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Go-and-Back method: Effective estimation of the hidden motion of proteins
from single-molecule time series
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We present an effective method for estimating the motion of proteins from the motion of attached
probe particles in single-molecule experiments. The framework naturally incorporates Langevin dy-
namics to compute the most probable trajectory of the protein. By using a perturbation expansion
technique, we achieve computational costs more than 3 orders of magnitude smaller than the conven-
tional gradient descent method without loss of simplicity in the computation algorithm. We present
illustrative applications of the method using simple models of single-molecule experiments and con-
firm that the proposed method yields reasonable and stable estimates of the hidden motion in a highly
efficient manner. © 2011 American Institute of Physics. [doi:10.1063/1.3574396]

I. INTRODUCTION

In single-molecule experiments of molecular motors, it
has been a widely adopted strategy to visualize continuous
stepwise motion by attaching a large probe particle.1–5 Re-
cently, this technique has also been put into use for moni-
toring conformational changes in proteins that stochastically
switch between two or more metastable states.6, 7 Compared
to using a fluorescent dye, using a probe particle has the fol-
lowing advantages: First, advances in technology now enable
the monitoring of the particle at ultrahigh temporal and spatial
resolutions of up to 9.1 μs (Ref. 8) and 0.1 nm,5, 9 respec-
tively. Second, the particle can be manipulated under opti-
cal microscopes, which provides insights into single-molecule
mechanics3, 10–13 and energetics.14, 15 However, one problem
that remains in this method is that the observed motion of the
probe particle does not precisely reflect the protein motion.
For typical experiments, since the probe is large and loosely
connected to the protein, the motion of the probe is usually
delayed. To study protein dynamics in detail, the motion and
the physical parameters of the protein from the observed tra-
jectory of the probe particle must be estimated.

To date, there has been systematic effort in developing
both theoretical and numerical frameworks to determine a
discrete state model of proteins from single-molecule fluo-
rescent spectroscopy.16–21 The framework was recently com-
bined with Bayesian statistics,22 which allows to analyze the
entire sequence of single-molecule data, and it was experi-
mentally demonstrated that the method yields more reliable
estimation than the conventional correlation analysis.23 By the
use of entire time series, a method to extract effective energy
landscape has also been developed recently.24, 25

For the time-series analysis of probe particles, there are
several numerical approaches to estimating the underlying
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stepwise trajectories of the molecular motors from the mo-
tion of probe particles, and these have been applied to various
kinds of experiments.26–30 However, to the best of authors’
knowledge, all of these approaches attempt to discretize the
observed trajectories, i.e., the probe trajectories into several
discrete states. More importantly, these approaches do not in-
corporate the dynamics of the entire system, namely, thermal
fluctuations of both the protein and the probe, and the re-
sponse delay of the probe motion. Instead, a sampling tech-
nique of the reaction pathway in continuous space, so-called
transition path sampling,31, 32 is based on Langevin dynam-
ics. However, this requires a significant computational cost
to search for the dominant pathways, making it inefficient in
the presence of multiple reaction pathways.33 Although an
effective method of estimating dominant reaction pathways
(DRPs) has recently been developed,33–35 it is not straightfor-
wardly applicable to the analysis of time series data because
the method performs the path sampling using not constant
time steps but constant displacement steps.

In the present article, we consider a Langevin system that
consists of two Brownian particles (one is visible and the
other is hidden) connected with each other. On the basis of
this model, we propose a method to efficiently estimate DRPs
of the hidden variable from the trajectories of the visible vari-
able. Although the model is very simple, it can be considered
as a crude description of single-molecule experimental setups
under appropriate approximations. We assume that the model
and all the parameters have been determined and focus on
the estimation of the DRP of the hidden variable. As will be
shown later, even though the model is already given, finding
the most probable trajectory of the hidden variable using the
trajectory of the visible variable remains nontrivial. For pa-
rameter estimation in the presence of hidden degrees of free-
dom, we have proposed a general framework and the practi-
cal utility was demonstrated by a simple Langevin model.36

In this framework, the DRP plays a central role in parame-
ter estimation. Our final remarks in the present article are a
discussion of practical application of the proposed method to
parameter estimation.
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Once the model is given, the path-probability can
be expressed in terms of the Onsager–Machlup path
probability.37–39 Thus, in principle, we can apply a stan-
dard maximum likelihood estimation to the hidden trajectory.
However, we find in general that the conventional optimiza-
tion algorithm requires too high a computational cost to find
the DRP. Here, we develop an effective approximation tech-
nique with the aid of perturbation theory. The schematic pro-
cedure of our method is as follows. First, on the basis of a
rough estimate of the DRP, we solve one differential equation
in the forward-time direction. Next, by substituting this solu-
tion, we solve another differential equation in the reverse-time
direction and obtain a better estimate of the DRP. By repeat-
ing this procedure, we can systematically increase the accu-
racy of the estimate. Since we solve these differential equa-
tions by alternating between the forward and reverse (back-
ward) directions, we name this algorithm the Go-and-Back
method.

In Sec. II, we introduce a working model and discuss
the validity of the model. Then, we explain the problem
with the gradient descent method and derive the Go-and-Back
method. In Sec. III, we examine two models of typical single-
molecule experiments to investigate the effectiveness of our
method.

II. FRAMEWORK

A. Model

The molecular structure of protein typically consists of
a few hundred of amino acids. Therefore, in general, we
need to consider such a huge number of degrees of freedom
to study molecular dynamics of proteins. However, recent
experimental6, 7, 15, 40, 41 studies on motor proteins clarified
that only a few degrees of freedom dominate the large-
scale conformational changes. In a particular case of the
rotational molecular motor F1-ATPase, it has been experi-
mentally shown that the energy conservation of the entire
system is explained by considering only one-dimensional (ro-
tational) motion.15, 41 In addition, a normal mode analysis on
motor proteins42–45 implies that the low-frequency modes (a
few degrees of freedom) correspond to such large-scale mo-
tion (μs–ms), and the low-frequency modes are distinct from
higher frequency modes (a huge number of degrees of free-
dom) that may correspond to the local conformational fluc-
tuations and the catalytic reactions at the active site (ps–ns).
Therefore, within the typical time resolution of an optical mi-
croscope (μs–ms), the large number of high-frequency modes
are eliminated from the dynamics of proteins and thus the dy-
namics can be approximated by low-dimensional overdamped
Langevin equations.

Taking into account the above facts, we consider a
Langevin system that consists of two Brownian particles in-
teracting with each other:

γ ẋ = −∂x [V eff(x) + U (x, y)] + ξ, (1)

� ẏ = F(y) − ∂yU (x, y) + η, (2)

where γ and � are the friction coefficients, ξ (t) and η(t) are
zero-mean white Gaussian noise with variances 2γ kBT and
2�kBT , respectively. If x(t) and y(t) are regarded as the dom-
inant degrees of freedom of the protein and the probe particle,
respectively, then Eqs. (1) and (2) can be considered as a crude
model of single-molecule experiments.36, 46, 47 Note that we
consider the simplest case where both x(t) and y(t) are one-
dimensional variables because typical single-molecule exper-
iments monitor only one-dimensional motion, but the follow-
ing calculation is straightforwardly extended to higher dimen-
sional x(t) and y(t).

In the present model, γ corresponds to the sum of the
internal friction coefficient of the protein and the viscous fric-
tion coefficient between the protein and the medium. � cor-
responds to the viscous friction coefficient of the probe par-
ticle. For simplicity, we assume that γ and � are position-
independent. U (x, y) corresponds to the energy potential of
the elastic linker between the protein and the probe particle.
V eff(x) ≡ V (x) − f x is the effective energy potential of the
protein, where V (x) corresponds to the energy landscape pro-
file of the protein along the reaction coordinate and f corre-
sponds to the “driving force” provided by the catalytic reac-
tion such as ATP hydrolysis. In actual experiments, trapping
force or space-constant load is sometimes applied to the probe
particle. We also incorporate such an external force into the
model equations denoted by F(y). We assume that U (x, y),
V eff(x), and F(y) are independent of t .

Here, let us discuss the validity of the working model by
using two examples displayed in Fig. 1. First, we consider that
a protein has two chemical states: A and B states, and the pro-
tein stochastically goes back and forth between the two states.
We suppose that the two chemical states exhibit different
conformations and we can observe the switching motion by

FIG. 1. Models for the numerical experiments. Model A: x(t) is stochas-
tically switching between two local minima of V eff(x) by means of ther-
mal noise (equilibrium state). Model B: x(t) is stochastically stepping down
the tilted effective potential V eff(x) ≡ V (x) − f x , where V (x) is a periodic
function and f is the driving force (nonequilibrium steady state). The param-
eters in these models are chosen as follows. Model A: V eff(x) is a polyno-
mial function defined as V eff(x) ≡ ∑8

i=1 ai xi , where a1 = 2.57, a2 = 114.4,
a3 = −14.0, a4 = −191.9, a5 = −81.3, a6 = 196.4, a7 = 29.1, and a8
= −51.5. (In typical experiments, the bimodal distribution of the probe par-
ticle is best fitted by two Gaussian functions. Thus, we roughly fitted two
Gaussian functions of different means and variances with an eighth-order
polynomial function in order to reproduce experimental results.) Model B:
V (x) ≡ A sin(2πx/ l), where A = 20, l = 1, and f = 40. In both models,
γ = 2, � = 20, k = 160, kBT = 4.11, and �t = 0.01.
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attaching a probe particle. Here, if the off rates of A(substrate)
and B(product) from the protein are slower than the switching
rates between the two states and the observation period, the
entire system is well approximated as an equilibrium state.
In addition, if the switching rates are slower than the global
relaxation timescale of the protein structure, namely, the tran-
sition rates are well explained by the Kramers model,48 the
entire dynamics can be modeled by a double-well potential of
V (x) with f = 0 and F = 0 [Fig. 1(a)].

Next, we suppose that a molecular motor translocates in
one direction with regular steps by catalytic reactions. For ex-
ample, a rotary molecular motor F1-ATPase rotates counter-
clockwise with regular 120◦ steps by hydrolyzing ATP.2 In
typical observation period(several minutes), the entire system
is regarded as a nonequilibrium steady state because the con-
centration of ATP and the products ( ammonium dihydrogen
phosphate and Pi) are almost constant in this period. If ATP
molecules are abundant in the medium and the rate limiting
reaction of each step is the global conformational change of
the protein by its thermal fluctuation, the phenomenological
model can be described by using a tilted periodic potential
[Fig. 1(b)].

In this manner, the dynamics of proteins and attached
probe particles can be approximated as the simple Langevin
model under appropriate conditions. Of course, the present
model has several limitations to apply actual experiments
due to the simple approximations especially the position-
independent γ and the time-independent V eff(x). The details
will be discussed in Sec. IV.

In what follows, we assume that y(t) is observed with a
sufficiently high temporal and spacial resolution, while x(t)
is hidden. We also assume that the entire set of system pa-
rameters is given. Then, our final task to consider here is the
estimation of the most probable trajectory of x(t) from the
trajectory of y(t).

B. Path probability

We denote the set of the trajectories from time t = 0 to
t = τ as [x, y] and the entire set of system parameters as �

= (
1,
2, . . . ,
p). Given a value of �, we can calculate
the path probability P([x, y]|�) as follows.

First, P([x, y]|�) is decomposed into the initial and tran-
sition probabilities as

P([x, y]|�) = Pinit(x0, y0|�)Ptr((x0, y0) → [x, y]|�),

(3)

where x0 and y0 denote x(0) and y(0), respectively.
Next, the transition probability can be expressed in terms

of the Onsager–Machlup path-probability:37–39

Ptr((x0, y0) → [x, y]|�) = C exp[−βS([x, y]; �)],

(4)

where β−1 ≡ kBT and the action functional S([x, y]; �) is

defined as

S([x, y]; �) ≡ 1

4γ

∫ τ

0
[γ ẋ + V eff

x (x) + Ux (x, y)]2dt

− kBT

2γ

∫ τ

0
[V eff

xx (x) + Uxx (x, y)]dt

+ 1

4�

∫ τ

0
[� ẏ − F(y) + Uy(x, y)]2dt

− kBT

2�

∫ τ

0
[−Fy(y) + Uyy(x, y)]dt, (5)

where the total and partial differentiations are denoted us-
ing the same notation such as V eff′ ≡ V eff

x and ∂xxU ≡ Uxx .
When the trajectory [x, y] is time-discretized by �t , the
normalization constant becomes C = [

√
γ�/(4πkBT �t)]N ,

where τ ≡ N�t .
Therefore, if we adopt an appropriate approximation for

the initial distribution Pinit(x0, y0|�) (Ref. 49), we can com-
pute the path probability by Eqs. (3)–(5).

Once we obtain a concrete expression for the path proba-
bility, we can estimate the DRP by a standard maximum like-
lihood estimation with respect to [x]. In Bayesian statistics,
the maximum likelihood estimator (MLE) is included in the
maximum a posteriori (MAP) estimator as a special case. It
has been clarified in our previous work that the MAP estima-
tor does not coincide with the true trajectory of x(t).36 How-
ever, when the motion of x(t) is stepwise similar to that of
molecular motors, we find that the MAP estimator seems to
be a good estimator of the stepping motion of x(t). To main-
tain consistency with our previous work and also for conve-
nience when considering the application of the Go-and-Back
method to parameter estimation, we refer to the MLE as the
MAP estimator in the present article, which we denote by [x̂]
in the following sections.

C. Gradient descent

The gradient descent method is the most widely used op-
timization algorithm. Before proceeding to the Go-and-Back
method, let us consider why this standard method is inefficient
for the present problem.

To maximize P([x, y]|�) with respect to [x], an ini-
tial condition for [x] and a boundary condition are required.
Here, we adopt the Dirichlet boundary condition. (For the ini-
tial condition, for instance we can adopt [x] = [y].) In this
case, x0 is fixed, and thus we avoid having to consider the
initial distribution Pinit(x0, y0|�). Therefore, the maximiza-
tion of P([x, y]|�) is replaced by the minimization of action
functional S([x, y]; �) with respect to [x]. By introducing a
“virtual time” s and replacing x(t) with x(t, s), we obtain the
MAP estimator [x̂] as the solution of the following partial dif-
ferential equation in the limit of s → ∞:

∂x(t, s)

∂s
= −δS([x, y]; �)

δx

= − ∂W (x, y)

∂x

∣∣∣∣
x=x(t,s)

+ γ

2

∂2x(t, s)

∂2t
, (6)

Downloaded 08 Jun 2011 to 130.54.110.73. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



135104-4 M. Miyazaki and T. Harada J. Chem. Phys. 134, 135104 (2011)

where

W (x, y) ≡ 1

4γ
[V eff

x (x) + Ux (x, y)]2

− kBT

2γ
[V eff

xx (x) + Uxx (x, y)]

+ 1

4�
[−F(y) + Uy(x, y)]2

− kBT

2�
[−Fy(y) + Uyy(x, y)]. (7)

Here, if we consider s in Eq. (6) as a “real” time t , and t in
Eq. (6) as a spacial coordinate x , the form of Eq. (6) is similar
to the time-dependent Ginzburg–Landau equation for noncon-
served systems.50 When W (x, y) takes the form of a multiwell
function, it is known in general that, after the fast relaxation of
the local fluctuation, the global relaxation (the kink motion)
takes a very long time.51, 52 Therefore, in the presence of the
hopping motion of x(t) between multiple local minima, the
gradient descent method may require a large computational
cost.

D. Go-and-Back method

On the basis of perturbation theory and making the
proper assumption that γ /� � 1, we reduce the computa-
tional cost as shown below.

To solve the Euler–Lagrange equation

δS([x, y]; �)

δx
= ∂W (x, y)

∂x
− γ

2
ẍ = 0, (8)

we decompose the equation into two first-order ordinary dif-
ferential equations by introducing v(t) which satisfies

γ ẋ = −[V eff
x (x) + Ux (x, y)] + v . (9)

v(t) is a deterministic variable which mimics the random
force ξ (t) [see Eq. (1)]. Substituting Eq. (9) into Eq. (8) and
using Eq. (2), we finally get

γ v̇ = [V eff
xx (x) + Uxx (x, y)]v − kBT [V eff

xxx (x) + Uxxx (x, y)]

+γ

�
Uxy(x, y)[Uy(x, y) − Uy(x∗, y)]

+γ

�
Uxy(x, y) · η∗, (10)

where · represents Itô-type stochastic calculi53 and x∗ repre-
sents the true position of x at time t . Since [y] is realized
under the true [x], we must use x∗ instead of x in Eq. (2).

Here, unknown variables x∗ and η∗ are involved in the
third and the fourth terms in the right-hand side of Eq. (10).
Fortunately, the contribution of these two terms are negli-
gible. First, [Uy(x, y) − Uy(x∗, y)] is statistically close to
0 if [x] 
 [x̂]. Similarly, 〈Uxy(x, y) · η∗〉 = 0. This calcula-
tion is independent of [x]. Moreover, considering the typical
case of single-molecule experiments, we can naturally assume
γ /� � 1.

Therefore, in principle, we may obtain a good approx-
imate solution of [x̂] by solving the following differential
equations simultaneously:

γ ẋ = −Gx (x, y) + v, (11)

γ v̇ = Gxx (x, y)v − kBT Gxxx (x, y), (12)

where G(x, y) ≡ V eff(x) + U (x, y). Here, Eq. (9) is rewritten
as Eq. (11), and Eq. (10) is approximated as Eq. (12).

However, a difficulty remains: Gxx (x, y) on the right-
hand side of Eq. (12) is positive in the typical case when x(t)
is fluctuating around the bottom of the energy potential. Thus,
as soon as we numerically integrate Eqs. (11) and (12), v(t)
will destabilize and finally diverge. In contrast, if we try to
solve these equations in the reverse-time direction, x(t) will
be instantly destabilized due to the same problem.54

To stably solve Eqs. (11) and (12), we need to solve
Eq. (11) in the forward-time direction and Eq. (12) in the
reverse-time direction. Although it is impossible to solve
Eqs. (11) and (12) simultaneously, if the approximate solu-
tion of v(t) has been obtained, the approximate solution of
x(t) can be calculated by substituting approximated v(t) into
Eq. (11) and integrating Eq. (11) in the forward-time direc-
tion. By contrast, if the approximate solution of x(t) has been
obtained, the approximate solution of v(t) can be calculated
by substituting approximated x(t) into Eq. (12) and integrat-
ing Eq. (12) in the reverse-time direction. Here, by use of a
perturbation expansion technique and the low-order approxi-
mations of x(t) and v(t), we develop a method to solve Eq. (11)
and Eq. (12) alternatively and increase the order of the ap-
proximations systematically.

To perform a perturbation expansion,55 we use that the
second term in the right-hand side of Eq. (12) is small.

γ v̇ = Gxx (x, y)v − ε kBT Gxxx (x, y). (13)

We expand x(t) and v(t) in terms of power series of ε, and we
define the i th order approximation as

x(i)(t) ≡
i∑

j=0

ε j x( j)(t), (14)

v(i)(t) ≡
i∑

j=0

ε j v( j)(t). (15)

Note that the present definition of the i th term differs from
the usual definition: the i th order approximation includes all
terms from orders 0 to i . This definition is crucial to dra-
matically simplify the algorithm. In addition, we introduce a
proper approximation for the zeroth-order term of v(t)

v(0)(t) = 0. (16)

(For the reason, see Appendix.) Then, once we adopt ap-
propriate boundary conditions for x(i)(0) and v(i)(τ ), the
higher order approximate solutions of [x̂] can be successively
obtained as follows. (For details of the derivation, see
Appendix.)

Go-and-Back method:

� Using v(i)(t), we solve

γ ẋ(i) = −Gx (x(i), y) + v(i) + O(εi+1) (17)

from t = 0 to t = τ and obtain x(i)(t).
� Using x(i)(t), we solve

γ v̇(i+1) = Gxx (x(i), y)v(i+1) − ε kBT Gxxx (x(i), y)

+O(εi+2) (18)
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Model A: Go-and-Back

FIG. 2. Estimation result of model A by the Go-and-Back method. (Top) The trajectory of y(t) [red line]. (Bottom) The true trajectory of x(t) [gray line], and
the estimated trajectory of x(t), denoted as x̂(t) [blue line]. The iteration number of the optimization process is i = 50, and the data length is τ = 100. For
the present parameter setting, the relaxation time scale of x(t) is shorter than �t . Therefore, we use linear-interpolated [y] with the step size �t/10 to stably
integrate Eqs. (17) and (18).

from t = τ to t = 0 and obtain v(i+1)(t).
� Alternate between Step A and Step B.

III. EXAMPLES

To investigate the practical utility of the Go-and-Back
method, we examine the two models illustrated in Fig. 1. We
numerically integrate the model equations [Eqs. (1) and (2)]
from t = 0 to t = τ and obtain the true trajectory set [x, y].
Then, we assume that we can only monitor [y], and estimate
[x] from [y].

Figures 2 and 3 display the estimation results of model A
and model B by the Go-and-Back method, respectively. Al-
though the estimated trajectory of x(t), denoted as [x̂], does
not coincide with the true trajectory [x], [x̂] seems to be a
good estimate in both examples. In particular, stepwise mo-
tion of x(t) in model B is precisely reproduced from noisy
y(t) (Fig. 3).

To apply the Go-and-Back method, a boundary condi-
tion is required. (The initial condition is included in the algo-
rithm [Eq. (16)]. The validity will be discussed below.) For
both examples (Figs. 2 and 3), {x(i)(0), v(i)(τ )} = {y(0), 0}
is adopted. To investigate the stability of the Go-and-Back
method, we vary the boundary condition of model A at ran-
dom. As a result, effect of the boundary condition is dimin-
ished instantly (Fig. 4). Only less than 0.1% of the total length

of the trajectory at both ends is affected by the boundary
condition. Thus, the estimates are almost uniform against the
choice of the boundary condition. The Go-and-Back method
allows to expect the diminishing time scale from Eq. (11) by
the second order approximation on G(x, y) around the bottom
of the effective potential. For the present model, the dimin-
ishing time scale is approximated as τdim ∼ 0.001 (Ref. 56),
which is almost consistent with the numerical results (Fig. 4).

We also examine the validity of the initial condition
adopted in the algorithm. We apply noise to the original initial
condition [Eq. (16)] and evaluate the dependency on the esti-
mate. As a result, the original estimate and the estimate ob-
tained from the noise-added initial condition are almost com-
pletely overlapped (Fig. 5, see also Fig. S1 in Ref. 57). The
difference is 10−4 on average, which is 104 times smaller than
the distance between two stable states, and 103 times smaller
than the thermal fluctuation of x(t) (Ref. 58). We note that the
Go-and-Back method bases on the Euler–Lagrange equation
[Eq. (8)], which means we cannot guarantee that the obtained
estimate is the global minimum. However, such a robustness
against the choice of the initial condition suggests that the
estimate may be the global optimum solution at least in the
present model. To conclude, the Go-and-Back method incor-
porates the appropriate initial condition that yields stable so-
lution, and the method is quite robust against the boundary
condition.

time

di
sp

la
ce

m
en

t

5

1

Model B: Go-and-Back

FIG. 3. Estimation result of model B by the Go-and-Back method. (Top) The trajectory of y(t) [red line]. (Bottom) The true trajectory of x(t) [gray line] and
the estimated trajectory x̂(t) [blue line]. i = 50 and τ = 50. For the present parameter setting, the relaxation time scale of x(t) is shorter than �t . Therefore, we
use linear-interpolated [y] with to stably integrate Eqs. (17) and (18).
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FIG. 4. Effect of the boundary condition. The boundary condition
{x(i)(0), v(i)(τ )} of model A is varied randomly (n = 20), and the standard
deviations of x̂(t) at each t are plotted. The diminishing times at both bound-
aries are evaluated by fitting exponent functions. x(i)(0) is varied Gaussian
noise with mean y(0), SD = 0.5 [half length of the two stable states]. v(i)(τ )
is varied zero-mean Gaussian noise with the variance 2γ kBT [the same power
of ξ (t)].

Next, we compare the Go-and-Back method with the con-
ventional gradient descent method. We use the same [y] as for
the Go-and-Back method (Fig. 2, top) and adopt the forward-
time centered-space (FTCS) scheme59 for the minimization
of S([x, y]; �). To apply FTCS scheme, the initial and the
boundary conditions are required. For the boundary condition,
we adopt Dirichlet condition {x̂0, x̂τ } = {y0, yτ }, and for the
initial condition, we adopt raw data of [y], or the moving-
averaged trajectories of [y] with different bin sizes in order to
investigate effect of the initial condition.

Figure 6 shows the relaxation property of S([x, y]; �)
between the two methods. In the case of the Go-and-Back
method, after the quick relaxation the value of S fluctu-
ates slightly around the minimum value. In some cases,
we can recognize that the method overcomes large barrier
of S([x, y]; �) (see Figs. S2 and S3 in the supplementary

FIG. 5. Effect of the initial condition. Zero-mean white Gaussian noise with
the variance 0.25 × 2γ kBT is added to the original initial condition of the
Go-and-Back method [Eq. (16)], and the difference between the estimate
from the noise-added initial condition x̂noise(t) and the the original estimate
x̂(t) is evaluated at each t (104 data points). See also Fig. S1 in the supple-
mentary material (Ref. 57).

FIG. 6. Relaxation properties of the action functional S([x, y]; �) in the op-
timization process. (Left) Go-and-Back method. The data is taken from the
numerical experiment shown in Fig. 2 (model A). (Right) Gradient descent
method. We use the same [y] as for the Go-and-Back method (Fig. 2, top). For
the initial condition, we test raw data of [y] and the moving-averaged (MA)
trajectories of [y] with bin sizes 20, 50, 100, and 200. (The time lengths are
0.2, 0.5, 1, and 2, respectively.)

material57).For the present model, i = 15 is enough to con-
verge the solution. Compared to the Go-and-Back method,
as one expects, the gradient descent method requires too
many iteration steps for the relaxation. (The relaxation time
is 104 times slower.) Moreover, the converged value of
S([x, y]; �) in the case of the gradient descent method is
strongly dependent on the initial condition. In the present
case, roughly smoothed data (MA 50) yields the smallest
value of S([x, y]; �), but it is still a little bit larger than that
of the Go-and-Back method. Such a result implies that the op-
timization processes are trapped at the local minima. Indeed,
x̂(t) is varied among the initial conditions. Two examples are
shown in Fig. 7. Even the best optimized solution of the gra-
dient descent method (MA 50), the motion of x(t) cannot be
precisely estimated (Fig. 7, bottom).

We also apply the gradient descent method to model B
and obtain features similar to those observed for model A (see
Figs. S3 and S4 in the supplementary material in Ref. 57).60

IV. CONCLUSION AND DISCUSSION

We developed a method to estimate the most probable
trajectory of the hidden variable from the trajectory of the
probe particle. The method naturally incorporates Langevin
dynamics. Therefore, although the difficulty of the model set-
tings still remains, if we carefully choose the model, we may
extract much more information from experimental data than
using the conventional step analysis.

By use of simple models of single-molecule experiments,
we numerically verify that the proposed method provides us
reasonable estimates. Comparing to the conventional gradient
descent method, our proposed method can successfully
reduce the computational cost more than 103-fold. In the
case of the gradient descent method, the choice of the initial
conditions is crucial for obtaining accurate estimates: the
wrong choice leaves the optimization process trapped at the
local minima. Although we can adopt several techniques,
for example, simulated annealing, to overcome this problem,
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FIG. 7. Two examples of the estimation results of model A by the gradient descent method. The true trajectories of x(t) [gray line], and the estimated trajectories
x̂(t) [blue line] are shown. (Top) The raw data of [y] is adopted for the initial condition. (Bottom) A moving-averaged trajectory of [y] with bin size 50 is adopted
for the initial condition. The orange arrows show the regions where x(t) cannot be precisely estimated. In both figures, i = 105.

case-by-case treatment is required to improve efficiency. In
contrast, our method naturally incorporates an appropriate
initial condition. Besides the simplicity of our coding, the
proposed method only requires a boundary condition, and the
results are quite robust with respect to this choice. Therefore,
our method is easy to use, which is important for general
users.

As we mentioned above, the present model has sev-
eral limitations to apply actual experiments. In the present
model, it is assumed that the friction coefficient of protein
denoted by γ is independent of x(t). This term originates
from the internal friction of protein and the viscous fric-
tion between the protein and the medium. In general, the
internal friction should be varied along the reaction coordi-
nate. Indeed, position-dependent coefficients have been ob-
tained from model systems and several kinds of proteins by
simulation.61–64 Therefore, although the constant approxima-
tion is not valid for all kinds of proteins, our assumption may
be proper for the protein that has a large globular domain and
the entire domain tilts or shifts in its structural transition be-
cause the internal friction is negligible compared to the large
viscous friction.

In addition, the present model assumes that the effective
energy potential of the protein V eff(x) is time independent.
However, recent single-molecule studies on cholesterol
oxidase65 and β-galactosidase66 showed direct evidence that
the enzymatic turnover events are not a Markovian process
but correlated with the previous history. The result indicates
that the protein has slow conformation fluctuations and this
time dependence should be appeared in V eff(x). Although, as
far as we know, the similar slow dynamics has never been
observed in the motor proteins, one has to verify in advance
whether such a slow dynamics presents in the protein of inter-
est. By contrast, if the substrate of the enzymatic reaction is
not abundant in the medium so that the rate limiting step of the
turnover is substrate binding, at least, on and off states should
be incorporated into the model. Namely, V eff(x) should have
two (or more) states and switch stochastically.46, 47, 67, 68 For
this case, new efficient estimation algorithm must be devel-
oped on the basis of the switching state model.

In actual applications of our model to experiments, we
must estimate the parameters of the entire model in advance.
We have proposed a general framework of parameter estima-
tion in the presence of hidden degrees of freedom.36 Accord-

ing to this framework, which is based on Bayesian statistics,
we can precisely estimate the model parameters by maximiz-
ing the marginalized path probability with respect to the pa-
rameters. The marginalized path probability, called a marginal
likelihood, is calculated by integrating all possible trajectories
of the hidden variables. In this calculation, the DRP, or the
MAP estimator in the language of Bayesian statistics, plays
the central role. For the analytical approach, the Wentzel–
Kramers–Brillouin approximation around the MAP estimator
may work well when the temperature of the system is suffi-
ciently small.36, 39 For the numerical approach, we can utilize
the MAP estimator for the initial condition of the Markov-
chain Monte Carlo method.31, 69 By the use of the proposed
method, the next step is to investigate how effectively we can
obtain reasonable estimates of the model and the hidden tra-
jectories simultaneously.
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APPENDIX: PERTURBATION EXPANSION

We expand x(t) and v(t) as

x(t) =
∞∑

i=0

εi x (i)(t), (A1)

v(t) =
∞∑

i=0

εi v (i)(t), (A2)

where we denote the i th order terms of x(t) and v(t) as x (i)(t)
and v (i)(t), respectively, in order to distinguish from x(i)(t)
[Eq. (14)] and v(i)(t) [Eq. (15)].

The zeroth order terms become

γ ẋ (0) = −Gx (x (0), y) + v (0), (A3)

γ v̇ (0) = Gxx (x (0), y) v (0). (A4)
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Gxx (x (0), y) > 0 in typical cases, and thus v (0)(t) will in-
stantly destabilize when we solve Eq. (A4) in the forward-
time direction. In contrast, if we solve Eq. (A4) in the reverse-
time direction, it is expected that v (0)(t) quickly relaxes to
around 0. Therefore, we can naturally assume the approxi-
mation v (0)(t) = 0. Since v (0)(t) is identical to v(0)(t), we in-
troduce the approximation Eq. (16) in the main text.

Owing to this assumption, we can stably solve x (0)(t)
in the forward direction by adopting the initial condition on
x (0)(0).

The first-order terms become

γ ẋ (1) = −Gxx (x (0), y)x (1) + v (1), (A5)

γ v̇ (1) = Gxx (x (0), y)v (1) − kBT Gxxx (x (0), y). (A6)

It is noteworthy that x (1)(t) is not included in Eq. (A6), and
thus we can stably solve Eq. (A6) in the reverse direction.
Then, by substituting v (1)(t) into Eq. (A5), we obtain x (1)(t).

Similarly, the second-order terms become

γ ẋ (2) = −1

2
Gxxx (x (0), y)[x (1)]2 − Gxx (x (0), y)x (2)

+v (2), (A7)

γ v̇ (2) = Gxxx (x (0), y)x (1)v (1) + Gxx (x (0), y)v (2)

−kBT Gxxxx (x (0), y)x (1). (A8)

Again, x (2)(t) is not included in Eq. (A8). Therefore, we ob-
tain v (2)(t) and x (2)(t) by the use of the lower order solutions.
In this way, we can systematically calculate the higher order
terms.

However, as the order number increases, the analyti-
cal solution becomes complicated. We further develop the
method to simplify the algorithm.

We introduce Eqs. (14) and (15). In these defini-
tions, x(0)(t) and v(0)(t) are identical to x (0)(t) and v (0)(t),
respectively.

Next, combining Eqs. (A3) and (A5) leads to

γ ẋ(1) = −Gx (x(1), y) + v(1) + O(ε2), (A9)

and combining Eqs. (A4) and (A6) leads to

γ v̇(1) = Gxx (x(0), y)v(1) − εkBT Gxxx (x(0), y). (A10)

Similarly,

γ ẋ(2) = −Gx (x(2), y) + v(2) + O(ε3), (A11)

γ v̇(2) = Gxx (x(1), y)v(2) − εkBT Gxxx (x(1), y)

+O(ε3). (A12)

In this manner, we obtain the general forms, Eqs. (17) and
(18).
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