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Abstract. We consider the generalized Nash equilibrium problem (GNEP), in which
each player’s strategy set may depend on the rivals’ strategies through shared con-
straints. A practical approach to solving this problem that has received increasing
attention lately entails solving a related variational inequality (VI). From the view-
point of game theory, it is important to find as many GNEs as possible, if not all of
them. We propose two types of parametrized VIs related to the GNEP, one price-
directed and the other resource-directed. We show that these parametrized VIs inherit
the monotonicity properties of the original VI and, under mild constraint qualifica-
tions, their solutions yield all GNEs. We propose strategies to sample in the parameter
spaces and show, through numerical experiments on benchmark examples, that the
GNEs found by the parametrized VI approaches are widely distributed over the GNE
set.

Key words. Generalized Nash equilibrium, variational inequality, Karush-Kuhn-
Tucker condition, Lagrange multiplier, price-directed parametrizations, resource-directed
parametrizations.

1 Introduction

The generalized Nash equilibrium problem (GNEP) is a generalization of the standard
Nash equilibrium problem (NEP), in which each player’s strategy set may depend on
the rivals’ strategies [1, 13, 29]. Recently, the GNEP has attracted growing atten-
tion [8, 20] because there are many interesting applications in the fields of economics,
mathematics and engineering. For example, Robinson [25, 26] discussed a two-sided
game model of combat as an application of GNEP. Wei and Smeers [32] and Hobbs
[16] formulated oligopolistic electricity models as GNEPs.

It is well known that NEP where each player solves a convex programming problem
can be formulated as a finite-dimensional variational inequality (VI) [9, 14]. The VI
has a long history and many solution methods have been proposed; see, e.g., the
monograph [9]. On the other hand, GNEP can be formulated as a quasi-variational
inequality (QVI) [13, 24]. However, unlike the VI, there are only few methods available
for solving a QVI efficiently [23, 24].
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Pang and Fukushima [24] proposed a penalty method for GNEP, which solves a se-
quence of penalized NEPs. Facchinei and Pang [10] proposed an exact penalty method
for GNEP. Fukushima [12] proposed another penalty method for finding a particular
GNE called a restricted GNE.

A special class of GNEPs that has received increasing attention lately is that of
“shared constraints”, which means the constraint functions that depend on rivals’
strategies are identical among all players. A solution of such a GNEP can be found
via a VI rather than solving a QVI directly [6, 7, 32]. Specifically, Wei and Smeers
[32] formulated an oligopolistic electricity model as a GNEP with shared constraints,
presented a VI formulation whose solution is a GNE, and established the uniqueness
of GNE under some restrictive assumptions. Facchinei et al. [7, Subsection 3.2] also
studied a GNEP with shared constraints and proposed to apply a semismooth Newton
method to solve its VI formulation. This approach seems promising because we can
find a GNE by solving a single VI. However, the GNE found is special in that the
multipliers for the shared constraints are identical for all players; also see [6]. Such
a GNE is an example of a normalized equilibrium introduced by Rosen [29]; also see
Subsection 3.3. In general, GNEP can have multiple, or even infinitely many, solutions
[13]; also see Subsection 4.3. In fact, this may be common since the players usually
have different objective functions, so the multipliers for the shared constraints need not
be equal. In such a case, the VI formulation considered in [6, 32] and [7, Subsection
3.2] may fail to find some important GNEs. The Levenberg-Marquardt-type method
proposed in [7, Subsection 3.3] can find other GNEs, but the GNEs must satisfy strict
complementarity and local convergence requires a local error bound to hold.

Another approach to solving GNEP involves minimizing the Nikaido–Isoda function
[22] using descent methods [15, 19, 20, 29, 30]. Rosen [29] proposed a gradient method
to minimize a weighted Nikaido–Isoda-type function. Uryasev and Krawczyk [19, 30]
proposed a relaxation method and established its global convergence under a weak
convexity-concavity assumption and assumptions on a certain residual term that are
not easily verified; also see [20] and references therein. Very recently, von Heusinger and
Kanzow [15] proposed a regularization of the Nikaido–Isoda function and reformulated
a GNEP with shared constraints as a smooth optimization problem. See [8] for a survey
of these and other methods for solving GNEP.

From the practical viewpoint of game theory, it is important to find, if not all,
then a set of widely distributed GNEs to convey the possible outcomes [31, Section
15.7]. To our knowledge, no practical method had been previously proposed to achieve
this. The aforementioned approaches typically find only one GNE. In this paper we
propose two approaches to finding such GNEs in the case of shared constraints. These
approaches are based on parametrized VIs, one price-directed and the other resource-
directed, whose solutions include all GNEs. Both approaches extend the VI approaches
studied in [6, 7, 32], and they complement each other by sampling GNEs in different
faces of the feasible set.

The paper is organized as follows. In the next section, we recall some definitions
and basic concepts. In Section 3, we describe the price-directed and resource-directed
parametrized VIs, which are in some sense dual to each other, and derive necessary
and sufficient conditions for the solution of these VIs to be GNEs. We also relate the
solutions of the price-directed parametrized VIs to normalized equilibria [29], which

2



may be viewed as the solutions of a restricted parametrized family of VIs involving
weights on the players’ objective functions. Sampling strategies in the parameter space
are discussed. In Section 4, we describe implementation of the proposed approaches
and report some promising numerical results on three benchmark GNEPs. We conclude
with some remarks in Section 5.

We use the following notations throughout the paper. For a nonempty closed convex
set X ⊆ <n, NX(x) = {d ∈ <n | dT (y − x) ≤ 0 ∀y ∈ X} denotes the normal cone to
X at x ∈ X. For a function f : <n × <m → <, f(x, ·) : <m → < denotes the function
with x being fixed. We denote the non-negative and positive orthants in <n by <n

+ and
<n

++, respectively, that is,

<n
+ := {x ∈ <n | x ≥ 0} and <n

++ := {x ∈ <n | x > 0}.

For vectors x, y ∈ <n, 〈x, y〉 denotes the inner product defined by 〈x, y〉 := xT y and
x ⊥ y means 〈x, y〉 = 0. For a vector x, ‖x‖ denotes the Euclidean norm defined by
‖x‖ :=

√
〈x, x〉. A mapping F : <n → <n is said to be monotone on a nonempty

closed convex set X ⊆ <n if

〈F (x)− F (y), x− y〉 ≥ 0 ∀x, y ∈ X,

strictly monotone on X if the above inequality is strict whenever x 6= y, and strongly
monotone on X if zero on the right-hand side of the above inequality is replaced by
α‖x− y‖2 for some constant α > 0.

2 Problem Formulation and Assumptions

The generalized Nash game with N players is to find a profile of strategies such that
each player’s strategy is an optimal response to the rival players’ strategies, where each
player’s strategy set may depend on the rival players’ strategies. For ν = 1, . . . , N ,
let xν ∈ <nν be a player ν’s strategy, where nν is a positive integer. The vector
formed by all these strategies is denoted x := (xν)

N
ν=1 ∈ <n, where n :=

∑N
ν=1 nν ,

and the vector formed by all the players’ strategies except those of player ν is denoted
x−ν := (xν′)

N
ν′=1, ν′ 6=ν ∈ <n−ν , where n−ν := n−nν . For ν = 1, . . . , N , let Kν be a given

point-to-set mapping from <n−ν to <nν . Thus, for each fixed x−ν , Kν(x−ν) is a subset
of <nν , which is the strategy set of player ν with the other players’ strategies given by
x−ν .

Each player ν = 1, . . . , N , taking the other players’ strategies x−ν as exogenous
variables, solves the minimization problem:

Pν(x−ν) : minimizexν θν(xν , x−ν)

subject to xν ∈ Kν(x−ν),
(1)

where θν : <n → < is a given cost function of player ν. A vector x = (xν)
N
ν=1 is said to

be feasible to GNEP if xν ∈ Kν(x−ν) for each ν = 1, . . . , N .
The GNEP is to find a vector x∗ = (x∗ν)

N
ν=1 ∈ <n such that

x∗ν is an optimal solution of Pν(x
∗
−ν) for all ν = 1, . . . , N. (2)
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A vector x∗ satisfying (2) is called a generalized Nash equilibrium (GNE). The set of

GNEs is denoted by SOL
GNEP

.
In many practical applications, the strategy set Kν(x−ν) of player ν is represented

by finitely many inequality constraints. We will consider the important case of “shared
constraints”, that is, all players share joint constraints that depend on all the players’
strategies. Specifically, we assume that the feasible strategy set Kν(x−ν) of player ν
has the form

Kν(x−ν) = {xν ∈ Xν | g(x) ≤ 0}, (3)

where g = (gi)
m
i=1 : <n → <m and Xν ⊆ <nν , with a positive integer m. Thus, player

ν’s strategy is constrained in two ways; joint constraints that depend also on the other
players’ strategies, i.e., g(x) ≤ 0, and individual constraints that depend only on player
ν’s strategy, i.e., xν ∈ Xν . (A more general model involves individual joint constraints
gν(x) ≤ 0 for each player ν instead of shared constraints. It is an open question whether
our results can be extended to this more general model.)

In what follows, we let

X−ν :=
N∏

ν′=1
ν′ 6=ν

Xν′ .

We distinguish these two types of constraints since our parametrization will involve
only the joint constraints. Throughout this paper, we make the following blanket
assumption on the smoothness and convexity of functions involved in the GNEP.

Assumption A. For ν = 1, . . . , N , the set Xν is nonempty, closed, convex, and,
for each fixed x−ν ∈ X−ν, the function θν(·, x−ν) is differentiable and convex. Also,
g1, . . . , gm are differentiable and convex.

Assumption A is reasonable and is satisfied by Harker’s example [13], a river basin
pollution game [19, Section 5.3], electricity market models [4, Section IV.B], [16], [24,
Section 5.3], [32, Section 1], and an internet switching model [6, Section 5]. By As-
sumption A, problem (1) is a differentiable convex programming problem. Thus a
necessary and sufficient condition for x∗ν ∈ Kν(x

∗
−ν) to be optimal for (1) is that the

inequalities
〈∇xνθν(x

∗
ν , x

∗
−ν), xν − x∗ν〉 ≥ 0 ∀xν ∈ Kν(x

∗
−ν)

hold. Thus, by defining

F (x) := (∇xνθν(x))N
ν=1 , (4)

K(x) :=
N∏

ν=1

Kν(x−ν),

it follows that x∗ is a GNE if and only if x∗ ∈ K(x∗) and

〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ K(x∗).

The latter problem is a QVI.
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Suppose that x∗ is a solution of GNEP. Then, for each ν = 1, . . . , N , x∗ν is an
optimal solution of the convex programming problem:

Pν(x
∗
−ν) : minimizexν θν(xν , x

∗
−ν)

subject to g(xν , x
∗
−ν) ≤ 0, xν ∈ Xν .

Under a suitable CQ at x∗ (see, e.g., [2, Section 5.4], [28]), there exists for each ν =
1, . . . , N a vector λ∗ν ∈ <m satisfying the Karush-Kuhn-Tucker (KKT) condition:

0 ∈ ∇xνLν(xν , x
∗
−ν , λν) + NXν (xν),

0 ≤ λν ⊥ g(xν , x
∗
−ν) ≤ 0, xν ∈ Xν ,

(5)

where the Lagrangian function Lν is defined by

Lν(x, λν) := θν(x) + 〈g(x), λν〉.
The vector λ∗ = (λ∗ν)

N
ν=1 ∈ <Nm is called a Lagrange multiplier vector. Under As-

sumption A, if (x∗, λ∗) satisfies (5), then x∗ is a GNE. A well-known CQ at x is the
Mangasarian-Fromovitz CQ (MFCQ) [28, page 198]: For ν = 1, . . . , N,

{
0 ∈ ∇xνg(x)λν + NXν (xν),

0 ≤ λν ⊥ g(x) ≤ 0, xν ∈ Xν

}
=⇒ λν = 0,

where

∇xνg(x) :=
(∇xνg1(x), · · · ,∇xνgm(x)

)
.

Another useful CQ at x is the Linear Independence CQ (LICQ): For ν = 1, . . . , N,
{

0 ∈ ∇xνg(x)λν + NXν (xν) + (−NXν (xν)),
λν ⊥ g(x∗) ≤ 0, xν ∈ Xν

}
=⇒ λν = 0. (6)

This CQ implies uniqueness of the multiplier vector λ∗ for each x∗.

3 Parameterized VI Approaches to GNE

In this section, we propose two approaches, based on parametrized VI, for finding all
GNEs.

We begin by noting that (x∗, λ∗) ∈ <n × <Nm satisfies the KKT condition (5) if
and only if (x∗, λ∗) satisfies

0 ∈ ∇xνθν(x) +∇xνg(x)λν + NXν (xν), ν = 1, . . . , N,

0 ≤ λν ⊥ g(x) ≤ 0, xν ∈ Xν , ν = 1, . . . , N.
(7)

Also note from the complementarity condition that gi(x) < 0 implies that λν,i = 0 for
all ν = 1, . . . , N and λν,i > 0 for some ν implies that gi(x) = 0.

The VI approach to finding a GNE [6, 7, 32] is to define

X := {x ∈ <n | g(x) ≤ 0} ∩
N∏

ν=1

Xν ,
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which is a closed convex set, and solve the following VI (F, X):

Find x∗ ∈ X such that 〈F (x∗), x− x∗〉 ≥ 0 ∀x ∈ X,

where F : <n → <n is defined by (4). The solution set of VI (F,X) is denoted by
SOL (F,X) 5. A vector x∗ belongs to SOL (F, X) if and only if it is an optimal solution
of the convex programming problem:

minimizex 〈F (x∗), x〉
subject to x ∈ X,

(8)

whose KKT condition is a special case of (7) with λ1 = · · · = λN . Specifically, the
following result is known [7, Theorem 3.6] (also see [32, Theorem 2] and [6, Theorem
2.1]).

Theorem 3.1. Every x∗ ∈ SOL (F,X) is a GNE. Furthermore, if x∗ together with
some Lagrange multiplier vector λ̄ ∈ <m satisfies the KKT condition for (8), then x∗

and λ∗ = (λ∗ν)
N
ν=1 with λ∗1 = · · · = λ∗N = λ̄ satisfy (7).

In many practical situations, since the players have different objective functions
as well as their own constraints, the multipliers for the shared constraints in GNEP
may not be identical. Therefore, in general, there would be many GNEs that are not
solutions of VI (F, X). This is illustrated in the following example.

Example 1. Consider the two-person game, where the problems of player 1 and player
2 are defined by

P1(x2) : minimizex1 x2
1 − x1x2 − x1

subject to x1 ≥ 0
x1 + x2 ≤ 1,

and

P2(x1) : minimizex2 x2
2 − 1

2
x1x2 − 2x2

subject to x2 ≥ 0
x1 + x2 ≤ 1,

respectively. The set of GNEs consists of infinitely many vectors(
x1

x2

)
=

(
t

1− t

)
, 0 ≤ t ≤ 2

3
.

On the other hand, the corresponding F : <2 → <2 and X ⊆ <2 are given by

F (x) =

(
2x1 − x2 − 1
−1

2
x1 + 2x2 − 2

)
, X = {x ∈ <2

+ | x1 + x2 ≤ 1},

and the solution of VI (F,X) is uniquely given by x = ( 4
11

, 7
11

)T .

In this example, the mapping F is strongly monotone and hence SOL (F, X) is
a singleton [9], but there are infinitely many GNEs. Uniqueness of GNE requires
restrictive assumptions [13, 32] which cannot be expected to hold in most applications.
In general, the above VI approach can find only a part of the GNEs.

5A solution of VI (F,X) is called a variational equilibrium in [8] and is shown to be a particular
instance of a normalized equilibrium introduced by Rosen [29]. In Section 3.3, we will discuss the
relationship between normalized equilibria and solutions of the parametrized VI.
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3.1 Price-Directed Parametrization

Now, we construct a family of VIs that contains VI (F,X) as a particular instance. Let
ω = (ων)

N
ν=1 ∈ <Nm

+ , with ων ∈ <m
+ , ν = 1, . . . , N , be a vector of parameters. Define

the function F ω : <n → <n by

F ω(x) := (∇xνθν(x) +∇xνg(x)ων)
N
ν=1 . (9)

Note that VI (F ω, X) reduces to VI (F, X) if the parameter ω is set to zero. Moreover,
just as VI (F, X) corresponds to the GNEP (1) with the feasible strategy sets given by
(3), VI (F ω, X) corresponds to the parametrized GNEP in which player ν’s optimization
problem is given by

minimizexν θν(xν , x−ν) + 〈g(xν , x−ν), ων〉
subject to g(xν , x−ν) ≤ 0, xν ∈ Xν .

Here ων may be viewed as unit prices that player ν pays for the shared resources. The
following proposition shows that, under appropriate assumptions, the monotonicity of
F implies the monotonicity of F ω for any ω ∈ <Nm

+ .

Proposition 3.1. Assume that F is monotone (strictly monotone, strongly monotone)
on X. Assume further that the shared constraint function g is separable, that is, g(x)
can be written as

g(x) =
N∑

ν=1

gν(xν), (10)

where gν = (gν,i)
m
i=1 : <nν → <m, ν = 1, . . . , N , are differentiable convex functions.

Then, for any ω ∈ <Nm
+ , F ω is also monotone (strictly monotone, strongly monotone)

on X.

Proof. Since g is separable, we have

F ω(x) = F (x) + (∇gν(xν)ων)
N
ν=1 .

For each ν = 1, . . . , N and i = 1, . . . , m, ∇gν,i is monotone on Xν since gν,i is a
differentiable convex function. Therefore F ω is monotone (strictly monotone, strongly
monotone) on X for any ω ∈ <Nm

+ .

Under the assumptions of this proposition, we can apply, for example, Newton-
type or projection-type methods to solve VI (F ω, X); see [9] and references therein. A
sufficient condition for F to be strictly monotone in the setting of spatial oligopolistic
electricity models is given in [32, Theorems 5 and 6].

We now investigate the relationship between VI (F ω, X) and GNEP. The KKT
condition for VI (F ω, X) can be written as

0 ∈ (∇xνθν(x) +∇xνg(x)ων) +∇xνg(x)π + NXν (xν), ν = 1, . . . , N,

0 ≤ π ⊥ g(x) ≤ 0, xν ∈ Xν , ν = 1, . . . , N.
(11)

For each GNE x, let

Λ(x) := {λ ∈ <Nm | (x, λ) satisfies the KKT condition (7)}.
By comparing the KKT condition (11) with (7), we have the following result.
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Theorem 3.2. For any GNE x∗, if λ∗ ∈ Λ(x∗), then x∗ ∈ SOL (F λ∗ , X).

Proof. Fix any GNE x∗, and assume that λ∗ ∈ Λ(x∗). Then (x∗, λ∗) satisfies the
KKT condition (7). This in turn shows that (x∗, 0) satisfies the KKT condition for
VI (F λ∗ , X) and hence x∗ is a solution of VI (F λ∗ , X).

Corollary 3.1. If Λ(x∗) 6= ∅ for every GNE x∗, then
⋃

ω∈<Nm
+

SOL (F ω, X) ⊇ SOL
GNEP

.

For an arbitrary GNE x∗, let λ∗ ∈ Λ(x∗) and define

λ∗i := min
ν=1,...,N

λ∗ν,i i = 1, . . . ,m

ων,i := λ∗ν,i − λ∗i i = 1, . . . , m, ν = 1, . . . , N. (12)

Then x∗ along with λ∗ satisfies the KKT condition for VI (F ω, X), and hence x∗ also
belongs to SOL (F ω, X). This implies that for any GNE x∗ satisfying Λ(x∗) 6= ∅, there
always exists a ω ∈ <Nm

+ such that x∗ ∈ SOL (F ω, X) and, for each i, ων,i = 0 for some
ν. This observation yields the following result that sharpens Corollary 3.1.

Corollary 3.2. If Λ(x∗) 6= ∅ for every GNE x∗, then
⋃

ω∈W
SOL (F ω, X) ⊇ SOL

GNEP

,

where the set W is defined by6

W :=
m∏

i=1

(
N⋃

ν=1

{ωi ∈ <N
+ | ων,i = 0}

)
⊆ <Nm

+ . (13)

This corollary suggests that, for finding GNEs, it suffices to restrict ω to the pa-
rameter set W instead of <Nm

+ .
In general, a solution of VI (F ω, X) for some ω ∈ <m

+ need not be a GNE. To see
this, let us consider the VI (F ω, X) in Example 1 with ω = (1, 1)T . Then

F ω(x) =

(
2x1 − x2

−1
2
x1 + 2x2 − 1

)
,

and VI (F ω, X) has the unique solution x =
(

2
7
, 4

7

)T
which is not a GNE.

The next result gives a sufficient condition for a solution of VI (F ω, X) to be a GNE.

Theorem 3.3. For any ω ∈ <Nm
+ and any (x∗, π∗) ∈ <n × <m satisfying the KKT

condition (11), a sufficient condition for x∗ to be a GNE is that

〈g(x∗), ων〉 = 0, ν = 1, . . . , N. (14)

If in addition the LICQ (6) holds at x∗, then (14) is also a necessary condition for x∗

to be a GNE.
6In (13), ωi denotes an N -vector (ω1,i, . . . , ωN,i)T , while ων denotes an m-vector (ων,1, . . . , ων,m)T

in other places. This slight abuse of notation should cause no confusion.
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Proof. Let λ∗ = (λ∗ν)
N
ν=1 ∈ <Nm be given by

λ∗ν := π∗ + ων ≥ 0, ν = 1, . . . , N.

By (11) and (14), we have

〈g(x∗), λ∗ν〉 = 〈g(x∗), π∗ + ων〉 = 0.

Hence (x∗, λ∗) satisfies the KKT condition (7). This shows that x∗ is a GNE.
Conversely, suppose that x∗ is a GNE and the LICQ (6) holds at x∗. By LICQ, the

Lagrange multiplier vector λ∗ satisfying (7) with x = x∗ and the Lagrange multiplier
vector π∗ satisfying (11) with x = x∗ are both unique. Then we must have

λ∗ν = π∗ + ων , ν = 1, . . . , N.

Moreover, 〈g(x∗), λ∗ν〉 = 0, ν = 1, . . . , N and 〈g(x∗), π∗〉 = 0, which together yield

〈g(x∗), ων〉 = 〈g(x∗), λ∗ν − π∗〉 = 0, ν = 1, . . . , N.

Remark 3.1. When ω = 0, we have F ω ≡ F . Moreover, (14) clearly holds. Hence
Theorem 3.3 generalizes Theorem 3.1.

Corollary 3.1 shows that SOL
GNEP

is contained in the union of SOL (F ω, X) over all
ω ∈ <Nm

+ . We show below that, under the following sequentially bounded CQ (SBCQ),
the range of parameter ω can be restricted to a bounded set Ω ⊆ <Nm

+ and the union

of SOL (F ω, X) still contains an “arbitrarily large” subset of SOL
GNEP

.

Definition 3.1 (SBCQ). For every bounded sequence {xk} ⊆ SOL
GNEP

, there exists
a bounded sequence {λk} ⊆ <Nm satisfying λk ∈ Λ(xk) for all k.

The SBCQ was introduced in the study of mathematical programs with equilibrium
constraints (MPEC) [21]. It is a unification of well-known CQs such as MFCQ and
the constant rank CQ [17], and plays an important role not only in MPEC but also
in GNEP [24]. It can be shown that if the function g is affine and X1, . . . , XN are
polyhedral sets, then SBCQ holds [24].

Theorem 3.4. Assume that SBCQ holds. For any bounded set E ⊆ <n, there exists a
bounded set Ω ⊆ W ⊆ <Nm

+ such that

⋃
ω∈Ω

SOL (F ω, X) ⊇ E ∩ SOL
GNEP

,

where W is given by (13).

Proof. Fix any bounded set E ⊆ <n. We claim that there exists a bounded set Ω̂ ⊆ <Nm
+

such that
Λ(x) ∩ Ω̂ 6= ∅ ∀x ∈ E ∩ SOL

GNEP

. (15)

If this were not true, then there would exist a sequence {xk} ⊆ E ∩ SOL
GNEP

such that
minλ∈Λ(xk) ‖λ‖ → ∞. (Here we use the convention that minλ∈Λ(xk) ‖λ‖ = ∞ whenever
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Λ(xk) = ∅.) However, since {xk} lies in a bounded set E , SBCQ would imply that
minλ∈Λ(xk) ‖λ‖ is bounded, a contradiction. We assume without loss of generality that

Ω̂ is a box, i.e., a Cartesian product of intervals, which contains the origin.
Fix any x∗ ∈ E ∩ SOL

GNEP

. By (15), there exists λ∗ ∈ Λ(x∗) ∩ Ω̂. By Theorem 3.2,
x∗ ∈ SOL (F λ∗ , X) and hence x∗ ∈ SOL (F ω, X), where ω is given by (12). Moreover,
ω ∈ W and 0 ≤ ω ≤ λ∗. Since λ∗ ∈ Ω̂ and Ω̂ is a box containing the origin, the latter
implies ω ∈ Ω̂. Thus every element of E ∩ SOL

GNEP

belongs to SOL (F ω, X) for some
ω ∈ Ω̂ ∩W . This proves the desired inclusion, with Ω := Ω̂ ∩W .

If SOL
GNEP

is bounded, then we can take E = SOL
GNEP

. Unfortunately, Theorem
3.4 does not say how large Ω should be. This is a question for further study.

3.2 Resource-Directed Parametrization

In the case where g is affine and X1, . . . , XN are polyhedral, it is known that Λ(x) 6= ∅
for every GNE x. Otherwise, Λ(x) could be empty for some GNE x, and the price-
directed dual parametrization approach of Section 3.1 would not be able to find this
GNE. Such a GNE is of interest since it indicates a high sensitivity of individual costs
to allocation of joint resources. Moreover, price-directed parametrization could be
inefficient locally in the sense that large changes in ω would result in small changes in
SOL (F ω, X).

In this section, we consider the case of separable g and present a resource-directed
primal parametrization approach that does not rely on the existence of a Lagrange
multiplier vector. We motivate this with an example.

Example 2. Consider a modification of Example 1 where the shared constraint x1 +
x2 ≤ 1 is changed to x2

1 + x2
2 ≤ 1. It can be seen that the GNEs are the vectors

(
x1

x2

)
=

(
t√

1− t2

)
, 0 ≤ t ≤ 4

5
.

The corresponding VI (F,X) still has only one solution since F is unchanged and
remains strongly monotone. At the GNE x = (0, 1)T , Λ(x) = ∅ (due to the constraint
x2

1 ≤ 0 in the problem of player 1). Thus the approach of Section 3.1 would not find
this GNE, though it is clearly of interest.

The shared constraint function in Example 2 is separable, which we will exploit in
developing our primal, or resource-directed, parametrization. Specifically, we make the
following blanket assumption throughout this section.

Assumption B. The shared constraint function g has the form (10), where gν =
(gν,i)

m
i=1 : <nν → <m, ν = 1, . . . , N , and each gν,i is a differentiable convex function.

Assumption B is reasonable and is satisfied by the GNEPs in [4, Section IV.B], [6,
Section 5], [13], [16], [19, Section 5.3], [24, Section 5.3], [32, Section 1], for which g
is affine. Now, we construct a family of VIs that contains VI (F,X) as a particular
instance. Let β = (βν)

N
ν=1 ∈ <Nm with βν ∈ <m, ν = 1, . . . , N , be a vector of

parameters satisfying
∑N

ν=1 βν = 0. Define the set Xβ ⊆ X by

Xβ := Xβ1

1 × · · · ×XβN

N with Xβν
ν := {xν ∈ Xν | gν(xν) ≤ βν} , ν = 1, . . . , N,

10



and consider VI (F,Xβ). By Assumption B, Xβ is closed and convex (possibly empty).
Intuitively, we parametrize the division of resources among the players, reminiscent of
Bender’s decomposition.

Now, we investigate the relationship between VI (F,Xβ) and GNEP. The following
result is easy to see.

Theorem 3.5. For any GNE x∗, we have x∗ ∈ SOL (F, Xβ) and
∑N

ν=1 βν = 0, where

we let βν = gν(x
∗
ν) − ανg(x∗) with arbitrary real numbers αν such that

∑N
ν=1 αν = 1

and αν > 0, ν = 1, . . . , N .

Corollary 3.3. ⋃
PN

ν=1 βν=0

SOL (F,Xβ) ⊇ SOL
GNEP

.

In Example 2, if we choose g1(x1) = x2
1 and g2(x2) = x2

2 − 1, then SOL (F,Xβ) =
{(0, 1)T} for β = (0, 0)T . In general, VI (F, Xβ) need not have a solution, or a solution
need not be a GNE. The next result gives a sufficient condition for a solution of
VI (F, Xβ) to be a GNE.

Theorem 3.6. For any β ∈ <Nm with
∑N

ν=1 βν = 0 and any x∗ ∈ SOL (F, Xβ), a
sufficient condition for x∗ to be a GNE is that

for each i = 1, . . . ,m,

{
either gν,i(x

∗
ν) = βν,i ν = 1, . . . , N

or gν,i(x
∗
ν) < βν,i ν = 1, . . . , N.

}
(16)

Proof. Since x∗ is a solution of VI (F,Xβ), for each ν = 1, . . . , N , we have that x∗ν is
a solution of VI (∇xνθν(·, x∗−ν), X

βν
ν ) or, equivalently, x∗ν is an optimal solution of the

convex programming problem:

minimizexν θν(xν , x
∗
−ν)

subject to xν ∈ Xν , gν(xν) ≤ βν .
(17)

By (16) and Assumption B, for each i, we have either

gν,i(x
∗
ν) = βν,i = −

∑

ν′ 6=ν

βν′,i = −
∑

ν′ 6=ν

gν′,i(x
∗
ν′),

implying gi(x
∗
ν , x

∗
−ν) = 0, or

gν,i(x
∗
ν) < βν,i = −

∑

ν′ 6=ν

βν′,i < −
∑

ν′ 6=ν

gν′,i(x
∗
ν′),

implying gi(x
∗
ν , x

∗
−ν) < 0. Thus x∗ν is feasible for

minimizexν θν(xν , x
∗
−ν)

subject to xν ∈ Xν , g(xν , x
∗
−ν) ≤ 0,

(18)

and the active inequality constraints at x∗ν in (17) coincide with those in (18). Since x∗ν
is an optimal solution of (17), this implies x∗ν is a local optimal solution of (18). Since
(18) is a convex programming problem, x∗ν is an optimal solution of (18). In view of
(3), (18) is exactly Pν(x

∗
−ν). This shows that (2) holds and hence x∗ is a GNE.

11



Notice that, for any GNE x∗, the β given in Theorem 3.5 satisfies the sufficient
condition (16). Thus, we can refine Corollary 3.3 to

⋃
PN

ν=1 βν=0

(16) holds for some x∗∈SOL (F,Xβ)

SOL (F, Xβ) ⊇ SOL
GNEP

.

If gi(x
∗) = 0, then a necessary condition for x∗ ∈ SOL (F, Xβ) is that βν,i = gν,i(x

∗
ν)

for all ν. Thus, if gi(x
∗) = 0 for many i (e.g., x∗ lies in a low-dimensional face of X),

then fine sampling of β may be needed for a solution of SOL (F,Xβ) to come near x∗.
If there exist β

ν
∈ <m, ν = 1, . . . , N , such that

gν(xν) ≥ β
ν
, ∀xν ∈ Xν , ν = 1, . . . , N,

then we can further restrict β to the bounded set

B :=

{
β ∈ <Nm

∣∣∣∣∣
N∑

ν=1

βν = 0, βν ≥ β
ν
, ν = 1, . . . , N

}
. (19)

In Example 2, if we choose g1(x1) = x2
1 and g2(x2) = x2

2− 1, then we can take as lower
bounds β

1
= 0 and β

2
= −1.

If a solution x∗ of VI (F,Xβ) has a Lagrange multiplier λ∗ν associated with each
constraint gν(xν) ≤ βν , i.e., 0 ≤ λ∗ν ⊥ gν(x

∗
ν)− βν ≤ 0, then letting

π∗ := min
ν=1,...,N

λ∗ν , ων := λ∗ν − π∗, ν = 1, . . . , N,

where the “min” is taken componentwise, we see that (x∗, π∗) satisfies the KKT con-
dition (11) for VI (F ω, X). Thus, VI (F ω, X) may be viewed as the dual of VI (F, Xβ),
with the former requiring a CQ to ensure existence of Lagrange multipliers and the
latter requiring separability of shared constraints.

3.3 Relating Price-Directed Parametrized VI to Normalized
Equilibrium

In this subsection, we relate the solutions of the price-directed parametrized VI to the
following notion of a normalized equilibrium introduced by Rosen [29].

Definition 3.2. A GNE x∗ is called a normalized equilibrium if there exist λ∗ ∈ Λ(x∗)
and r = (rν)

N
ν=1 ∈ <N

++ satisfying

r1λ
∗
1 = r2λ

∗
2 = · · · = rNλ∗N .

We say x∗ is associated with r. The set of normalized equilibria is denoted by SOL
nE

.

In [29, Theorem 3], Rosen proved that there exists a normalized equilibrium associ-
ated with every r ∈ <N

++, provided that X is nonempty, compact, and satisfies a Slater
condition. Rosen’s proof is based on showing that there exists an x∗ ∈ X satisfying

ρr(x
∗, x∗) = min

y∈X
ρr(x

∗, y), (20)
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where ρr : <n ×<n → < is the weighted Nikaido-Isoda-type function defined by

ρr(x, y) :=
N∑

ν=1

rνθν(yν , x−ν).

Notice that (20) is equivalent to x∗ ∈ SOL (Fr, X), where Fr : <n → <n is defined by

Fr(x) :=
(
rν∇xνθν(x)

)N

ν=1
.

The Slater condition ensures that any x∗ ∈ SOL (Fr, X) satisfies the KKT condition for
min
x∈X

〈Fr(x
∗), x〉. We formally state below the relationship between normalized equilibria

and the solutions of VI (Fr, X).

Proposition 3.2. For any r ∈ <N
++, x∗ is a normalized equilibrium associated with r

if and only if x∗ ∈ SOL (Fr, X) and x∗ satisfies the KKT condition for min
x∈X

〈Fr(x
∗), x〉.

We note that monotonicity of F does not imply monotonicity of Fr, which poses
challenges in solving VI (Fr, X). For example, let a linear mapping F : <2 → <2 be
given by

F (x1, x2) =

(
a b
c d

)(
x1

x2

)

with b 6= 0. Then the mapping Fr : <2 → <2 with r = (α, 1) is not monotone for all

α sufficiently large. This is because the symmetric part of

(
αa αb
c d

)
has determinant

αad− (αb + c)2/4 which is negative for all α sufficiently large.
Assuming Λ(x∗) 6= ∅ for all GNE x∗ and every optimal solution of min

x∈X
〈c, x〉 satisfies

its KKT condition for all c ∈ <n, the relationships among GNEs, normalized equilibria,
and the solutions of VI (F, X), VI (F ω, X) and VI (Fr, X) can be summarized as follows:

SOL (F, X) ⊆
⋃

r∈<N
++

SOL (Fr, X) = SOL
nE ⊆ SOL

GNEP ⊆
⋃

ω∈<Nm
+

SOL (F ω, X),

where the first inclusion follows from the definition of Fr, the equality follows from
Proposition 3.2, the second inclusion is obvious from the definition of normalized equi-
libria (Definition 3.2), and the last inclusion is shown in Corollary 3.1.

When the GNEP has only one shared constraint, it readily follows from Defini-
tion 3.2 that any GNE satisfying strict complementarity is a normalized equilibrium.
We state this formally below.

Proposition 3.3. Suppose that m = 1. If x∗ is a GNE satisfying strict complemen-
tarity with some λ∗ ∈ Λ(x∗) (i.e., g1(x

∗) = 0 implies λ∗ν,1 > 0 for all ν = 1, . . . , N),
then x∗ is a normalized equilibrium.

Thus, in the case of a single shared constraint, we can expect to find nearly all GNEs
by solving VI (Fr, X) parametrized by the weights r. Still, we may not find all GNEs
this way. In particular, in Example 1, x∗ = (0, 1)T is a GNE with Λ(x∗) = {(2, 0)T},
so x∗ is not a normalized equilibrium and we will not find x∗ by solving VI (Fr, X) for
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any r ∈ <N
++. In contrast, both price-directed and resource-directed parametrized VIs

can find this GNE for suitable ω and β; see Corollaries 3.2 and 3.3.
In the above example with a single shared constraint, strict complementarity is

violated. We can also construct examples with multiple shared constraints that satisfy
strict complementarity. In particular, consider a 2-player linear-quadratic GNEP of
the form

Pν(x−ν) : minimizexν

1
2
xT

ν Qννxν + (Qν,−νx−ν + qν)
T xν

subject to xν ≥ 0, B1x1 + B2x2 ≤ b,
ν = 1, 2, (21)

where Qνν ∈ <nν×nν is symmetric positive definite, Qν,−ν ∈ <nν×n−ν , qν ∈ <nν , Bν ∈
<m×nν , b ∈ <m, and m ≥ 2. Then a sufficient condition for x∗ = (x∗1, x

∗
2) ∈ <n1+n2

++ to
be a GNE is that it, together with some λ∗ = (λ∗1, λ

∗
2) ∈ <2m

+ , satisfies the following
linear equations (see (7)):




Q11 Q12 BT
1 0

Q21 Q22 0 BT
2

B1 B2 0 0







x1

x2

λ1

λ2


 +




q1

q2

−b


 = 0. (22)

Moreover, when B1 and B2 have rank m, λ∗ is uniquely determined by x∗ and Λ(x∗) =
{λ∗} (since x∗ > 0). We thus have the following result.

Proposition 3.4. Consider the GNEP (21) with m ≥ 2. Suppose that B1 and B2 have
rank m, x∗ = (x∗1, x

∗
2) ∈ <n1+n2

++ together with λ∗1, λ
∗
2 ∈ <m

+ satisfies (22), and λ∗1 and λ∗2
are not positive scalar multiples of each other. Then x∗ is a GNE of (21) but is not a
normalized equilibrium.

Proposition 3.4 also extends to the case where only one of B1 and B2 has rank m,
say B2, and B1 has rank of at least 1. In this case, λ∗2 need not be a positive scalar
multiple of any λ1 ∈ <m

+ satisfying BT
1 λ1 = BT

1 λ∗1. An example is

B1 =

(−1
1

)
, B2 =

(
1 0
0 1

)
, λ∗1 =

(
0
1

)
, λ∗2 =

(
1
0

)
.

We then choose x∗ and Q11, Q12, Q21, Q22 and set q1, q2, b according to (22). An example
(corresponding to x∗ = (1, 1, 1)T ) is

(
Q11 Q12

Q21 Q22

)
=




2 1 1
1 2 0
1 0 1


 ,

(
q1

q2

)
=



−5
−4
−2


 , b =

(
0
2

)
.

It can be verified that SOL
GNEP

comprises the vectors




2
1
0


 ,




1.6
1.2
0.4


 ,




t
t

2− t


 , 0 ≤ t ≤ 4

3
.
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Hence the shared constraints are both active at each GNE (t, t, 2− t)T . The VI (F,X)
has a single solution (2, 1, 0)T . The Lagrange multipliers λ = (λ1, λ2) ∈ <4 correspond-
ing to the above GNEs are




0
0
0
0


 ,




0
0.2
0
0


 ,




s
3− 2t + s

4− 3t
0


 , s ≥ 0, 0 ≤ t ≤ 4

3
.

Thus, among the GNEs, only (2, 1, 0)T is a normalized equilibrium. This shows that,
when there are more than one active shared constraints, many of the GNEs may not
be obtainable by solving VI (Fr, X) parametrized by weights r.

3.4 Sampling Strategies in Parameter Spaces

In the previous subsections we saw that we can find all GNEs by solving an (uncount-
ably) infinite number of VIs. In practice, we can afford to solve only a finite number of
VIs, with the number depending on the cost of solving each VI. Thus, we need efficient
strategies for representative sampling in the space of dual parameters ω or the space
of primal parameters β.

3.4.1 Random/Grid Sampling

One simple strategy would be to sample ω randomly or on a grid from a compact set
Ω ⊆ W , with W defined by (13); see Theorem 3.4. Similar sampling strategies can be
applied to sampling β from B defined by (19).

3.4.2 Adaptive Sampling

We can improve sampling efficiency by adaptively refining the sample size on Ω or B
or both. In what follows, we focus on Ω. Using (13) and (14), Ω may be expressed as
the union of the boxes

Ωρ
K,σ :=

{
ω = (ων)

N
ν=1

∣∣∣∣
{

ων,i = 0 if i 6∈ K or ν = σ(i)
ρ ≥ ων,i ≥ 0 else

}
ν = 1, . . . , N
i = 1, . . . , m

}

(23)
over all K ⊆ {1, . . . ,m} and σ : K → {1, . . . , N}, where ρ > 0. The number of such
boxes is

∑m
|K|=0

(
m
|K|

)
N |K| = (N + 1)m. In fact, the pair (K, σ) can be more compactly

represented by σ : {1, . . . ,m} → {0, 1, . . . , N} with σ(i) = 0 indicating i 6∈ K. We first
sample coarsely from each box Ωρ

K,σ (randomly or on a grid). For each ω sampled, we
find an x∗ω ∈ SOL (F ω, X) and compute maxν |〈g(x∗ω), ων〉| as a measure of violation
of the sufficient condition (14). We then sample more finely on those Ωρ

K,σ that have
lesser violations (measured by the number of samples ω ∈ Ωρ

K,σ whose violation is
within some tolerance of the minimum violation, say) and less finely on the remaining
Ωρ

K,σ, and iterate. We can further partition each box into sub-boxes based on the
distribution of violations at sample points, and sample more finely inside sub-boxes
with lower violation. This requires more book keeping, however.
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3.4.3 Linear-Quadratic GNEP

When each θν is quadratic, g is affine, and each Xν is a polyhedral set, the GNEP
is called linear-quadratic. Example 1 and Examples 3, 4, 5 in Section 4 are linear-
quadratic. In the linear-quadratic case, the set of GNEs SOL

GNEP

is the union of a
finite collection of polyhedral sets. Moreover, there is a close connection between each
GNE and the corresponding ω, which may be exploited to improve sampling efficiency,
as we discuss below. Specifically, let θν , g and Xν be given by

θν(x) =
1

2
xT

ν Qν,νxν + (Qν,−νx−ν + qν)
T xν , (24)

g(x) =
N∑

ν=1

Bνxν − b, (25)

Xν = {0 ≤ xν ≤ uν | Aνxν ≤ aν} , (26)

where Qν,ν ∈ <nν×nν , Qν,−ν ∈ <nν×n−ν , qν ∈ <nν , Bν ∈ <m×nν , b ∈ <m, Aν ∈ <lν×nν ,
aν ∈ <lν , uν ∈ (0,∞]nν . In particular, we assume that Qν,ν are symmetric positive
semidefinite. Then, the KKT condition (7) reduces to

0 = mid {xν , Θν(x, λν , µν), xν − uν} , ν = 1, . . . , N,
0 ≤ µν ⊥ Aνxν − aν ≤ 0, ν = 1, . . . , N,

0 ≤ λν ⊥ ∑N
ν′=1 Bν′xν′ − b ≤ 0, ν = 1, . . . , N,

where we denote for simplicity Θν(x, λν , µν) = Qνx + qν + AT
ν µν + BT

ν λν with Qν =
(Qν,ν , Qν,−ν), and mid means taking the median componentwise. Then the solution set
of the above system can be expressed as the disjoint union of the polyhedral sets

P(I, I ′, J,K) :=

{
(x, λ, µ)

∣∣∣∣
µν,j ≥ 0, (Aνxν − aν)j = 0, j ∈ Jν ,
µν,j = 0, (Aνxν − aν)j < 0, j 6∈ Jν ,

ν = 1, . . . , N,

λν,k ≥ 0,
(∑N

ν′=1 Bν′xν′ − b
)

k
= 0, k ∈ K,

λν,k = 0,
(∑N

ν′=1 Bν′xν′ − b
)

k
< 0, k 6∈ K,

ν = 1, . . . , N,

xν,i = 0, Θν(x, λν , µν)i ≥ 0, i ∈ Iν ,
xν,i = uν,i, Θν(x, λν , µν)i ≤ 0, i ∈ I ′ν ,

0 < xν,i < uν,i, Θν(x, λν , µν)i = 0, i 6∈ Iν ∪ I ′ν ,
ν = 1, . . . , N





over all I = {Iν}N
ν=1, I ′ = {I ′ν}N

ν=1, J = {Jν}N
ν=1, and K ⊆ {1, . . . , m}, with Iν , I

′
ν ⊆

{1, . . . , nν} such that Iν ∩ I ′ν = ∅ and Jν ⊆ {1, . . . , lν}, ν = 1, . . . , N . If Q = (Qν)
N
ν=1 is

positive definite, as in Examples 1, 3 and 4, then F defined by (4) is strongly monotone,
and so, by Proposition 3.1, SOL (F ω, X) is a singleton for any ω ∈ W .

If P(I, I ′, J,K) is nonempty, then its projection onto the x-space lies in the relative
interior of one of the faces of X, and this face corresponds uniquely to (I, I ′, J,K). By
(11) and Theorem 3.3, for any ω ∈ W and x ∈ SOL (F ω, X) with associated multipliers
π and µ = (µν)

N
ν=1, x is a GNE if and only if (x, (ων + π)N

ν=1, µ) ∈ P(I, I ′, J,K) for
some I, I ′, J,K. Since each Ωρ

K,σ is convex, this implies that, for any ω, ω′ ∈ Ωρ
K,σ, if

x ∈ SOL (F ω, X) and x′ ∈ SOL (F ω′ , X) are both GNEs that lie in the relative interior
of the same face of X, then αx+(1−α)x′ (0 ≤ α ≤ 1) is also a GNE lying in the the same
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face and it belongs to SOL (Fαω+(1−α)ω′ , X). Thus, for any K, σ and any ω1, . . . , ωt ∈
Ωρ

K,σ, if the corresponding parameterized VI solutions x1, . . . , xt are GNE and lie in
the relative interior of the same face of X, then any convex combination of x1, . . . , xt is
also a GNE lying in the same face of X and it solves a parameterized VI corresponding
to the same convex combination of ω1, . . . , ωt. Hence we can save computation by not
sampling inside the convex hull of ω1, . . . , ωt. Checking membership in the convex hull
is relatively easy when Ωρ

K,σ has dimension 1 or 2 as in Examples 1, 3 and 4. In a higher
dimensional case, linear programming may be used. When m and n are small, we can
determine which P(I, I ′, J,K) is nonempty using linear programming and then find all
vertices of P(I, I ′, J,K) using a vertex enumeration algorithm; see [3] and references
therein.

3.4.4 Sequential Linear-Quadratic Approximations

If the GNEP is not linear-quadratic, we can locally approximate each θν by a convex
quadratic function θ̃ν , approximate g by an affine function g̃, approximate each Xν by
a polyhedral set X̃ν , and find some GNE x∗ (or, if practical, find all GNEs) for this
approximate problem with associated Lagrange multipliers λ∗ = (λ∗ν)

N
ν=1. If ∇θν(x

∗
ν) ≈

∇θ̃ν(x
∗
ν) for all ν and ∇g(x∗) ≈ ∇g̃(x∗), then use ω given by (12) as parameter for

VI (F ω, X). Otherwise, refine the local approximation around x∗, and repeat. This
approach is in the spirit of the Josephy-Newton method for solving VI [18]. In fact, it
may be possible to improve the efficiency of sampling by combining this approach with
implicit function theorem for parameterized VI; see [5, 9, 27] and references therein.
This is a direction for future study.

4 Implementation and Numerical Results

In this section, we report our implementation of and numerical experience with the
parametrized VI approaches. For our tests, we use three linear-quadratic GNEPs taken
from the literature, which are described below. Our implementation and numerical
results are reported in Subsections 4.2 and 4.3.

4.1 Test Examples

Example 3 (Harker’s example). This problem is taken from [13]. There are two
players and they solve the following problems:

P1(x2) : minimizex1 x2
1 + 8

3
x1x2 − 34x1

subject to 0 ≤ x1 ≤ 10
x1 + x2 ≤ 15,

P2(x1) : minimizex2 x2
2 + 5

4
x1x2 − 24.25x2

subject to 0 ≤ x2 ≤ 10
x1 + x2 ≤ 15.

This is a GNEP with one shared constraint and the solution set is given by

SOL
GNEP

=

{(
5
9

)}
∪

{(
t

15− t

)∣∣∣∣ 9 ≤ t ≤ 10

}
. (27)
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The corresponding F : <2 → <2 and X ⊆ <2 are represented as

F (x) =

(
2x1 + 8

3
x2 − 34

5
4
x1 + 2x2 − 24.25

)
, (28)

X =
{
x ∈ <2 | x1 + x2 ≤ 15, 0 ≤ xν ≤ 10, ν = 1, 2

}
.

Since F is strongly monotone on <2, VI (F,X) has a unique solution, which is given
by x = (5, 9)T . Note that this solution lies in the interior of the set X.

Example 4 (River basin pollution game). Consider the 3-person river basin pol-
lution game studied in [19, Section 5.3], where the problem of player ν ∈ {1, 2, 3} is
defined by

Pν(x−ν) : minimizexν (ανxν + 0.01(x1 + x2 + x3)− χν)xν

subject to xν ≥ 0,
3.25x1 + 1.25x2 + 4.125x3 ≤ 100,
2.2915x1 + 1.5625x2 + 2.8125x3 ≤ 100,

with α1 = 0.01, α2 = 0.05, α3 = 0.01, χ1 = 2.9, χ2 = 2.88, χ3 = 2.85. This GNEP has
two shared constraints. The corresponding F : <3 → <3 and X ⊆ <3 are given by

F (x) =




0.04 0.01 0.01
0.01 0.12 0.01
0.01 0.01 0.04


 x−




2.9
2.88
2.85


 , (29)

X =

{
x ∈ <3

+

∣∣∣∣
(

3.25 1.25 4.125
2.2915 1.5625 2.8125

)
x ≤

(
100
100

)}
.

Since F is strongly monotone on <3, VI (F,X) has a unique solution, which is given
by x = (4673

221
, 5754

359
, 567

208
)T ≈ (21.14, 16.03, 2.73)T . Note that, at this solution, the first

inequality defining X is active, while the second inequality is inactive.

Example 5 (Electricity market model). Consider a model from [24, Section 5.3
and Erratum] of electricity markets with endogenous arbitrage. The model consists
of N (N ≥ 2) electricity firms competing on a spatial network of markets along with
an arbitrager who attempts to make a profit by exploiting price differentials between
regions. In the original model [16], each firm maximizes its profit with anticipating the
arbitragers’ optimal response, resulting in a multi-leader-follower-game. In [24, Section
5.3], the arbitrager is removed from the model and the price differentials are assumed
to be less than the shipping costs. In this setting, the model can be formulated as
a GNEP as described below. We make a slight (and reasonable) modification to the
model in [24, Section 5.3] by setting the shipping costs from nodes to themselves to
zero. Interestingly, this also results in some significant GNEs being found; see the
discussions in Subsection 4.3.

The regions are represented by the nodes in a network and each firm has electricity
plants at those nodes. Each firm determines how much it should produce at each plant
and how much it should sell at each node to maximize its profit. We introduce the
notations to formulate the problem.

Problem Data
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Table 1: Generation costs cν,i and capacities CAPν,i

(ν, i) (1, 1) (1, 2) (1, 3) (2, 1) (2, 2) (2, 3)
cν,i 15 15 15 15 15 15

CAPν,i 100 50 0 0 100 50

N : set of nodes
A ⊆ N ×N : set of arcs with price differential constraint
cν,i : cost per unit generation at node i by firm ν
Pi : price intercept of sales function at node i
Qi : quantity intercept of sales function at node i
eij : unit cost of shipping from node i to j
CAPν,i : production capacity at node i for firm ν

Variables
xν,ij : amount produced at node i and sold at node j by firm ν
Sj : amount of total sales at node j

Sj :=
N∑

ν=1

∑
i∈N

xν,ij, ∀j ∈ N

pj : market price at node j

pj(Sj) := Pj − Pj

Qj

Sj, ∀j ∈ N

Each firm ν’s problem is to find {xν,ij}(i,j)∈A that solve the following minimization
problem for a given {xν′,ij}ν′ 6=ν,(i,j)∈A,

minimizexν,ij

∑
i∈N

∑
j∈N

(cν,i − pj(Sj)) xν,ij +
∑

(i,j)∈A
eijxν,ij

subject to
∑
j∈N

xν,ij ≤ CAPν,i, ∀i ∈ N

pj(Sj)− pi(Si) ≤ eij, ∀(i, j) ∈ A
xν,ij ≥ 0, ∀(i, j) ∈ A.

This is a 2-player GNEP with |A| shared constraints, because the price differential

constraints pj(Sj)−pi(Si) ≤ eij depend on the total sales at each node Sj =
N∑

ν=1

∑
i∈N

xν,ij.

In our test, we use the same data as in [24, Section 5.3 and Erratum], with N = 2
firms, node set N = {1, 2, 3}, arc set A = {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}, and
eij = 1 for all (i, j) ∈ A. The remaining data are shown in Tables 1 and 2. Here firm 1
owns electricity plants at nodes 1 and 2, and firm 2 owns electricity plants at nodes
2 and 3. Hence CAP1,3 = CAP2,1 = 0, so that x1,31 = x1,32 = x1,33 = x2,11 = x2,12 =
x2,13 = 0.

4.2 Implementation

We now describe our implementation of the parametrized VI approaches for a linear-
quadratic GNEP of the form (24), (25), (26).
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Table 2: Price function data (Pi, Qi)
node i 1 2 3

Pi 40 35 32
Qi 500 400 600

For the price-directed parametrized VI, we enumerate all (N + 1)m mappings
σ : {1, . . . , m} → {0, 1, . . . , N} and, for each σ, we set K = {i | σ(i) 6= 0}. The
corresponding Ωρ

K,σ given by (23) is a Cartesian product of (N − 1)|K| intervals of the

form [0, ρ] and we accordingly generate N
(N−1)|K|
s samples of ω = (ων)

N
ν=1 from Ωρ

K,σ

(Ns is a user-chosen positive integer) by setting ων,i = 0 if i 6∈ K or σ(i) = ν and
otherwise generate ων,i (either on a grid or randomly according to the uniform distri-
bution) from (0, ρ]. Since there are N |K| different mappings σ : K → {0, 1, . . . , N}, the

total number of samples is
∑m

|K|=0

(
m
|K|

)
N |K|N (N−1)|K|

s = (NNN−1
s + 1)m. When m ≥ 5

such as in Example 5, this number is large even for Ns = 10. To improve sampling
efficiency, we abort sampling for a given K and σ if no GNE is found after 200 samples
from Ωρ

K,σ. We also restrict |K| to be below 3. Upon solving VI (F ω, X) to obtain a
solution x∗, we declare x∗ to be a GNE if it satisfies the condition (14) approximately,
i.e.,

|〈ων , g(x∗)〉| ≤ 10−6, ν = 1, . . . , N.

For the resource-directed parametrized VI, we exploit the structure of the shared
constraints (25) and set gν(xν) := Bνxν− b

N
. Moreover, for xν ∈ Xν , we have 0 ≤ xν ≤

uν and hence

gν(xν) ≥ β
ν

:= min{Bν , 0}uν − b

N
,

where “min” is taken entrywise. We can use the above β
ν

in the sampling set B
defined by (19). To simplify sampling, we take the minimum of β

ν,i
over all ν, call

it β
min

i , for all i = 1, . . . ,m, and use β
min

= (β
min

1 , · · · , β
min

m )T in place of β
ν

in (19).
This yields a slightly larger B, but one with a simpler structure. In particular, B is the
Cartesian product of m simplices of dimension N − 1 each, with the ith simplex being
the convex hull of (1 − N, 1, . . . , 1)T , (1, 1 − N, . . . , 1)T , ..., (1, . . . , 1, 1 − N)T , scaled
by β

min

i . We generate N nonnegative weights w1, · · · , wN from the unit simplex (either
on a grid or randomly according to the uniform distribution), and take (β1,i, . . . , βN,i)
to be the sum of the preceding N points weighted by w1, · · · , wN . We generate a total
of (ΓN

Ns
)m samples of β from B, where ΓN

Ns
denotes the number of grid points in the

N -dimensional unit simplex with Ns grid points per dimension. It is easily verified
that Γ2

Ns
= Ns and Γ3

Ns
= Ns(Ns + 1)/2. In general, ΓN

Ns
= O(NN−1

s ). Analogous to

price-directed parametrized VI, we can restrict our sampling space by replacing β
min

i

with max{βmin

i ,−ρ}, where ρ > 0 is user-chosen.
Upon solving VI (F,Xβ) to obtain a solution x∗, we declare x∗ to be a GNE if it

satisfies the condition (16) approximately, i.e.,

for each i = 1, . . . , m,

{
either |gν,i(x

∗
ν)− βν | < 10−6, ν = 1, . . . , N

or gν,i(x
∗
ν)− βν < −10−6, ν = 1, . . . , N.

}
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For a linear-quadratic GNEP of the form (24)–(26), both VI (F ω, X) and VI (F, Xβ)
can be converted to equivalent (mixed) linear complementarity problems (LCPs) of the
form mid{z, Mz + c, z − d} = 0, with

M =




Q BT AT

−B 0 0
−A 0 0


 , c =




r
s
a


 , d =




u
∞
∞


 , A =




A1

. . .

AN


 , a =




a1
...

aN


 ,

and
either B =

(
B1 · · · BN

)
, s = b, r = q + BT ω

or B =




B1

. . .

BN


 , s =




β1 + b
N

...
βN + b

N


 , r = q.

In our tests, the LCP is solved by the MATLAB code pathlcp.m [11] though other
LCP solvers can also be used. For example, it may be more efficient to resolve the
LCPs using warm starts. Since VI (F,Xβ) may be infeasible so that the LCP has no
solution, the solver must be able to detect this when resource-directed parametrization
is used.

4.3 Numerical Results

We now report our numerical experience with the parametrized VI approaches on
the three test examples: Harker’s example, the river basin pollution game and the
electricity market model. The runs are made on an HP DL360 workstation under
Matlab 7.2. Two GNEs are judged to be distinct when their 1-norm distance exceeds
10−5.

Example 3 (Harker’s example, continued). For this example, N = n = 2 and
m = 1.

For the price-directed parametrization approach, we sample Ns = 256 points per
interval [0, ρ] with ρ = 2. The sample space for ω comprises the origin (0, 0)T and
{ω ∈ [0, 2]2 | ω2 = 0}, {ω ∈ [0, 2]2 | ω1 = 0}. We thus solve at most 2 · 256 + 1 =
513 LCPs and declare a solution x∗ to be GNE if it satisfies (4.2). When sampled
on a grid, 458 LCPs are solved, with 98 of the LCPs yielding GNE, as plotted in
Figure 1. The number of distinct GNEs is 13. Run time is below a second. We observe
that the GNEs found are widely distributed over the set of GNEs given by (27). In
contrast, the VI approach of [6, 7, 32] can only find the GNE x = (5, 9)T , which is
a variational/normalized equilibrium. When sampled randomly, the number of GNEs
found tends to be higher, around 100, and the number of distinct GNEs is around 15.

For the resource-directed parametrization approach, we sample Ns = 256 points
per interval [0, 1], with ρ = ∞, and g1(x1) = x1 − 15

2
and g2(x2) = x2 − 15

2
. The

parametrized feasible set is

Xβ =

{(
x1

x2

) ∣∣∣∣ xν − 15
2
≤ βν , 0 ≤ xν ≤ 10, ν = 1, 2

}
.

21



0 2 4 6 8 10 12

0

2

4

6

8

10

12

x
1

x
2

(5, 9)

(9.05, 5.95)

(10, 5)

GNEP Solution

SOL (F,X)

Figure 1: GNEs found by the price-directed parametrization approach for Harker’s
example.

Here β
min

= −15

2
and β is sampled from the bounded set

{(
β1

β2

)
∈ <2

∣∣∣∣ β1 + β2 = 0, βν ≥ −15

2
, ν = 1, 2

}
= conv

{(
7.5
−7.5

)
,

(−7.5
7.5

)}
.

We solve 256 LCPs and declare a solution x∗ to be a GNE if it satisfies (4.2). When
sampled on a grid, 34 of the LCPs yield GNEs, as plotted in Figure 2. Among these
34 GNEs, 16 equal (5, 9)T , and the remaining 18 GNEs lie on the face x1 + x2 = 15 of
X. The number of distinct GNEs is 19. Run time is below half a second. We observe
that the GNEs found are also widely distributed over the set of GNEs given by (27),
and the GNE yield rate is higher compared to price-directed parametrization (19 out
of 256 versus 13 out of 458). When sampled randomly, the number of GNEs found
tends to be higher, around 50, and the number of distinct GNEs is around 20.

Example 4 (River basin pollution game, continued). For this example, N =
n = 3 and m = 2.

For the price-directed parametrization approach, we sample Ns = 20 points per
interval [0, ρ] with ρ = 2. The sample space for ω comprises (N + 1)m = 16 sets of the
form (23), with K ⊆ {1, 2} and σ : K → {1, 2, 3}. These are

(a) the origin (0, 0, 0, 0, 0, 0)T ,

(b) 1,000 points from Ω2
{1},σ for each σ : {1} → {1, 2, 3},

(c) 1,000 points from Ω2
{2},σ for each σ : {2} → {1, 2, 3}.

(d) 10,000 points from Ω2
{1,2},σ for each σ : {1, 2} → {1, 2, 3}.
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Figure 2: GNEs found by the resource-directed parametrization approach for Harker’s
example.

We thus solve at most (3 · 202 + 1)2 = 1442401 LCPs and declare a solution x∗ to be a
GNE if it satisfies (4.2). When sampled on a grid, 3613 LCPs are solved, with 509 of the
LCPs yielding GNE, as plotted in Figure 3. The number of distinct GNEs is 113. Run
time is 6–7 seconds. Note that the polyhedral set in Figure 3 represents the feasible re-
gion X. We obtained the variational/normalized equilibrium x∗ = (21.14, 16.03, 2.73)T

by setting ω = (0, 0, 0, 0, 0, 0)T and the remaining GNEs were found in case (c). Thus,
the shared constraint 3.25x1 + 1.25x2 + 4.125x3 ≤ 100 is active at any of these GNEs.
In contrast, existing methods find only the above variational equilibrium [15, Table 3],
[19, page 70], [20, page 199]. When sampled randomly, the number of GNEs found
tends to be higher, around 900, and the number of distinct GNEs is around 800. Run
time remains 6–7 seconds.

For the resource-directed parametrization approach, we sample Ns = 20 points per
interval [0, 1], with ρ = ∞, and gν,i(xν) = γν,ixν− 100

3
for ν = 1, 2, 3 and i = 1, 2, where

γ1,1 = 3.25, γ2,1 = 1.25, γ3,1 = 4.125, γ1,2 = 2.2915, γ2,2 = 1.5625, γ3,2 = 2.8125. The
parametrized feasible set is

Xβ =








x1

x2

x3




∣∣∣∣∣∣
γν,ixν − 100

3
≤ βν,i, xν ≥ 0, i = 1, 2, ν = 1, 2, 3



 .

Here β
min

= (−100
3

,−100
3

)T and β is sampled from the bounded set
{

(βν,i) ∈ <6

∣∣∣∣ β1,i + β2,i + β3,i = 0, βν,i ≥ −100

3
, ν = 1, 2, 3, i = 1, 2

}

= conv








200/3
−100/3
−100/3


 ,



−100/3
200/3
−100/3


 ,



−100/3
−100/3
200/3








2

.
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Figure 3: GNEs found by the price-directed parametrization approach, using grid
sampling (left) and random sampling (right), for Example 4.

We thus solve (20·21
2

)2 = 44100 LCPs and declare a solution x∗ to be a GNE if it satisfies
(4.2). When sampled on a grid, 994 of the LCPs yield GNEs, as plotted in Figure 4.
The number of distinct GNEs is 105. Run time is about 76 seconds. We observe that
the GNEs found are also widely distributed over the face determined by the shared
constraint 3.25x1 + 1.25x2 + 4.125x3 = 100. When sampled randomly, the number of
GNEs found tends to be higher, around 1400, and the number of distinct GNEs is also
around 1400. Run time is around 60 seconds.

The yield rate for GNE is lower for resource-directed parametrization than for
price-directed parametrization. However, upon comparing Figures 3 and 4, we see
that GNEs are spatially more uniformly distributed in the latter, whereas GNEs are
concentrated at the top and bottom edges in the former. This may be because price-
directed parametrization changes the normal of the supporting hyperplane to X and,
since X is a polyhedral set, the same face is supported by many different hyperplanes.
If X is a strictly convex body with smooth boundary, then the GNEs found might be
more spread out. In contrast, resource-directed parametrization divides up the feasible
set relatively uniformly and finds GNEs within each subdivision.

Example 5 (Electricity market model, continued). For this example, N = 2,
n1 = n2 = 6, and m = 6.

For the price-directed parametrization approach, we sample Ns = 20 points per
interval [0, ρ] with ρ = 20. The sample space for ω comprises (N + 1)m = 36 = 729
sets of the form (23), with K ⊆ A and σ : K → {1, 2}. But this is still too many, so
we further restrict K to those with |K| ≤ 2. This yields the origin (0, . . . , 0)T as well
as the 2 · 6 = 12 line segments

Ω20
{(i,j)},σ :=

{
ω ∈ [0, 20]12 | ων,ij ∈ [0, 20] and ων′,kl = 0 ∀(ν ′, k, l) 6= (ν, i, j)

}
,

where ν = σ((i, j)) ∈ {1, 2} and (i, j) ∈ A, and the 22 · (6
2

)
= 60 boxes

Ω20
{(i,j),(i′,j′)},σ :=

{
ω ∈ [0, 20]12

∣∣∣∣
ων,ij ∈ [0, 20], ων′,i′j′ ∈ [0, 20] and
ων′′,kl = 0 ∀(ν ′′, k, l) 6= (ν, i, j), (ν ′, i′, j′)

}
,
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Figure 4: GNEs found by the resource-directed parametrization approach, using grid
sampling (left) and random sampling (right), for Example 4.

where ν = σ((i, j)), ν ′ = σ((i′, j′)) ∈ {1, 2} and (i, j), (i′, j′) ∈ A with (i, j) 6= (i′, j′).
We thus solve at most 1 + 12 · 20 + 60 · (20)2 = 24241 LCPs and declare a solution x∗

to be a GNE if it satisfies (4.2). When sampled on a grid, 12699 LCPs are solved, with
66 of the LCPs yielding GNE, all of which are distinct. Of these, 34 GNEs come from
sampling on the line segments, with the remaining 32 GNEs coming from sampling on
the boxes. Run time is around 49 seconds. When sampled randomly, the number of
GNEs found tends to be higher, around 80, all of which are distinct. Run time remains
around 49 seconds.

Table 3: (θ1(x
∗), θ2(x

∗)) vs. (θ1(x̄), θ2(x̄))
θ2(x

∗) >ε θ2(x̄) θ2(x
∗) =ε θ2(x̄) θ2(x

∗) <ε θ2(x̄)
θ1(x

∗) >ε θ1(x̄) 0 20 0
θ1(x

∗) =ε θ1(x̄) 0 1 0
θ1(x

∗) <ε θ1(x̄) 0 45 0

For each computed GNE x∗, the objective value pair (θ1(x
∗), θ2(x

∗)) is compared
with the pair (θ1(x̄), θ2(x̄)), where x̄ is the GNE obtained by solving VI (F,X) and

θν(x) =
∑
i∈N

∑
j∈N

(cν,i − pj(Sj))xν,ij +
∑

(i,j)∈A
eijxν,ij. Table 3 shows the numbers of GNEs

x∗ that satisfy the respective relations, where a >ε b, a =ε b and a <ε b mean a >
b + ε, |a− b| ≤ ε and a < b− ε, respectively. We set ε to be 10−5. We see that, for 45
of the 66 GNEs found, firm 1 does better and firm 2 does no worse compared to the
GNE x̄.

It is instructive to compare in more detail the GNE x̄, which is a normalized equilib-
rium, with one of the other GNEs found. Take the GNE x∗ found by solving VI (F ω, X)
with ω1,31 = 2 and ων,ij = 0 for all ν and (i, j) 6= (3, 1). The sales and the nodal prices
of GNEs x̄ and x∗ are summarized in Tables 4 and 5, respectively. (Only the nonzero
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sales are shown.) We observe that the nodal prices in Table 5 are identical for the two
GNEs. However, comparing the firms’ profit (negated), we have

θ1(x̄) = −1969.5 > −1971.5 = θ1(x
∗)

θ2(x̄) = −1923.6 = −1923.6 = θ2(x
∗).

Thus, x̄ is weakly dominated by x∗ in the sense that, at the GNE x̄, firm 1 may be
motivated to move to x∗ by paying a small incentive ε > 0 to firm 2. (Recall that each
player is maximizing its profit.) Hence, the GNE x̄ is unstable and less likely to arise
in reality. This shows that the approaches in [6, 7, 32] may fail to find some important
GNEs, while the proposed parametrization approach has a better chance to find those
GNEs, though at extra computational cost.

Table 4: Firms’ sales

(ν, i, j) (1, 1, 1) (1, 1, 3) (1, 2, 2) (1, 2, 3) (2, 2, 1) (2, 2, 2) (2, 3, 1) (2, 3, 3)
x̄ν,ij 77.01 22.99 41.84 8.16 59.83 40.17 2.85 47.15
x∗ν,ij 78.01 21.99 41.84 8.16 59.83 40.17 1.85 48.15

Table 5: Nodal prices
node i 1 2 3
pi(S̄i) 28.82 27.82 27.82
pi(S

∗
i ) 28.82 27.82 27.82

For the resource-directed parametrization approach, we sample Ns = 5 points per
interval [0, 1], with ρ = ∞. For simplicity, we omit showing gν,(i,j) for ν = 1, 2 and

(i, j) ∈ A and Xβ. Here β
min

= (−16.125,−12.5,−10,−10,−8.5,−12.125)T . We solve
56 = 15625 LCPs and declare a solution x∗ to be a GNE if it satisfies (4.2). However,
this yielded no GNE when sampled on a grid or randomly! We speculate that, for this
example, the GNEs lie mainly in low-dimensional faces of X.

5 Concluding Remarks

We have proposed and analyzed two parametrized VI approaches for finding a “repre-
sentative” set of GNEs, and have applied them to three examples from the literature
by sampling over the parameter spaces. Our analysis and numerical results suggest
that the proposed approaches can find important GNEs that elude existing approaches
[6, 7, 32]. In our numerical tests, the price-directed parametrization generally achieved
a higher GNE yield rate. On the other hand, for Example 4, the resource-directed
parametrization found GNEs that are spatially more evenly distributed. The two ap-
proaches appear to complement each other, with one tending to find GNEs lying in
low-dimensional faces of the feasible set X and the other tending to find GNEs lying
in high-dimensional faces of X.
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In the price-directed parametrization, we have to restrict the parameter space
heuristically because Theorem 3.4 does not say how large the parameter space should
be. Moreover, in our numerical tests, we sampled the parameters either randomly or
on a grid from a box in the parameter space. While such simple procedures work
reasonably well for small GNEP, more efficient parameter search procedures are likely
needed to handle larger GNEPs, as is discussed in Subsection 3.4. These are topics for
future study.
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