<table>
<thead>
<tr>
<th>Section</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Title</td>
<td>Seasonal dependence of geomagnetic field variations on the ground associated with geomagnetic sudden commencements</td>
</tr>
<tr>
<td>Author(s)</td>
<td>SHINBORI, Atsuki; TSUJI, Yuji; KIKUCHI, Takashi; ARAKI, Tohru; IKEDA, Akihiro; UOZUMI, Teiji; SOLOVYEV, S. I.; SHEVSTOV, Boris M.; OTADOY, Roland Emerito S.; UTADA, Hisashi; NAGATSUMA, Tsutomu; HAYASHI, Hiroo; YUMOTO, Kiyohumi; IUGONET project team</td>
</tr>
<tr>
<td>Citation</td>
<td>(2011)</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-07-06</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/142589</td>
</tr>
<tr>
<td>Type</td>
<td>Presentation</td>
</tr>
<tr>
<td>Textversion</td>
<td>publisher</td>
</tr>
<tr>
<td>Institution</td>
<td>Kyoto University</td>
</tr>
</tbody>
</table>
1. Introduction

1.1 Waveform and amplitude of geomagnetic sudden commencement and its current system during the main impulse

- The SC waveform and amplitude on the ground depends strongly on both the magnetic latitude and local time.
- The second pulse observed at the auroral latitude and magnetic equator, which is called the main impulse (MI), is due to the magnetic field variations driven by the region-1 type of the ionospheric and field-aligned currents.

1.2 Seasonal variation of the SC-MI amplitude

- Both the previous studies showed that the SC amplitude is more enhanced in the summer, compared with that in the winter.
- However, the seasonal dependence of the diurnal variation of the SC amplitude from the high latitude to the magnetic equator remains unknown.

2. The purpose of this study

2.1 Problems of previous works

Due to the shortage of the integrated analysis of the long-term geomagnetic field data with high time resolution obtained from many observation points and their data accessibility, the previous works could not systematically investigate magnetic latitude and local time variations of the SC-MI amplitude and its seasonal variation from high latitudes to the magnetic equator. Then, as several major problems,

1. Global features of the SC-MI amplitude remains unknown.
2. Detailed features of seasonal dependence of the diurnal variation have not been clarified yet as function of magnetic latitude and local time.
3. Understanding the nature of SC-MI current system is insufficient.

2.2 The purpose of this study

- In order to clarify the magnetic latitude and local time variations of the SC-MI amplitude and its seasonal variation, we analyzed geomagnetic field data with high time resolution of 1 second in a long period of 1996-2010 provided from NICT, WDC Kyoto, and Kyushu Univ.
- In this analysis, we took advantage of the metadata search system and integrated analysis software developed in the IUGONET project.

3. Data analysis and method

3.1 Observation points of ground magnetometer and list of number of SC event

- We used the long-term geomagnetic field data with time resolution of 1 sec in a period from 1996 to 2010 provided from NICT, WDC Kyoto, and Kyushu Univ.
- In this study, we identified the SC events as an abrupt increase of the SYM-H index with the amplitude of more than 5 nT within 10 minutes.
- We also analyzed solar wind data provided from the CDAWeb in order to identify solar wind dynamic pressure enhancement associated with shock or discontinuity.
- In order to minimize the deviation of the SC-MI amplitude, we normalized this value by the latitudinal corrected SYM-H index.

4. Summary and conclusion

3.1 Magnetic latitude and local time dependence of the SC-MI amplitude

- The diurnal variation of the SC-MI amplitude on the dayside shows a DP-2 type magnetic field variations driven by the region-1 type FACs in the middle and auroral latitudes. The diurnal variation is reversed at the auroral latitude, which indicates that the footprint of the FACs is located around 63-65 degrees.
- The SC-MI amplitude on the nightside is enhanced significantly from the middle to low latitudes. This enhancement is caused by the magnetic field effect produced by the region-1 type FACs. Moreover, the SC-MI amplitude is depressed steeply around the auroral latitude of 60 degrees due to the enhanced westward auroral electrojet.

3.2 Seasonal dependence of the diurnal variation of the SC-MI amplitude

- The size of the diurnal variation of the SC-MI amplitude is more enhanced in the summer than in the winter.
- This result suggests that the SC-MI current system is a voltage generator rather than a current generator.

4.1 Magnetic latitude and local time dependence of the SC-MI amplitude from the high latitude to magnetic equator

- The diurnal variation of the SC-MI amplitude on the dayside shows a DP-2 type magnetic field variation driven by the twin vortex of ionospheric currents.
- The nighttime SC-MI amplitude becomes maximum in the middle latitude (~50 degrees) and steeply decreases around the auroral latitude. This nighttime enhancement and depression are due to the magnetic effects produced by the FACs and westward auroral electrojet, respectively.
- On the equatorial region where the dip latitude is less than 15 degrees, the SC-MI amplitude tends to be more enhanced in the summer than in the winter. This results indicates that ionospheric currents and FACs increases due to the increased ionospheric conductivities.
- From the seasonal variation, it can be concluded that a feature of the SC-MI current system is a voltage generator rather than a current generator.
- The size of the seasonal variation is larger in the afternoon than in the morning. This weak seasonal variation in the morning suggests that the equivalent current at the geomagnetic field line flows parallel to the H-component. This ionospheric currents produce the east-west magnetic field variations parallel to the D-component.
- In the future study, we should investigate the long-term analysis of the D-component during SCs and its seasonal variations.