the attenuation
level is monotonically decreasing with respect to M , and we have limM→∞ γ =
2a(a2 − 1)2/(a − 1)2 = 95.20 as a lower bound of γ in (52).
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We next performed a numerical simulation for a critical case where3

w(t) = ε, ∀t ∈ {0, 1, . . . 300}
ti+1 − ti = N = 2, ∀i ∈ {0, 1, . . . 150}.

In this simulation, we choose M = 3, d = 2 and N = 2. Then, it follows
from (50) that κ = 3.99. Theorem 1 then guarantees that the closed-loop
map from w to x is small �∞ signal �∞ stable, and that (45) holds with

ε = 2.1008 × 10−4, γ = 4.8553 × 103.

The simulation result of x(t) for t ∈ {0, 1, . . . 300} is depicted in Fig. 9,
confirming (45), namely that ‖x(t)‖∞ is less than δ := γε = 1.02 for all
t ∈ {0, 1, . . . 300}.

6.2. Example 2 (3rd-order plant)

To verify the effectiveness of the buffering scheme considered in this paper,
we next carry out simulations for the following three control schemes:

(a) Buffering scheme:
The buffering scheme considered in the previous sections is applied to
compensate for packet-dropouts.

(b) Zero input scheme (s(t) = 0 ⇒ u(t) = 0):
If a packet is dropped, the actuator applies zero input to the plant.

3Namely, the disturbance takes the extreme value at each time instant, and the network
periodically drops packets every other time instant.
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Figure 10: Simulation results for the control schemes (a), (b) and (c)

(c) Previous input scheme (s(t) = 0 ⇒ u(t) = u(t − 1)):
If a packet is dropped, the actuator applies the previous input to the
plant.

Consider the 3rd-order plant given by

x(t + 1) =

⎡
⎣0.1 2.3 1.4

0 2 1.5
0 0.9 1.6

⎤
⎦x(t) +

⎡
⎣1.1

0.9
1

⎤
⎦u(t) + w(t),

and the communication channel with N = 3. We choose the nominally
stabilizing feedback gain as

K =
[
0.0013 −1.6591 −1.5782

]
.

For this networked control system, we have κ = 42.63 and

γ00 = 3.7545, γ01 = 4.3528, γ10 = 6.4171, γ11 = 7.4988.

We choose M = 5 so that the stability condition (44) is satisfied. We car-
ried out the simulations with random disturbances satisfying ‖w(t)‖∞ ≤ ε =
5.8918 × 10−4 and periodic packet-dropout sequences consisting of two con-
secutive dropouts and one success.

The simulation results are illustrated in Fig. 10. It is clearly seen from
the figure that the buffering scheme (a) succeeds in keeping ‖x(t)‖∞ much
smaller compared with the zero input scheme (b) and (c). Furthermore,
Fig. 10 shows that the previous input scheme (c) does not stabilize this plant
with this particular choice of K and M because the plant state is unbounded.
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Note also that in the proposed scheme, it is sufficient to choose the feed-
back gain K, such that the matrix A + BK is stable. This stands in stark
contrast to the zero input scheme, where in the presence of packet-dropouts,
a necessary condition for the stability of the NCS is that all finite products

(A + BK)Ai, i ∈ {1, · · · , N − 1}
are stable. The class of admissible feedback gains is therefore quite restricted
in the zero input case. On the other hand, in the proposed scheme the
constraint on the feedback gain is much milder. This is useful when designing
the networked control system.

7. Concluding Remarks

This paper has studied the small �∞ signal �∞ stability of a networked
control system subject to disturbances, packet-dropouts and finite level quan-
tization. By incorporating a buffering mechanism at the receiving end of the
channel, the adverse effect of packet-dropouts on closed loop stability can be
canceled as long as the number of consecutive dropouts is smaller than the
buffer length. We have derived a sufficient condition for stability, which is
stated in terms of the number of quantization levels. We have also elucidated
the effect of the quantizer step size and the maximal number of consecutive
packet-dropouts on the disturbance attenuation level. Numerical examples
indicate that the scheme investigated can give significant performance gains
when compared to alternative configurations.

Future work may include extending the approach to NCSs involving com-
munication channels at both the actuator side and the sensor side, and also
to NCSs which are subject to quantization, dropouts and delays.
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Appendix A. Basic stability notions

This appendix collects the definitions of several stability notions referred
to in this paper; see, e.g., [22].
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Definition 2. (�∞ stability)
A map H is �∞ stable if there exist a class K function α and a nonnegative
constant β such that

‖Hu‖�∞ ≤ α(‖u‖�∞) + β, ∀u ∈ �∞.

In addition, H is called unbiased if we can take β = 0.

Definition 3. (finite gain �∞ stability)
A map H is finite gain �∞ stable if there exist nonnegative constants γ and
β such that

‖Hu‖�∞ ≤ γ‖u‖�∞ + β, ∀u ∈ �∞.

The infimum of γ satisfying the above inequality is called the �∞ gain of H.

Definition 4. (local �∞ stability) [23]
A map H is locally �∞ stable if there exist nonnegative constants ε and γ
such that

[[ ‖u‖�∞ ≤ ε ⇒ ‖Hu‖�∞ ≤ γ‖u‖�∞ ]] , ∀u ∈ �∞.

Appendix B. Proof of Lemma 1

We give only the proof of ‖F1‖�∞-ind ≤ κ, since ‖F2‖�∞-ind ≤ κ can be
proved in the same manner.

Define f1 = F1w for w ∈ �∞. There always exists i ∈ Z+ such that
t ∈ {ti, ti + 1, · · · , ti+1 − 1}, and F1w is given by (25). Clearly, ‖f1(t)‖∞ =
0 ≤ κ‖w‖�∞ holds for t ∈ {ti, · · · , ti+1 − 2}. In the case of t = ti+1 − 1, we
obtain

‖f1(t)‖∞ ≤
ti+1−ti∑

l=1

‖Al−1w(ti+1 − l)‖∞ ≤
ti+1−ti∑

l=1

‖Al−1‖1‖w(ti+1 − l)‖∞

≤
ti+1−ti∑

l=1

‖Al−1‖1‖w‖�∞ ≤
N∑

l=1

‖Al−1‖1‖w‖�∞ = κ‖w‖�∞ .

In the last inequality, we have used Assumption 1.
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