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The magnon pumping e�ect in ferromagnetic insulators under an external time-dependent

transverse magnetic �eld is theoretically studied. Generation of a magnon current is discussed

by calculating the magnon source term in the spin continuity equation. This term represents the

non-conservation of magnons arising from an applied transverse magnetic �eld. The magnon

source term has a resonance structure as a function of the angular frequency of the transverse

�eld, and this fact is useful to enhance the pumping e�ect.
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1. Introduction

Recently a new branch of physics and nanotechnology
called spintronics1�3) has emerged and has been attach-
ing special attention from viewpoints of the fundamental
science and application. The aim of spintronics is the
control of the spin as well as charge degrees of freedom
of electrons, and therefore establishing methods for gen-
eration and observation of a spin current is an urgent
issue.
A standard way to generate a spin current is the spin

pumping4�8) e�ect in ferromagnetic-normal metal junc-
tions. There the precession of the magnetization caused
by an external �eld induces a spin current pumped into
a normal metal. This method was theoretically proposed
by R.H.Silsbee et.al6) and Y.Tserkovnyak et.al,9) and
was con�rmed experimentally by S.Mizukami et.al.5) In
a spin Hall system, i.e. in a nonmagnetic semiconductor,
Kato et.al10) reported an observation of a spin current
by measuring optically the spin accumulation which ap-
pears as a result of spin currents at the edge of samples
(GaAs and InGaAs). A critical issue in the observation
of a spin current, however, is that a spin current is not
generally conserved and therefore measuring spin accu-
mulation does not necessarily indicate the detection of a
spin current, in sharp contrast to the case of charge. Non-
conservation of spins is represented by a spin relaxation
torque, Ts, which appears in the spin continuity equa-
tion. For a clear interpretation of experimental results
on a spin current, to understand the relaxation torque is
essential.
The spin current means a �ow of the spin angular mo-

mentum in general, and in metals conduction electrons
carry a spin current. In insulators, there is no conduc-
tion electrons, but there exists an other kind of carrier,
namely, spin-waves, which are collective motions of mag-
netic moments. Experimentally, a spin-wave spin current,
a spin current carried by spin-waves has already been es-
tablished as a physical quantity. Kajiwara11) et.al have
shown that a spin-wave spin current in an insulator can
be generated and detected using direct and inverse spin-
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Hall e�ects. They have revealed the conversion of an elec-
tric signal into spin-waves, and its subsequent transmis-
sion through an insulator over macroscopic distance. The
spin-wave spin current has a novel feature;11) this current
persists for much greater distance than the conduction
electron spin current in metals, which disappears within
very short distance (typically micrometers). For exam-
ple in the magnetic insulator (Y3Fe5O12), the spin-wave
decay length can be several centimetres.
In contrast to the experimental development, theoreti-

cal studies so far of magnon transports are not enough to
explain the experimental result on bulk systems. Meier
and Loss12) have investigated the magnon transport in
both ferromagnetic and antiferromagnetic materials and
found that the spin conductance is quantized in the units
of order (gµB)2/h in the antiferromagnetic isotropic spin-
1/2 chains (g is the gyromagnetic ratio, µB is the Bohr
magneton and h is Planck constant). Wang et.al13) have
investigated a spin current carried by magnons and de-
rived a Landauer-Büttiker-type formula for spin current
transports. They have also studied the magnon trans-
port properties of a two-level magnon quantum dot in
the presence of the magnon-magnon scattering and ob-
tained the nonlinear spin current as a function of the
magnetochemical potential. These theoretical studies of
magnon transports are limited to mesoscopic systems.
From the viewpoint of spintronics, the magnon trans-
port in a macroscopic scale is an urgent and important
subject.
In this paper, we focus on three dimensional ferromag-

netic insulators. The magnon source term, Tm, arising
from a time-dependent transverse magnetic �eld is de-
rived microscopically through Heisenberg's equation of
motion. We evaluate it by using Green's function with-
out relying on the phenomenological equation, Landau-
Lifshitz-Gilbert equation. This is the main aim of this
paper. The emergence of this term is in sharp contrast
to a charge current and represents the non-conservation
of the magnon number.
This paper is structured as follows. In �2.1, we repre-

sent spin variables of a ferromagnetic insulator by boson
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creation/annihilation operators via Holstein-Primako�
transformation. We then apply a time-dependent trans-
verse magnetic �eld. This magnetic �eld generates the
magnon source term, which breaks the magnon conser-
vation law in the spin continuity equation. In �2.2 and
�2.3, by evaluating the magnon source term at the low-
temperature limit, the dependence of the magnon source
term on the angular frequency of a transverse magnetic
�eld is calculated. The magnon source term has a res-
onating behavior when the angular frequency of an ex-
ternal transverse magnetic �eld is tuned. In �2.4, the
temperature dependence of the magnon source term is
argued. Through the analogy with the usual conduc-
tion electrons' spin pumping e�ect, the possibility for
the magnon pumping is discussed in �3.

2. Magnon Source Term

2.1 De�nition

We consider a ferromagnetic Heisenberg model in
three dimensions. It reduces to a free boson system via
Holstein-Primako� transformation if we approximate the
spin as (S : the length of a spin) ; Sz = S−a†a, (S+)† =
S− = (2S)1/2a†[1 − a†a/(2S)]1/2 ' (2S)1/2a†. Here op-
erators a†/a are magnon creation/annihilation operators
satisfying the bosonic commutation relation. Therefore
in the continuous limit, a three-dimensional ferromag-
netic insulator with an external magnetic �eld along the
quantization (z) axis is described at low magnon density
limit as

H0 = HHeisen + HB

=
∫

d3xa†(xt)
(
− ~2∇2

2mmag
+ gµBB̃

)
a(xt).

(1)

Here mmag is the e�ective mass of a magnon and it is
represented by a ferromagnetic exchange coupling con-
stant in the discrete model, J , and the (square) lattice
constant, a0, as ~2/(2mmag) = 2JSa0

2. In eq.(1), B̃ is a
constant external magnetic �eld along the quantization
axis (z-axis), g is g-factor and µB is Bohr magneton.
From now on including g-factor and Bohr magneton, we
write an external magnetic �eld as gµBB̃ ≡ B. We then
apply a time-dependent transverse magnetic �eld with
an angular frequency, Ω, and a constant �eld strength,
Γ0, to x-axis as Γ(t) = Γ0cosΩt.

VΓ(t) = Γ(t)
∫

d3xSx(x)

' Γ(t)
∫

d3x(
S

2
)1/2

[
a(xt) + a†(xt)

]
.

(2)

The total Hamiltonian is H = H0 + VΓ(t).
The magnon density, ρm(x), of the system is de�ned as

the expectation value of the number operator of magnons

ρm(x, t) ≡ 〈a†(x, t)a(x, t)〉. (3)

Through Heisenberg's equation of motion, the magnon
current density, jm, and the magnon source term, Tm,

are de�ned as

∂ρm
∂t

=
1
i~

[ρm,H]

= −∇ · jm + Tm.

(4)

Here the magnon current density arises from the free
part; [ρm,H0]/(i~) = −∇ · jm. It reads

jµ
m(x, t) =

~
mmag

Re
[
i < (∂µa†(xt))a(xt) >

]
, (5)

where µ is a direction for a magnon current to �ow
(µ = x, y, z). The magnon source term, which represents
the breaking of magnon conservation, arises from a trans-
verse magnetic �eld as [ρm, VΓ]/(i~) ≡ Tm, i.e.,

Tm(t) = − (2S)1/2

~
Im

〈
Γ(t)a(xt)

〉
.

(6)

From now on, we treat VΓ(t) as a perturbation (i.e. a
weak transverse magnetic �eld) and study the e�ects of a
time-dependent transverse magnetic �eld to the magnon
source term.

2.2 Evaluation

Through the standard procedure of the Keldysh (or
contour-ordered) Green's function,14�16) the Langreth
method,17,18) the magnon source term is evaluated (see
also APPENDIX ) as

< Γ(t)a(t) >=
∫

d3x′
∫

dt′Γ(t)Γ(t′)(
S

2
)1/2Gr(t, t′)

+O(Γ3).
(7)

Here Gr is the retarded Green's function and we have
neglected terms which are third-order in Γ, which is jus-
ti�ed at the low magnon density regime.
The retarded Green's function is Gr(rr′, tt′) =

(~/V )
∑

k

∫
(dω/2π)eik·(r−r′)−iω(t−t′)Gr

k,ω, and

Gr(k, ω) = [~ω − ωk + i~/(2τ)]−1. Here V is a volume
of the system. The lifetime τ represents the damping of
spins (τ is inversely proportional to the Gilbert damping
parameter,17) α). The energy ωk corresponds to the free
part, H0, and therefore ωk = Dk2+B, D ≡ ~2/(2mmag).
Then the magnon source term is calculated as

Tm =
Γ2

0

4~V
S

[ ~
2τ + (~Ω + B)sin2Ωt + ~

2τ cos2Ωt
(~Ω + B)2 + ( ~

2τ )2

+
~
2τ + (~Ω − B)sin2Ωt + ~

2τ cos2Ωt
(~Ω − B)2 + ( ~

2τ )2

]
.

(8)

The time average of Tm becomes

T̄m =
Γ2

0

4~V
S

[ ~
2τ

(~Ω + B)2 + ( ~
2τ )2

+
~
2τ

(~Ω − B)2 + ( ~
2τ )2

]
.

(9)

It is clear that T̄m is positive (for �nite temperature, see
eq.(16) in �2.4).
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2.3 Resonance

We de�ne a dimensionless quantity T̄ (Ω)
m as

T̄ (Ω)
m ≡ 1

(2τΩ + 2τB
~ )2 + 1

+
1

(2τΩ − 2τB
~ )2 + 1

, i.e.,

T̄m =
Γ2

0

4~V
S · 2τ

~
T̄ (Ω)
m .

(10)

This shows that the magnon source term has a resonance
structure with a time-dependent transverse magnetic
�eld when the angular frequency is tuned as Ω = B/~
(see Fig.1). This resonance is useful for the enhancement
of the magnon pumping.
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Fig. 1. A graph of T̄ (Ω)
m , which represents the angular frequency

dependence of the magnon source term. Parameters we have used
are, 2τΩ ≡ t, τ = 2×10−6[s], B̃ = 1[G], g = 1. Therefore 2τB/~
is 35. This T̄ (Ω)

m has a sharp peak around t = 35. This fact means
that the magnon source term has a resonance structure with the
applied transverse magnetic �eld.

2.4 Temperature dependence

Let us look into the temperature dependence of the
magnon source term. To do this, we include the interac-
tion of third-order in magnon operators. Then VΓ(t) is
rewritten as

VΓ(t) = Γ(t)
∫

d3xSx(x)

' Γ(t)
∫

d3x(
S

2
)1/2

{
a(xt) + a†(xt)

− 1
4S

[
a†(xt)a†(xt)a(xt) + a†(xt)a(xt)a(xt)

]}
,

(11)

and the magnon source term reads

Tm(t) = − (2S)1/2

~
Im

〈
Γ(t)

[
a(xt) +

a†(xt)a†(xt)a(xt)
4S

]〉
.

(12)

Eq.(12) is calculated as

< Γ(t)a(t) > =
∫

d3x′
∫

dt′Γ(t)Γ(t′)
[
(
S

2
)1/2Gr(t, t′)

− i

2(2S)1/2
Gr(t, t′)G<(t′, t′)

]
+ O(Γ3),

(13)

<
Γ(t)
4S

a†(t)a†(t)a(t) > =
i

2(2S)1/2

∫
d3x′

∫
dt′

· Γ(t)Γ(t′)Ga(t′, t)G<(t, t) + O(Γ3).
(14)

Here Ga and G< are the advanced and lesser Green's
functions, respectively. Because we focus on the behav-
ior of the magnon source term at low temperature that
we have neglected higher terms than the fourth-order in
respect to magnon creation/annihilation operators. Thus
though the magnon-magnon interaction term arises from
HHeisen as the O(S0) term, within this approximation
the term does not a�ect the magnon source term Tm.
The Fourier transform of the lesser Green's function sat-
is�es, G<(k, ω) = −fB(ωk)[Ga(k, ω) − Gr(k, ω)], where
Ga(k, ω) = [~ω − ωk − i~/(2τ)]−1. Then Tm is calculated
as

Tm =
Γ2

0

4~V

[
S −

(
1 +

1
23/2

e−βB
)
e−βB

( kBT

4πD

)3/2
]

·
[ ~

2τ + (~Ω + B)sin2Ωt + ~
2τ cos2Ωt

(~Ω + B)2 + ( ~
2τ )2

+
~
2τ + (~Ω − B)sin2Ωt + ~

2τ cos2Ωt
(~Ω − B)2 + ( ~

2τ )2

]
,

(15)

where β−1 is kBT (kB : Boltzmann con-
stant). Here we have approximated the sum-
mation over the Bose distribution function as,
[(2π)3/V ]

∑
k fB(ωk) = 2π

∫ ∞
−∞ dkk2[eβ(Dk2+B)−1]−1 '

2π
∫ ∞
−∞ dk k2e−β(Dk2+B)[1 + e−β(Dk2+B)].

The time average of Tm becomes

T̄m =
Γ2

0

4~V

[
S −

(
1 +

1
23/2

e−βB
)
e−βB

( kBT

4πD

)3/2
]

·
[ ~

2τ

(~Ω + B)2 + ( ~
2τ )2

+
~
2τ

(~Ω − B)2 + ( ~
2τ )2

]

=
Γ2

0

4~V

2τ

~
T̄ (Ω)
m T̄ (T )

m ,

(16)

where

T̄ (T )
m ≡ S −

(
1 +

1
23/2

e−βB
)
e−βB

( kBT

4πD

)3/2

, (17)

is the temperature-dependent part and T̄ (Ω)
m is de�ned in

eq.(10). When the temperature gets higher, the magnon
source term decreases. This means that quantum and
thermal �uctuations act in the opposite way, namely to
increase and decrease the magnon source term, respec-
tively. It is clear that eq.(16) reduces at the zero temper-
ature to eq.(9).
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3. Magnon Pumping

The spin pumping is an e�ect widely used to cre-
ate a spin current by use of the magnetization preces-
sion.4�8) Experiments have been carried out in junctions
of metallic ferromagnets and nonmagnetic metals. Ac-
cording to the theory by Y.Tserkovnyak and A.Brataas,9)

the spin current pumped through the junction reads
Ipump
s = [~/(4π)][Arm × (dm/dt) − Ai(dm/dt)], where

m is the magnetization direction of a localized spin and
Ar, Ai are the interface parameters. This result is un-
derstood by considering the spin continuity equation,
∇· js = −(∂m/∂t)+Ts, where js is the spin current den-
sity and Ts is the spin relaxation torque. In fact, the spin
continuity equation indicates that a spin current is gener-
ated when the magnetization is dynamic and/or when Ts
is �nite. It has been well-known17) that the main term of
spin relaxation torque, Ts, has the form Ts ∝ m×(dm/dt)
in metals. The pumping formula for Ipump

s in metals is
thus understood from the spin continuity equation. The
relaxation torque plays an essential role in spin pump-
ing in metals, and it is expected to be dominant also in
the spin pumping in insulating ferromagnets. Our cal-
culation of the relaxation torque term (i.e. the magnon
source term) thus describes the spin pumping e�ect in
insulators.
We have revealed that the magnon source term has a

sharp peak around Ω = B/~, as a result of the resonance
with a time-dependent transverse magnetic �eld when
the angular frequency is appropriately adjusted as Ω =
B/~. This fact is useful to enhance the magnon pumping
e�ect because the external magnetic �eld, B, and the
angular frequency of a transverse magnetic �eld, Ω, is
under our control.
Experimentally, the magnon pumping e�ect we have

discussed can be identi�ed by observing the tempera-
ture dependence of the pumped magnon current when B

is zero; (the pumped magnon current) ∝ T̄ (T )
m ∝ (A1 −

A2T
3/2), where A1 and A2 are constants (see Fig.2 ).

Nonmagnetic

x z 

mT

insulator Ferromagnetic

insulator

Pumped 
magnon current ( )

Fig. 2. (Color online) A schematic picture of the magnon pump-
ing by a time-dependent transverse magnetic �eld. Thick and
short solid arrows represent localized spins, and thin and long
ones external magnetic �elds. Circles represent magnons. By way
of resonance with a time-dependent transverse magnetic �eld, the
magnon source term is enhanced, and an enhanced magnon cur-
rent is pumped from the ferromagnetic insulator to the adjacent
nonmagnetic insulator.

4. Summary

We have studied theoretically the magnon source term
which represents the breaking of the magnon conser-
vation law. We have revealed that the magnon source
term has a resonance structure with an external time-
dependent transverse magnetic �eld when the angular
frequency of the applied magnetic �eld is tuned. This
fact will be useful to enhance the magnon pumping ef-
fect in insulators. This magnon pumping e�ect is a new
method for a generation of a magnon current (spin-wave
spin current) without the gradient of an external mag-
netic �eld.
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Appendix: Calculation of Equation.(7)

In this section, we brie�y show the Langreth method,
which is useful to evaluate the perturbation expansion of
the Keldysh ( or contour-ordered) Green's function. For
simplicity here, we evaluate the magnon source term at
zero temperature, eq.(7), as an example;

VΓ(t) ' Γ(t)
∫

d3x(
S

2
)1/2

[
a(xt) + a†(xt)

]
,

Tm(t) = − (2S)1/2

~
Im

〈
Γ(t)a(xt)

〉
.

(A·1)

We have only to estimate < a(xt) >. It is evaluated as

< a(τ) > =
〈
Tc a(τ)exp

[
− i

∫
c

dτ ′VΓ(τ ′)
]〉

' −i(
S

2
)1/2

∫
d3x′

·
∫
c

dτ ′Γ(τ ′)
〈
Tc a(xτ)a†(x′τ ′)

〉
≡ −i(

S

2
)1/2

∫
d3x′I.

(A·2)

Here Tc is the path-ordering operator de�ned on the
Keldysh contour, c (see Fig.A·1). We express the Keldysh
contour as a sum of the forward path, c→, and the back-
ward path, c←; c = c→+c←. The integral on the Keldysh
contour of eq.(A·2), I, is executed by taking an identity
into account ∫

c

dτ c =
∫
c→

dτ→ +
∫
c←

dτ←,
(A·3)
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as

I = i

∫ ∞

−∞
dτ ′Γ(τ ′)

[
Gt(τ, τ ′) − G<(τ, τ ′)

]
. (A·4)

Here Gt is the time-ordered Green's function. By using
the relation, Gr(t, t′) = Gt(t, t′) − G<(t, t′), we obtain
eq.(7).

Fig. A·1. Keldysh contour, c. We have taken τ on forward path,
c→. Even when τ is located on backward path, c←, the result of
this calculation is invariant because each Green's function, Gr,
Ga, G<, G> (the greater Green's function ), is not independent;
they obey, Gr− Ga = G> −G<. Both the forward and backward
paths are actually on the real axis but shifted slightly upwards
and downwards, respectively, to distinguish them clearly.
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