1	
2	
3	
4	Contrafreeloading and the value of control over visual stimuli in Japanese macaques
5	(Macaca fuscata)
6	
7	
8	Tadatoshi Ogura ^{a,b}
9	
10	^a Primate Research Institute, Kyoto University, Inuyama, Aichi 484-8506, Japan
11	^b Japan Society for the Promotion of Science, Chiyoda, Tokyo 102-8472, Japan
12	
13	Correspondence to:
14	Tadatoshi OGURA
15	Primate Research Institute, Kyoto University, 41 Kanrin, Inuyama, Aichi 484-8506, Japan
16	Tel: +81-568-63-0567
17	Fax: +81-568-62-2428
18	E-mail: ogura@pri.kyoto-u.ac.jp

19

Abstract

20	Contrafreeloading, which means that animals work for food even though
21	identical food is freely available, has been reported in animals' feeding behavior. This
22	phenomenon has been assumed to be explained by the information primacy model, in
23	which the information about a food resource as well as the food itself is valuable for
24	animals. This study confirmed a contrafreeloading-like phenomenon using movies as
25	rewards rather than food in Japanese macaques (Macaca fuscata) and investigated the
26	motivational system that exists behind contrafreeloading. In the experiment, movies that
27	were presented dependently on subjects' responses (earned movies) and movies that
28	were presented automatically (free movies) were supplied simultaneously. The subjects
29	continued to make responses to obtain the presentation of the earned movies although
30	identical movies were available as free movies. These results provide the first evidence
31	of contrafreeloading that occurs with movie rewards. The motivation maintaining the
32	contrafreeloading behavior for movies may be control over the environment according
33	to the competence theory.
34	Keywords: Contrafreeloading; Control over environment; Japanese macaque; Movie;
35	Sensory reinforcement

36

1. Introduction

38	Contrafreeloading was first reported by Jensen (1963). This is a phenomenon in
39	animals' feeding behavior according to which animals will work (e.g. press a lever) for
40	"earned" food even though identical "free" food can easily be obtained from a nearby
41	dish (see review in Inglis et al. 1997). For example, rhesus macaques worked for
42	biscuits from a food puzzle, from which skillful manipulation with the fingers was
43	required to retrieve the biscuits, although they were also available from an ordinary food
44	box (Reinhardt 1994). This phenomenon has also been found in laboratory pigeons
45	(Neuringer 1969), crows (Powell 1974), laboratory rats (Jensen 1963), grizzly bears
46	(McGowan et al. 2010), and chimpanzees (Menzel 1991). Thus, contrafreeloading exists
47	commonly in a wide variety of taxa in animals.
48	Contrafreeloading appears to contradict a basic tenet of most learning,
49	motivation, and optimal foraging theories, namely that animals strive to maximize the
50	ratio of reward, or benefit, to effort, or cost (Inglis et al. 1997). Inglis et al. (1997)
51	discussed the motivational systems that might exist behind contrafreeloading. They
52	suggested that one possible mechanism to develop contrafreeloading might be an

54 motivated partly by the food itself, and partly by the information about the food

information primacy model. According to this model, animals' work for earned food is

55	resource. The behavior updating their estimate of the profitability of an uncertain food
56	resource is adaptive because some unpredictable environmental change could turn it
57	into the optimal place to feed. Contrafreeloading might be explained by the information
58	primacy model and the motivation to gather information about the food resource.
59	The information primacy model was established based on the fact that
60	contrafreeloading should occur under conditions of using food as rewards. Also, some
61	sensory stimuli can work as incentives for behavior in the sensory reinforcement
62	paradigm (Matsuzawa 1981). Primates can recognize movies' contents (Morimura 2006;
63	Morimura and Matsuzawa 2001). So far, contrafreeloading has been investigated using
64	only food as rewards in nonhuman animals. Here, using a sensory stimulus as a reward,
65	I studied a contrafreeloading-like phenomenon under sensory reinforcement, which
66	enabled me to approach the motivational system of contrafreeloading and might suggest
67	another explanation for contrafreeloading. If contrafreeloading for sensory rewards
68	occurs, animals will work for such stimuli even though identical stimuli can be obtained
69	without such work.
70	

2. Methods

72 2.1. Subjects

73	The subjects were three male Japanese macaques (Macaca fuscata) named
74	Romio, Tim, and Sabu. They were living at the Primate Research Institute of Kyoto
75	University. They were raised by human caretakers because of their mother's death or
76	rejection. Romio (9 years and 3 months old when the experiment was started) was
77	hand-reared from birth. Tim (9 years and 7 months old) was reared by his biological
78	mother at first; however, he was hand-reared by his caretakers after the age of three
79	months. Sabu (approximately 2 years old) was born in the wild. Starting a few months
80	after his birth, he was protected and reared by human caretakers because he was found
81	to be alone and emaciated. The subjects had experienced some psychological studies
82	before this experiment (Murai and Tomonaga 2009; Murai et al. 2004; Ogura and
83	Matsuzawa, unpublished data). At the beginning of this study, all of the subjects had
84	lived in individual cages (175 cm high \times 85 cm wide \times 80 cm long) for more than 1 year.
85	Therefore, the visual environments of the subjects were restricted. In this study, touch
86	responses of the subjects made on a display to obtain the presentation of movies could
87	be maintained by providing movie rewards (Ogura and Matsuzawa, unpublished data).
88	During this experiment, the monkeys could see other monkeys in the same room. The
89	monkeys were fed monkey pellets and sweet potatoes daily at about 10:00 a.m. and 5:00
90	p.m. They could drink water ad libitum. Routine care of the monkeys and experiments

91 were performed in accordance with the guidelines of the Primate Research Institute,92 Kyoto University.

93 2.2. Apparatus

94 Two computer-controlled touch-sensitive displays were used in this study. During the experiment, each monkey's home cage was divided into an upper and a 95lower compartment by inserting a metal board horizontally 50 cm into the cage (Fig. 1). 96 The monkey could move freely between these two compartments. A touch-sensitive 97 display (30.4 cm × 22.8 cm) (model L352T-C-BK, Eizo Nanao, Ishikawa, Japan and 98 model CV516PJ, Totoku electric, Tokyo, Japan) was attached to each compartment. The 99 100 monkeys were allowed to touch the displays through the bars of their cages. The apparatus was attached only during the experiment and was removed at other times. 101 102 _____ 103 Fig. 1 about here 104 -----2.3. Stimuli 105The stimuli were 21.1 cm \times 14.2 cm digitized color movies (720 \times 480 pixels, 106107 MPEG 1 - Layer 2 files) (Fig. 2). They did not include sound. The duration of each 108 movie was 9.5 s. Each stimulus set was composed of 10 movies showing humans and

109	10 movies showing animation characters, because the monkeys showed preferences for
110	these movies in our previous experiments (Ogura and Matsuzawa, unpublished data).
111	The humans in the movies were novel persons for the monkeys. The behaviors of the
112	humans in the movies were walking, working, and conversation with another human.
113	Computer-generated humans were used as the animation movies. The backgrounds of
114	the characters were plain vivid colors. I used four sets of stimuli, and therefore, the total
115	number of stimuli was 80.
116	
117	Fig. 2 about here
118	
119	2.4. Procedures
120	In the experiment, both displays showed movies that could be viewed

In the experiment, both displays showed movies that could be viewed according to different behaviors of the monkeys, namely "free" movies and "earned" movies. As the free movies, one of the displays showed movies in a random order within a stimulus set continuously irrespective of the monkey's response. A session began with a blank screen for 0.5 s with a beep sound, and then, the movie was played for 9.5 s. This routine was continued until the end of the session. As the earned movies, the other display showed movies under a sensory reinforcement paradigm with a

127	conjugate reinforcement condition (Fujita and Matsuzawa 1986; Matsuzawa 1981;
128	Rovee-Collier and Gekoski 1978). In this paradigm, the amount of the reinforcer varies
129	depending on the subject's response. A session began with the appearance of a starting
130	stimulus (a red, blue, or green square, 3.7 cm \times 3.7 cm) at the center of the display.
131	After the subject touched the starting stimulus, a beep sound was played and the starting
132	stimulus disappeared. One second after that, the same movie as the free movie being
133	shown at that same moment was presented in the center of the display as the earned
134	movie. The earned movie was presented as long as the subject touched the movie. If the
135	subject had not touched the movie for 3 s, the beep sound was played and the movie
136	disappeared. One second after that, the start stimulus was presented at the center of the
137	display again. The positions of the two movies (the upper display or the lower display)
138	were randomly changed among the sessions.
139	In this procedure, subjects' touch responses to the displays were recorded by
140	the computer that controlled the presentation of the movies. Also, the subject's position
141	in the cage was video recorded.
142	The sessions started between 2:00 p.m. and 4:30 p.m. and continued for 30 min.
143	Each subject experienced 20 sessions of the experiment, with one session per day.
144	2.5. Statistical analyses

145	The duration that the subject stayed in each compartment was measured using
146	instantaneous sampling with a 1-s interval (Altmann 1974) from the video record. The
147	effects of the presentation procedure on the duration that the subject stayed in each
148	compartment were analyzed using a Generalized Linear Mixed Model (GLMM) (lmer,
149	lme4 library, the freeware package R, Version 2.9.2; R Development Core Team 2009);
150	the model was constructed using a Poisson distribution because the number of the
151	sampling points at which the subject stayed in each compartment was non-negative
152	count data (Dobson 2002). The presentation procedure (free/earned) and the position of
153	the display (upper/lower) were the fixed factors. Individual was included as a random
154	factor. Within the selected model, the numbers of the sampling points at which the
155	subject stayed in each compartment were compared in each subject by using the
156	Wilcoxon rank sum test because the normalities of these data were not confirmed by the
157	Kolmogorov-Smirnov one-sample test ($P < 0.10$). This statistical test provided only an
158	informal test of significance because the data points for a single individual were not
159	independent. Each data point represented one session in each presentation procedure.
160	
161	3. Results

Figure 3 shows the numbers of touch responses to the starting stimulus of the

163	earned movies in each session of each subject. For 20 sessions, the subjects kept
164	touching the starting stimulus, and the presentations of the earned movies were
165	maintained. The proportions of the numbers of touch responses to the starting stimulus,
166	the earned movies, and the black area surrounding the starting stimulus and the movie
167	were 92.4, 6.4, and 1.3 %, respectively. All touch responses were momentary. Sustained
168	touch responses were rarely observed.
169	
170	Fig. 3 about here
171	
172	The duration of staying in each compartment was different depending on the
173	presentation procedure. The mean number of sampling points spent staying in each
174	compartment is shown in Table 1. The Akaike Information Criterion (AIC; Akaike 1974,
175	Dobson 2002) can be used to compare models with different numbers of fitted
176	parameters. The model with the lower AIC is preferred. The model including both the
177	presentation procedure and the playing position as the fixed factors showed the smallest
178	AIC, although all models explained the data well (Table 2). The likelihood ratio test
179	showed a significant difference between the model including the presentation procedure
180	and the model without it as the fixed factor ($\chi^2 = 752.54$, $P < 0.001$). The presentation

181	procedure was a factor affecting the duration of staying in each compartment. Within
182	the selected model, however, only Romio showed a significant difference of the staying
183	duration between the compartments of the earned movies and the free movies (Romio:
184	W = 110, P < 0.05, Tim: $W = 160, P = 0.29$, Sabu: $W = 211, P = 0.78$).
185	
186	Table1 and Table 2 about here
187	
188	
189	4. Discussion
190	Here, the contrafreeloading phenomenon was tested using movie stimuli in
191	monkeys. In this experiment, the subject touched the starting stimulus to obtain the
192	presentation of earned movies, although the identical movies were being played as free
193	movies. Any deviation from complete preference for the free reward suggests some
194	level of contrafreeloading (Inglis et al. 1997). Primates spontaneously manipulate some
195	novel objects even without any incentive (Ehrlich 1970). In the present study, however,
196	the subjects kept making responses to obtain the presentation of earned movies
197	continuously throughout the series of sessions even though the manipulandum was a
198	visual stimulus, not a real object. This finding demonstrated a contrafreeloading-like

199 behavior for movie rewards in Japanese macaques.

200 The presentation procedure might have no significant effect on the value of each compartment. Regarding the duration of staying in each compartment, Romio 201202stayed significantly longer in the compartment with the earned movies than in that with 203the free movies. Tim and Sabu showed no significant difference in the time stayed between the two compartments. None of the subjects stayed preferentially in the 204compartment with the free movies. Therefore, only for Romio, the compartment of 205earned movies had higher value than that of free movie. At least, the free movies did not 206 207 increase the value of the corresponding compartment.

This study showed that contrafreeloading-like behavior occurs in response to 208visual stimuli rewards in Japanese macaques. This implies that control over the 209 210environment may be the motivation behind the earned reinforcers rather than 211information useful for locating an alternative food source in the event of a change in the environment. Contrafreeloading is related to the value of control, according to the 212213competence theory (White 1959), which posits that behavior is primarily directed toward controlling and modifying the environment and that such behavior is 214215self-reinforcing (Singh 1970; Singh and Query 1971). Some previous studies revealed the empirical evidences of the value of control over environment for monkeys. In 216

217	Washburn et al. (1991), the performance of rhesus monkeys on computer tasks that were
218	selected by themselves significantly exceeded performance on identical tasks when
219	assigned by the experimenter. In Hanson et al. (1976), the plasma cortisol level, the
220	stress state indicator, of rhesus monkeys that had control over high intensity noise was
221	significantly lower than that of the monkeys that received identical amounts of high
222	intensity noise but which had no control over the noise. These studies showed the value
223	of control over environment for monkeys, which seems to work as an incentive to the
224	contrafreeloading behavior. The findings of this study, however, do not necessarily
225	contradict the information primacy model, because contrafreeloading for movies might
226	have a different mechanism from contrafreeloading for food. This study provides the
227	first evidence that contrafreeloading occurs with movie rewards.
228	
229	5. Acknowledgments
230	This work was financially supported by a Japan Society for the Promotion of
231	Science fellowship (20-6611) to the author. It was also supported by Ministry of
232	Education, Culture, Sports, Science and Technology grant #16002001 and #20002001 to
233	Tetsuro Matsuzawa, and #19300091 to Masaki Tomonaga, and Japan Society for the
234	Promotion of Science-gCOE Programs A06 and D07 of Kyoto University and HOPE

235	project of the Primate Research Institute. I wish to thank Drs. T. Matsuzawa, M.
236	Tomonaga, M. Tanaka, N. Morimura, and Y. Ueno for their valuable comments. I am
237	grateful to the staff members of the Center for Human Evolution Modeling Research,
238	Primate Research Institute, Kyoto University, for their management of the subjects'
239	health. I also thank various students of the Institute for cooperating in preparing the
240	movie stimuli. This work is a part of the author's Ph. D. thesis. This work complied
241	with the laws of Japan, and housing and feeding conditions were in accordance with the
242	Guide for the Care and Use of Laboratory Primates produced by the Primate Research
243	Institute, Kyoto University (2nd ed., 2002).

245	6. References
246	Akaike H (1974) A new look at the statistical model identification. IEEE Trans Automat
247	Contr 19:716-723
248	Altmann J (1974) Observational study of behavior: Sampling methods. Behav Brain
249	Res 49:227-267
250	Dobson AJ (2002) An introduction to generalized linear models - second edition.
251	Chapman & Hall, London
252	Ehrlich A (1970) Response to novel objects in three lower primates: greater galago,
253	slow loris, and owl monkey. Behaviour 37:55-63
254	Fujita K, Matsuzawa T (1986) A new procedure to study the perceptual world of
255	animals with sensory reinforcement - recognition of humans by a chimpanzee.
256	Primates 27:283-291
257	Hanson JD, Larson ME, Snowdon CT (1976) The effects of control over high intensity
258	noise on plasma cortisol levels in rhesus monkeys. Behav Biol 16:333-340
259	Inglis IR, Forkman B, Lazarus J (1997) Free food or earned food? A review and fuzzy
260	model of contrafreeloading. Anim Behav 53:1171-1191
261	Jensen GD (1963) Preference for bar pressing over freeloading as a function of number
262	of rewarded presses. J Exp Psychol 65:451-454

- Matsuzawa T (1981) Sensory reinforcement: the variety of reinforcers. Jpn Psychol Rev 26324:220-251 (in Japanese with English summary) 264McGowan RTS, Robbins CT, Alldredge JR, Newberry RC (2010) Contrafreeloading in 265266grizzly bears: implications for captive foraging enrichment. Zoo Biol 26729:484-502 268Menzel EW (1991) Chimpanzees (Pan troglodytes) - problem seeking versus the bird-in-hand, least-effort strategy. Primates 32:497-508 269Morimura N (2006) Cognitive enrichment in chimpanzees: an approach of welfare 270271entailing an animal's entire resources. In Matsuzawa T, Tomonaga M, Tanaka M (eds) Cognitive development in chimpanzees, Springer-Verlag, Tokyo, pp 272273368-391 Morimura N, Matsuzawa T (2001) Memory of movies by chimpanzees (Pan 274troglodytes). J Comp Psychol, 115:152-158 275Murai C, Tomonaga M (2009) Fear responses of Japanese monkeys to scale models. J 276277 Ethol 27:1-10 Murai C, Tomonaga M, Kamegai K, Terazawa N, Yamaguchi MK (2004) Do infant 278
- Japanese macaques (*Macaca fuscata*) categorize objects without specific
 training? Primates 45:1-6

- Neuringer AJ (1969) Animals respond for food in the presence of free food. Science
 166:399-401
- 283 Powell RW (1974) Comparative studies of preference for free vs response-produced
- reinforcers. Anim Learn Behav 2:185-188
- 285 Reinhardt V (1994) Caged rhesus macaques voluntarily work for ordinary food.
- 286 Primates 35:95-98
- 287 Rovee-Collier CK, Gekoski MJ (1978) The economics in infancy: a review of conjugate
- 288 reinforcement. In Reese HW, Lipsitt LP (eds) Advances in child development
- and behavior, Vol. 13. Academic Press, New York, pp 195-255
- 290 Singh D (1970) Preference for bar pressing to obtain reward over freeloading in rats and
- children. J Comp Physiol Psychol 73:320-327
- 292 Singh D, Query WT (1971) Preference for work over "freeloading" in children. Psychon
- 293 Sci 24:77-79
- Washburn DA, Hopkins WD, Rumbaugh DM (1991) Perceived Control in
 Rhesus-Monkeys (*Macaca mulatta*) Enhanced Video-Task Performance. J
 Exp Psychol Anim Behav Process 17:123-129.
- 297 White RW (1959) Motivation reconsidered the concept of competence. Psychol Rev
- 298 66:297-333
- 299

300	7. Figure Captions
301	Fig. 1 A monkey's home cage was divided into two compartments, and a touch-sensitive
302	display was attached to each compartment. During the experiment, the monkeys were
303	allowed to move between the compartments and to touch the displays
304	
305	Fig. 2 Examples of the stimulus movies. These photographs show the images at 0, 3, 6,
306	and 9 s from samples of a human movie and an animation movie
307	
308	Fig. 3 Numbers of subjects' touch responses to the starting stimulus of the earned
309	movies in each session. S1, S2, S3, and S4 mean Stimulus set 1, 2, 3, and 4, respectively
310	

Table 1

Mean (\pm SE) number of sampling points spent staying in each compartment

Subject	Free movie	Earned movie	
Romio	680.6	1,119.5	
	(125.2)	(125.2)	
Tim	858.7	941.3	
	(168.4)	(168.4)	
Sabu	935.5	864.5	
	(97.5)	(97.5)	

Table 2

Influence of the variables (i) procedure (free/earned), (ii) position (upper/lower), and

(iii) procedure and position on the staying duration

Staying duration	Z	Р	Model AIC
(i) procedure	27.4	< 0.001	56348
(ii) position	172.4	< 0.001	21119
(iii) procedure	27.4	< 0.001	20369
position	172.4	< 0.001	

The variable "individual" was incorporated as a random effect in all models

0 sec

6 sec

9 sec

3 sec

