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Abstract. Chorus emissions are triggered from the linear cyclotron in-10

stability driven by the temperature anisotropy of energetic electrons (10 -11

100 keV) in the magnetosphere. Chorus emissions grow as an absolute non-12

linear instability near the magnetic equator due to the presence of an elec-13

tromagnetic electron hole in velocity space. The transition process from the14

linear wave growth at a constant frequency to the nonlinear wave growth with15

a rising tone frequency is due to formation of a resonant current −JB anti-16

parallel to the wave magnetic field. The rising-tone frequency introduces a17

phase shift to the electron hole at the equator, and results in a resonant cur-18

rent component anti-parallel to the wave electric field −JE, which causes the19

nonlinear wave growth. To confirm this triggering mechanism, we perform20

Vlasov Hybrid Simulations with JB and without JB. The run without JB does21

not reproduce chorus emissions, while the run with JB does successfully re-22

produce chorus emissions. The nonlinear frequency shift ω1 due to JB plays23

a critical role in the triggering process. The nonlinear transition time TN for24

the frequency shift is found to be of the same order as the nonlinear trap-25

ping period, which is confirmed by simulations and observation. The estab-26

lished frequency sweep rate is ω1/TN , which gives an optimum wave ampli-27

tude of chorus emissions.28



1. Introduction

Coherent electromagnetic waves called chorus emissions have frequently been observed29

in the inner magnetosphere [e.g., Tsurutani and Smith, 1974; Santolik et al., 2003; San-30

tolik, 2008; Kasahara et al., 2009]. Chorus emissions typically consist of a series of rising31

tones generated near the magnetic equator, excited by energetic electrons from several32

keV to tens of keV injected into the inner magnetosphere at the time of a geomagnetic33

disturbance. In recent years chorus emissions have been studied extensively because of34

their role as a viable mechanism for accelerating radiation belt electrons as well as pre-35

cipitating them into the polar atmosphere [Summers et al., 1998; Summers et al.,, 2002;36

Miyoshi et al., 2003; Horne et al., 2005; Omura and Summers, 2006; Omura et al., 2007;37

Katoh and Omura, 2007; Furuya et al., 2008; Katoh et al., 2008; Hikishima et al., 2010].38

As a generation mechanism for chorus emissions, a backward wave oscillator (BWO) the-39

ory has been proposed by Trakhtengerts [1999]. The BWO theory assumes a step in the40

velocity distribution function, which has not been observed. Furthermore such a step can41

only influence the ’triggering phase’ and can have no effect upon the plasma dynamics of42

the established chorus element with sweeping frequency as the resonance velocity will no43

longer match the location of the step in parallel velocity.44

Numerical modeling of chorus emissions have been performed using a Vlasov-Hybrid45

Simulation (VHS) code based on narrow band field equations derived from Maxwell’s46

equations and the linear equation of motion of cold plasma, under the assumption of a47

band-limited coherent whistler-mode wave [Nunn, 1990, 1993; Nunn et al., 1997, 2009].48

The initial wave amplitude and the wave phase are specified in such simulations. In49



contrast to the VHS code, chorus emissions with rising tones were reproduced successfully50

starting from thermal noise in an electromagnetic electron-hybrid code, in which Maxwell’s51

equations are solved directly together with the electron fluid equation for the cold dense52

electrons and the equations of motion for the hot resonant electrons [Katoh and Omura,53

2006; 2007]. The mechanism of the rising chorus emissions has been analyzed theoretically54

in terms of nonlinear wave growth due to the formation of an electromagnetic electron55

hole in the velocity phase space [Omura et al., 2008, 2009]. The relation between the wave56

amplitude and the frequency sweep rate in the generation region of chorus emissions has57

been derived [Omura et al., 2008, Equation (50)]. The validity of this relation has been58

demonstrated in a full-particle electromagnetic simulation [Hikishima et al., 2009] as well59

as in the electron-hybrid simulation [Katoh and Omura, in press]. These simulations show60

that seeds of chorus emissions with rising tones are formed in a localized region near the61

magnetic equator. The seeds of emissions grow as a result of the formation of resonant62

current arising from nonlinear trajectories of resonant untrapped electrons.63

Falling tone chorus emissions have also been observed by Cluster spacecraft, and mod-64

eled by Nunn et al. [2009]. In the present analysis, however, we focus our attention on65

rising tone chorus emissions, which has been studied more extensively by simulations [Ka-66

toh and Omura, 2007; Hikishima et al., 2009; Nunn et al., 2009] as well as observations67

[Macusova et al., 2010; Cully et al., 2011].68

The nonlinear wave growth theory [Omura et al., 2008, 2009] assumed a frequency sweep69

rate ∂ω/∂t that drives the wave growth through the formation of a resonant current JE70

parallel to the wave electric field. However, the mechanism for the formation of finite71

∂ω/∂t has not been clarified yet. Noting that that the resonant current JB parallel to the72



wave magnetic field was included in previous studies based on the VHS code [Nunn et al.,73

1997, 2009], we have conducted an experiment to run the VHS code with and without JB to74

find out the contribution of JB to the generation of chorus emissions. As shown in Figure75

1, the run without JB does not reproduce a rising tone chorus element, but a constant76

frequency emission, while the run with JB does. Considering the contribution of resonant77

electrons, we first analyze the optimum condition for triggering chorus theoretically in78

section 2. We confirm the theoretical model by analyzing the result of the Vlasov Hybrid79

Simulation in section 3. In section 4 we present a summary and discussion.80

2. Condition for triggering chorus emissions

We assume a whistler-mode wave propagating parallel to the static magnetic field B081

with a wavenumber k and a constant frequency ω0 satisfying the linear dispersion relation82

c2k2 − ω2
0 −

ω0ω
2
pe

Ωe − ω0
= 0 . (1)83

84

where c, Ωe, and ωpe are the speed of light, the electron cyclotron frequency, and the85

electron plasma frequency, respectively. It is noted that the wavenumber k is a function86

of a distance h taken along the magnetic field line from the magnetic equator. The wave87

fields are in the transverse plane containing x- and y-axes. We then assume energetic88

electrons interacting with the wave satisfying the cyclotron resonance condition89

ω0 − kv‖ =
Ωe

γ
, (2)90

91

where γ is the Lorentz factor given by γ = [1 − (v2
‖ + v2

⊥)/c2]−1/2, and v‖ and v⊥ are92

electron velocities parallel and perpendicular to B0. Solving for v‖, we can obtain an93



explicit expression of the cyclotron resonance velocity94

ṼR =
ω̃2 −

√
ω̃4 + (ω̃2 + Ṽ 2

p )(1 − ω̃2 − Ṽ 2
⊥0)

ω̃2 + Ṽ 2
p

Ṽp , (3)95

96

where ω̃ = ω0/Ωe, ṼR = VR/c, Ṽp = Vp/c, and Ṽ⊥0 = V⊥0/c. The phase velocity is given97

by98

Vp =
ω0

k
= cδξ , (4)99

100

where ξ2 = ω0(Ωe − ω0)/ω
2
pe and δ2 = (1 + ξ2)−1[Omura et al., 2008]. When we evaluate101

γ in the equations derived below, we substitute v‖ = VR and v⊥ = V⊥0, where V⊥0 is the102

average perpendicular velocity.103

The electrons are organized in phase in the transverse plane, and form a resonant104

current that can trigger formation of a new wave field with a variable frequency ω, as105

demonstrated by a full-particle simulation by Hikishima et al. [2010].106

We express the electric and magnetic field vectors of the total wave field in the transverse107

plane by the complex forms Ẽw = Ew exp (iψE) and B̃w = Bw exp (iψB), respectively.108

From Maxwell’s equations we obtain the following equations for the amplitude Bw of the109

wave magnetic field in the form [Omura et al., 2008],110

∂Bw

∂t
+ Vg

∂Bw

∂h
= −μ0Vg

2
JE , (5)111

112

113

c2k2 − ω2 − ωω2
pe

Ωe − ω
= μ0c

2k
JB

Bw

, (6)114

115

where μ0 is the magnetic permittivity in vacuum. The resonant current formed by resonant116

electrons is divided into two components JE and JB parallel to the transverse wave electric117

and magnetic fields, respectively. Details of the derivation of (5) and (6) are found in118

Appendix A of Omura et al.[2008].119



While the resonant current JE modifies the wave amplitude Bw, the quantity JB/Bw120

changes the frequency ω of the triggered wave. It is noted that the wavenumber k or the121

wavelength does not change in space and time because it is imposed by the triggering122

wave with the constant frequency ω0 in the present situation. Denoting the frequency123

deviation from ω0 as ω1 (ω = ω0 + ω1) and assuming ω1 << ω0, we expand (6) around ω0124

to obtain125

{
2ω0 +

Ωeω
2
pe

(Ωe − ω0)2

}
ω1 = −μ0c

2k
JB

Bw
, (7)126

127

where we made use of (1). Differentiating (1) with respect to ω0, we obtain128

2c2k
∂k

∂ω0
= 2ω0 +

Ωeω
2
pe

(Ωe − ω0)2
. (8)129

130

Using (8), we rewrite (7) as131

ω1 = −μ0Vg

2

JB

Bw
. (9)132

133

where Vg = ∂ω0/∂k.134

We consider the optimum condition for the nonlinear wave growth to take place, as-135

suming that the electron hole is progressively formed in the velocity phase space within136

the time window defined by the nonlinear transit time TN . Dynamics of a resonant elec-137

tron is described by a set of simplified differential equations. Introducing the variables138

θ = k(v‖−VR) and the phase angle ζ between the perpendicular velocity v⊥ and the wave139

magnetic field Bw,140

dζ

dt
= θ , (10)141

142

and143

dθ

dt
= ω2

tr(sin ζ + S) , (11)144

145



where ωtr = ωtδγ
−1/2, and we have assumed that v‖ ∼ VR, i.e., θ ∼ 0. Here, ωt is the146

trapping frequency given by ωt =
√
kv⊥Ωw. The shape of the electron hole is determined147

by the inhomogeneity ratio given by148

S = − 1

s0ωΩw

(s1
∂ω

∂t
+ cs2

∂Ωe

∂h
) , (12)149

150

where151

s0 =
δ

ξ

V⊥0

c
, (13)152

153

154

s1 = γ(1 − VR

Vg

)2 , (14)155

156

and157

s2 =
1

2ξδ

{
γω0

Ωe

(
V⊥0

c

)2

−
[
2 + Λ

δ2(Ωe − γω0)

Ωe − ω0

]
VRVp

c2

}
. (15)158

159

We have incorporated the variation of the cold electron density Ne(h) along the magnetic160

field line as Ne(h) = Ne0Ωe(h)/Ωe0, where Ne0 and Ωe0 are respectively the cold electron161

density and the electron gyrofrequency at the equator. We have Λ = ω0/Ωe for this162

inhomogeneous electron density model, while Λ = 1 for the constant electron density163

model [Omura et al. 2009].164

The resonant currents JE and JB are expressed respectively as165

JE = −J0

∫ ζ2

ζ1

[cos ζ1 − cos ζ + S(ζ − ζ1)]
1/2 sin ζdζ , (16)166

167

and168

JB = J0

∫ ζ2

ζ1

[cos ζ1 − cos ζ + S(ζ − ζ1)]
1/2 cos ζdζ , (17)169

170

where J0 = (2e)3/2(m0kγ)
−1/2V

5/2
⊥0 δQGBw

1/2, and e and m0 are the charge and rest mass171

of an electron. The factor Q represent the depth of the electron hole [Omura et al., 2009].172



The phase angles ζ1 and ζ2 define the boundary of the trapping wave potential as described173

by Omura et al. [2009]. The parameter G is the value of the velocity distribution function174

g(v‖, ζ) in the trapping region around the resonance velocity.175

We assume that the velocity distribution function f of hot energetic electrons is given176

in terms of the relativistic momentum per unit mass u = γv; u has components u‖ = γv‖177

and u⊥ = γv⊥, respectively parallel and perpendicular to the ambient magnetic field. We178

specify f as179

f(u‖, u⊥) =
Nh

(2π)3/2Ut‖U⊥0
exp

(
− u2

‖
2U 2

t‖

)
Δ(u⊥ − U⊥0) , (18)180

181

where U⊥0 = γV⊥0, Ut‖ is the thermal momentum in the parallel direction, and Δ is182

the Dirac delta function, and we have normalized f to the density of hot electrons Nh.183

Integrating over u⊥ and taking an average over ζ, we obtain the magnitude G of the184

unperturbed distribution function g(v‖, ζ) at the resonance velocity VR as185

G =
Nh

(2π)3/2Ut‖U⊥0

exp

(
−γ

2V 2
R

2U 2
t‖

)
. (19)186

187

Omura et al. [2008] found that the maximum value of −JE takes place when S = −0.413.188

Solving (17) for S = 0.413, we obtain JB = −1.3J0, which is rewritten as189

JB = −1.3(2e)3/2

(
Bw

m0kγ

)1/2

V
5/2
⊥0 δQG . (20)190

191

The nonlinear transition time TN for formation of the nonlinear resonant current is192

roughly estimated by the nonlinear trapping period Ttr given by193

Ttr =
2π

ωtr

=
2π

δ

(
m0γ

kV⊥0eBw

)1/2

, (21)194

195

where ωtr is the trapping frequency [Omura et al., 2008]. We define a ratio τ = TN/Ttr,196

which is to be determined by numerical simulations in the next section.197



Through the nonlinear transition time TN , the electron hole is gradually formed. Along198

with formation of JB, the frequency of the triggered wave gradually deviates from ω0 to199

ω0 + ω1. From (9), (19), (20), and (21), we obtain the frequency sweep rate over the200

nonlinear trapping period as201

ω1

TN

=
1.3

4
π−5/2Q

τ

(
ωphV⊥0δ

γc

)2
Vg

Ut‖
exp

(
−γ

2V 2
R

2U 2
t‖

)
, (22)202

203

where ωph is the plasma frequency of the hot energetic electrons defined by ω2
ph =204

μ0c
2Nhe

2/m0.205

At the equator the inhomogeneity of the magnetic field is zero, and the second term on206

the right-hand side of（12) vanishes. Since the maximum nonlinear wave growth takes207

place when S = −0.4 [Omura et al., 2008], we can derive from (12) the relation between208

the frequency sweep rate and the normalized wave amplitude at the equator Ωw = eBw/m0209

in the form,210

∂ω

∂t
=

0.4s0ω0

s1

Ωw . (23)211

212

Equating the left-hand sides of (22) and (23), we obtain an optimum wave amplitude Ωwo213

that can trigger the rising-tone chorus element as214

Ωwo =
s1ω1

0.4s0ω0TN

. (24)215

216

From (22) and (24), we obtain217

Ω̃wo = 0.81π−5/2Q

τ

s1Ṽg

s0ω̃Ũt‖

(
ω̃phṼ⊥0δ

γ

)2

exp

(
−γ

2Ṽ 2
R

2Ũ 2
t‖

)
, (25)218

219

where Ω̃wo = Ωwo/Ωe0, ω̃ph = ωph/Ωe0, and Ũt‖ = Ut‖/c.220



Finally we can evaluate the nonlinear transition time using the wave amplitude obtained221

above. Using (4), we rewrite (21) as222

TNΩe0 = 2πτ

(
γξ

ω̃Ṽ⊥0Ω̃w0δ

)1/2

, (26)223

224

The triggered chorus element should satisfy another condition to grow as a nonlinear225

absolute instability at the equator. The wave amplitude of the triggered emission should226

be greater than the threshold for the nonlinear wave growth [Omura et al., 2009], which227

is given by228

Ω̃th =
100π3γ3ξ

ω̃ω̃4
phṼ

5
⊥0δ

5

(
ãs2Ũt‖
Q

)2

exp

(
γ2Ṽ 2

R

Ũ 2
t‖

)
, (27)229

230

where ã = ac2/Ω2
e0, and a is a coefficient defining the parabolic variation of the magnetic231

field around the equator as Ωe = Ωe0(1 + ah2). The coefficient a is specified by the L232

value and the Earth’s radius RE as a = 4.5/(LRE)2.233

3. Simulations of rising tone emissions

We performed simulations of rising tone emissions by the VHS code, in which the234

equations equivalent to (5) and (6) are solved numerically along with the Vlasov equation235

for the resonant electrons [Nunn et al., 1990, 1993, 2009]. To find out the importance of236

the resonant current JB in generating chorus emissions, we first performed a run in which237

both JE and JB are calculated and the wave field is updated by them. The run produced238

a rising tone emission as shown in Figure 1(a). We then performed the second run with239

JB = 0. The second run did not reproduce the rising tone emission as shown in Figure240

1(b). A constant frequency emission did result with symmetric upper and lower resonant241

sidebands. We now recognize the importance of the resonant current JB as analyzed in242

the preceding section.243



The parameters used in the VHS run are the following. The electron cyclotron frequency244

fc is 8 kHz at the magnetic equator. The electron plasma frequency fp is 18.8 kHz, which245

gives ω̃p = 2.35. Assuming L = 4.79, we have ã = 1.72 × 10−7. The velocity distribution246

assumed in the VHS code is approximated by (18) with V⊥0 = 0.4584c, Ut‖ = 0.2396c, and247

ω̃ph = 0.1664 (Nh/Nc = 0.005). These parameter gives equatorial linear growth rate of248

600 dB/s, which is in rough agreement with path integrated gain of whistler-mode waves249

evaluated based on the THEMIS spacecraft observation [Li et al., 2009].250

Figures 2(a) and 2(b) show the spatial and temporal variation, in dimensionless units, of251

wave amplitude Bw/B0 and wave frequency ω/Ωe0, respectively. The incoming triggering252

pulse has an initial amplitude Bw0 = 4.2 × 10−5 (12pT) and duration 8.4 × 103Ω−1
e0 (167253

ms) and frequency ω/Ωe0 = 0.4 (3.2 kHz). Its amplification as it progresses to the equator254

is clearly visible in Figure 2a, at which point its amplitude is large enough for nonlinear255

trapping to occur and for triggering to take place. At about tΩe0 ∼ 9000 a riser generation256

region is firmly established with a wave generation point at the equator and a profile257

leading edge some 100 ∼ 500 units upstream from the equator.258

From the temporal and spatial variation of local frequency in Figure 2(b) we see an259

initial drop in frequency due to nonlinear trapping in the incoming pulse when it is in the260

positive inhomogeneity region upstream from the equator S > 0. The region of much lower261

frequencies near tΩe0 ∼ 8000 is not significant as it corresponds to very small amplitudes262

in the wake of the incoming pulse. After tΩe0 ∼ 9000 we see a rising frequency in the263

equatorial region, and after tΩe0 ∼ 11000 the progressive establishment of a frequency264

gradient across the interaction region.265



By plotting the distribution function of resonant electrons in the (v‖ − ζ) phase space,266

we find that the depletion of the electrons in the trap at the resonance velocity is about 22267

percent of the surrounding energetic electrons. Assuming Q = 0.25 with the parameters268

of the VHS run, we calculated the optimum wave amplitudes given by (25) in solid lines269

in Figure 3(a). The numbers attached to the lines are the time scale factors τ . We also270

plot the threshold for the nonlinear wave growth given by (27) in a dashed line. Figure271

3(b) shows the nonlinear time scale TN given by (26) for different values of τ .272

In Figure 4 we plot simultaneous time histories at the equator (h = 0) of wave amplitude273

and frequency as well as resonant particle current components JE and JB in arbitrary274

units. Figure 4(a) shows wave amplitude progression. Significant amplitudes ∼ 2 × 10−4
275

are established after tΩe0 = 5000, but there is a drop out around tΩe0 ∼ 9000 when276

the wave profile slips downstream from the equator. Figure 4(b) shows the progression277

of equatorial frequency. After an initial drop a positive frequency gradient is abruptly278

established at tΩe0 ∼ 9000 of magnitude 1 × 10−5Ω2
e0 (4 kHz/s). From (23), we can279

estimate the average wave amplitude Bw/BoEQ = 1.3 × 10−4 (37 pT) that results in the280

frequency sweep rate. Assuming this amplitude is the optimum amplitude given by (25),281

we find τ = 1.0. Substituting this value of τ into (26), we find TNΩe0 = 640 (13 ms).282

Figure 4(e) shows the time development of the nonlinear frequency shift term ω1. The283

latter is quite interesting. At around tΩe0 ∼ 9500 it rises quite quickly to a value ∼ 0.006284

(50 Hz) which is then sustained. The development time is nearly equal to TN obtained285

above. We can also confirm that the quotient ω1/TN agrees with the frequency sweep rate286

∂ω/∂t = 1×10−5Ω2
e0 in accordance with the assumption of the optimum wave amplitude.287



As a result of trapping in the negative inhomogeneity region h > 0, we get an electron288

hole and a significant build up of a large nonlinear current JB at the equator as shown289

in Figure 4(c). This is as expected since the inhomogeneity S at h = 0 is initially zero290

giving a phase trapping angleanti parallel to the wave magnetic field (phase of 180 degrees291

relative to Bw). We find formation of a negative JB around tΩe0 = 6500 ∼ 8500, but the292

wave amplitude is much larger than the optimum wave amplitude, and the nonlinear293

frequency shift was too small to trigger the rising tone. As the positive frequency sweep294

rate becomes established at later time as shown in Figure 4(b), S shifts to a value ∼ −0.4295

which enables us to easily interpret the JE profile in Figure 4(d) . The current JE is296

initially close to zero as expected for S = 0, but acquires a significant negative component,297

from about tΩe0 ∼ 9500 giving nonlinear growth, as the trapping angle rotates to a phase298

of approximately 166 degrees.299

We performed a few other runs of rising chorus elements by the VHS code with different300

parameters, and found the same sequence of the initial formation of the negative JB301

followed by gradual formation of the negative JE along with establishment of the finite302

frequency sweep rate. We also found τ ∼ 1.0.303

In Figure 5(a) we plot the optimum wave amplitude and the threshold for the nonlinear304

wave growth with parameters used in an electron hybrid simulation [Katoh and Omura305

[2007]: Omura et al., 2008] ã = 9.8×10−7, Ṽ⊥0 = 0.6, Ũt‖ = 0.3, ω̃pe = 4, and ω̃ph = 0.113.306

We assumeQ = 0.5 and different values of τ = 0.25, 0.5, 1.0, 2.0. Noting that the simulated307

chorus emissions have frequency spectra starting from ω = 0.2Ωe0 with the wave amplitude308

Bw ∼ 4× 10−4B0EQ at the equator (Figures 4 and 5 of Omura et al. [2008]), we find that309

the optimum amplitude with τ = 0.25 ∼ 0.5 agrees with the simulation result, because310



the frequency rage above ω = 0.2 satisfies the necessary condition for the nonlinear wave311

growth Ω̃wo > Ω̃th.312

In Figure 5(b), we plot the optimum wave amplitude and the threshold with parameters313

used in a full-particle simulation by Hikishima et al.[2009]: ã = 5.1 × 10−6, Ṽ⊥0 = 0.29,314

Ũt‖ = 0.2, ω̃pe = 5, and ω̃ph = 0.40. In both cases, we assume Q = 0.5 and different315

values of τ = 0.25, 0.5, 1.0, 2.0. Figure 8 of Hikishima et al. [2009] shows chorus emissions316

starting from ω = 0.16Ωe0 with a wave amplitude Bw ∼ 1 × 10−3B0EQ at the equator.317

We find good agreement between the optimum amplitude with τ = 0.5 and the frequency318

spectra of the simulation result.319

It is also interesting to note that the frequency range that satisfies Ω̃wo > Ω̃th, shown320

in Figure 5(a), agrees with the width of the wave spectra found in the simulation result.321

A chorus element undergoes a strong wave amplitude modulation through its evolution322

in frequency. Even if the nonlinear wave growth is terminated because of the amplitude323

modulation, a new triggering process can take place when the optimum condition of the324

wave amplitude is satisfied, and the rising tone is resumed. Therefore, while the optimum325

wave amplitude is larger than the threshold for the nonlinear wave growth, the frequency326

continues to increase, forming the chorus element.327

4. Summary and Discussion

We have obtained an optimum wave amplitude that can trigger a rising tone chorus328

element. When the optimum wave amplitude given by (25) is reached by the linear329

wave instability at a specific frequency driven by the temperature anisotropy of resonant330

electrons near the equator, a triggered emission arises with a rising frequency due to331

gradual formation of the negative JB and with an increasing wave amplitude due to the332



negative JE induced by the positive frequency sweep rate. An electromagnetic electron333

hole is formed in the velocity phase space with S ∼ −0.4. An absolute nonlinear instability334

takes place above the threshold given by (27).335

For comparison with an observation by the Cluster spacecraft [Santolik et al., 2003;336

Santolik, 2008], we plot the optimum wave amplitude and the threshold for the nonlinear337

wave growth in Figure 6(a), and the theoretical frequency sweep rate ∂f/∂t in Figure 6(b).338

Based on the observation at L = 4.4, which gives ã = 2 × 10−7, we assumed parameters339

as ωpe/Ωe0 = 2.4, Ṽ⊥0 = 0.3, and Ũt‖ = 0.2. The energy of the resonant electrons are340

50 keV for ω/Ωe0 = 0.37 (3 kHz). Since the parameters are very close to the VHS run,341

we use Q = 0.25 and varied the time scale parameter as τ = 0.25, 0.5, 1.0, 2.0. The342

optimum wave amplitude and the frequency sweep rate varies depending on the density343

of energetic electrons Nh. From the observation, we can find the frequency sweep rates,344

which do not change much through propagation. On the other hand, the wave amplitude345

can change substantially through propagation from the source region to the observation346

point. Therefore, we can infer the physical parameters at the generation region from347

the frequency sweep rate of the observed chorus emissions. Chorus emissions reported348

by Santolik et al.[2003] consist of rising tone elements starting from 2 ∼ 3 kHz with the349

frequency sweep rate ∼ 15 kHz/s. We find a good agreement with the case Nh/Nc = 0.04350

and τ = 0.25 ∼ 0.5. The wave amplitude in the generation region is estimated as large as351

100 ∼ 300 pT.352

It is also interesting to note that the frequency sweep rate give by (22) does not depend353

on the wave amplitude of the triggering wave. The physical plasma parameters and the354

frequency of the triggering wave determine the frequency sweep rate. Then the effective355



wave growth takes place with the wave amplitude of the triggered wave, which satisfies356

the condition (23) at the magnetic equator.357

Finally we can construct the following scenario of the chorus generation process, sum-358

marizing the recent studies [Omura et al., 2008, 2009] and the present analysis.359

1. Linear Phase: Whistler-mode waves grow due to a linear instability driven by360

temperature anisotropy of energetic electrons. A constant-frequency wave with the max-361

imum linear growth rate becomes dominant to form a coherent wave phase. The linear362

growth rate maximizes at the magnetic equator where the flux of energetic electrons at363

the resonance velocity becomes largest. The seed of the triggering wave is the thermal364

fluctuation at some distance from the equator. It propagates toward the equatorial region,365

undergoing the convective linear growth to form a coherent wave near the equator.366

2. Nonlinear Phase 1: As a result of the nonlinear dynamics of electrons at or near367

the resonance velocity of the triggering coherent wave, a hole in the velocity distribution368

function at the location of the resonant particle trap is formed. The negative resonant369

current JB is formed, resulting in the nonlinear frequency shift ω1 taking place over TN ,370

which is of the same order as the nonlinear trapping time Ttr. The ratio TN/Ttr (= τ) is371

0.25 ∼ 1.0. The frequency sweep rate is the nonlinear frequency shift ω1 divided by the372

nonlinear transition time TN .373

3. Nonlinear Phase 2: Along with the establishment of the frequency sweep rate374

ω1/TN , the nonlinear resonant current JE is formed, resulting in the nonlinear wave375

growth. Formation of the negative JE results in the nonlinear wave growth as an absolute376

instability at the magnetic equator. The nonlinear instability starts from an optimum377

amplitude that is required to maximize JE with the inhomogeneity ratio S = −0.4. The378



initial evolution of the wave amplitude and frequency is described by the chorus equations379

[Omura et al., 2009].380

4. Nonlinear Phase 3: A chorus element is formed at the magnetic equator, and381

propagates away from it. As the wave propagates away from the equator, the zero order382

field gradient increases as does the wave amplitude due to the nonlinear wave growth.383

While −1 < S < 0, trapping is allowed and the chorus element continues to grow as it384

propagates away from the equator.385

In the linear phase, the triggering wave grows from the thermal fluctuation through the386

convective linear growth. Evaluation of the path-integrated gain of the linear instability387

was performed by Li et al. [2009]. It is noted, however, that the linear growth rate388

is applicable only to the triggering waves, and not to the chorus emissions, which are389

generated through the nonlinear processes as described above.390

The initial appearance of JB followed by JE in the initial nonlinear growth phase of the391

triggered emissions is also observed in the HAARP HF ionospheric heating experiment392

[Golkowski et al., 2010]. From the growth of the observed wave amplitudes and phases393

of HAARP-generated whistler-mode echoes, the magnitudes of the resonant currents are394

estimated. The analysis shows that the magnitude of JB is greater than that of JE, which395

is consistent with the VHS code result shown in Figure 4 and the theoretical model of an396

electromagnetic electron hole assumed in the nonlinear wave growth theory.397

Gibby et al. [2008] tried to reproduce triggered emissions, using a more classical Vlasov398

method such as developed by Denavit [1972; 1985] and by Besse and Sonnendrucker399

[2003] in the semi Lagrangian method. These methods advance the distribution function400

by applying Liouville’s theorem to one step particle trajectories, and then interpolating401



distribution function back onto the phase space grid. These methods can have poor402

robustness to distribution function filamentation and give rise to an unphysical diffusion403

in distribution function due to the successive interpolation procedures. The VHS method404

suffers from neither of these problems. The code by Gibby et al. [2008] does not update405

wave phase properly when wave amplitude is very small and for a broadband simulation406

has a rather low resolution in phase space, which may be why the code does not trigger407

emissions. Gibby et al. [2008] presents interesting and plausible data, supported by his408

simulations, suggesting that in the key down case saturation may arise from marked409

spectral broadening which destroys particle trapping and thus nonlinear growth rates.410

At the magnetic equator, the nonlinear wave growth saturates due to a subsequent411

nonlinear effect [Hikishima et al., 2010]. The detailed analysis of the saturation mechanism412

is left as a future study.413
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Figure 1. Dynamic spectra of VHS code runs (a) with JB and (b) without JB.

Figure 2. Spatial and temporal evolutions of (a) wave amplitude and (b) frequency in

the VHS code run with JB. The dashed white lines indicate the time when the formation

of the nonlinear current JB begins. The arrow in magenta indicates the wave packet of

the triggering wave.

Figure 3. (a) The optimum wave amplitudes (solid lines) for triggering rising tone

emissions with different values of the time scale factor τ (attached numbers), and the

threshold of the wave amplitude for the nonlinear wave growth (dashed line) with the

parameters used in the VHS run. (b) The corresponding nonlinear transition time TN for

formation of the nonlinear resonant current −JB with different values of the time scale

factor τ .

Figure 4. Time histories of the wave amplitude, frequency, resonant currents JB and

JE, and nonlinear frequency shift ω1 at the magnetic equator in the VHS code run. The

dashed blue lines indicates the time when the formation of −JB begins, and the dashed

red line indicates the time when −JE is formed, resulting in the nonlinear wave growth.



Figure 5. The optimum wave amplitudes (solid lines) with different values of τ (attached

numbers) and the threshold for nonlinear wave growth (dashed line), (a) for simulation

parameters used in Katoh and Omura [2007], and (b) for simulation parameters used in

Hikishima et al. [2009].

Figure 6. (a) The optimum wave amplitudes for rising tone emissions (solid lines)

with different values of τ (attached numbers), and the threshold of wave amplitude for

the nonlinear wave growth (dashed line) and (b) the corresponding frequency sweep rates

with the energetic electron density Nh/Nc = 0.04. Other physical parameters are specified

for an observation by the Cluster spacecraft [Santolik et al., 2003; Santolik, 2008].














