Emergent paramagnetic phases in Zn －paratacamite

Michael Lawler
University of Toronto

Recently，there has been much experimental progress in the search for new quantum paramagnetic phases of matter though successful fabrication of frustrated spin $1 / 2$ magnets．In this talk，I will focus on one such material：a quasi－ two－dimensional family of layered spin $1 / 2$ kagome lattice systems $\mathrm{Zn}_{x} \mathrm{Cu}_{4-x}(\mathrm{OH})_{6} \mathrm{Cl}_{2}$ dubbed＂ Zn －paratacamite＂． Remarkably，at $x=1$ this material shows no sign of magnetic order down to the lowest temperatures studied．It is therefore considered one of the leading candidate systems for hosting a quantum spin liquid phase．In the undoped $x=0$ limit，two thermodynamic phase transitions are observed and the new phases are the subject of this talk．I will argue that the lowest temperature phase has Neel order induced by a frustration relieving structural distortion observed in this doping regime．By quantum disordering this Neel phase，I will argue that the intermediate temperature paramagnetic phase is a valence－bond－solid．Lastly，I will present predictions for future X－ray and inelastic neutron scattering experiments which can test our theory．

DAY 5：9：40－10：20

Multi－channel Kondo Models in non－Abelian Quantum Hall Droplets

Gregory Fiete
 Caltech

We study the coupling between a quantum dot and the edge of a non－Abelian fractional quantum Hall state which is spatially separated from it by an integer quantum Hall state．Near a resonance，the physics at energy scales below the level spacing of the edge states of the dot is governed by a k－channel Kondo model when the quantum Hall state is a Read－Rezayi state at filling fraction $\nu=2+k /(k+2)$ or its particle－hole conjugate at $\nu=2+2 /(k+2)$ ． The k－channel Kondo model is channel isotropic even without fine tuning in the former state；in the latter，it is generically channel anisotropic．In the special case of $k=2$ ，our results provide a new venue，realized in a mesoscopic context，to distinguish between the Pfaffian and anti－Pfaffian states at filling fraction $\nu=5 / 2$ ．

