
Genetic Algorithm with Automatic Termination
and Search Space Rotation

Bun Theang Ong and Masao Fukushima ∗

Abstract

In the last two decades, numerous evolutionary algorithms (EAs) have been
developed for solving optimization problems. However, only a few works have
focused on the question of the termination criteria. Indeed, EAs still need termina-
tion criteria prespecified by the user. In this paper, we develop a genetic algorithm
(GA) with automatic termination and acceleration elements which allow the search
to end without resort to predefined conditions. We call this algorithm “Genetic Al-
gorithm with Automatic Termination and Search Space Rotation”, abbreviated as
GATR. This algorithm utilizes the so-called “Gene Matrix” (GM) to equip the
search process with a self-check in order to judge how much exploration has been
performed, while maintaining the population diversity. The algorithm also im-
plements a mutation operator called “mutagenesis” to achieve more efficient and
faster exploration and exploitation processes. Moreover, GATR fully exploits the
structure of the GM by calling a novel search space decomposition mechanism
combined with a search space rotation procedure. As a result, the search oper-
ates strictly within two-dimensional subspaces irrespective of the dimension of
the original problem. The computational experiments and comparisons with some
state-of-the-art EAs demonstrate the effectiveness of the automatic termination cri-
teria and the space decomposition mechanism of GATR.
Keywords—Genetic Algorithms, Termination Criteria, Gene Matrix, Mutagenesis,
Space Rotation , Space Decomposition

1 Introduction
Evolutionary algorithms (EAs) are population-based stochastic algorithms that draw
inspiration from processes of biological evolution for problem solving. As such, they
make use of mechanisms such as reproduction, recombination, mutation and competi-
tive selections in order to create solutions known as individuals in the population that
would fit better their environment. The population of individuals evolve through rep-
etition of the above mentioned mechanisms in an attempt to mimic the life cycles of
living species (Konar, 2005; Back et al, 1997).

∗The authors are with the Department of Applied Mathematics and Physics, Graduate School of Infor-
matics, Kyoto University, Kyoto 606-8501, JAPAN (tel: +81-75-753-5519; fax: +81-75-753-4756; email:
ong bt@amp.i.kyoto-u.ac.jp; fuku@amp.i.kyoto-u.ac.jp).

1

Genetic algorithm (GA) is one of the oldest and most popular evolutionary algo-
rithms (Holland, 1975). Pioneered by Holland (1975), it largely imitates genetic in-
heritance from parents to children and natural selection procedures until a termination
criterion is satisfied. However, an essential difference between natural evolution and
problem solving is that in natural evolution, species do not usually seek for termina-
tion. In problem solving, on the other hand, at some point and under a given budget, we
deliberately need to stop the life cycle process. When to stop is not a trivial question.
It is admitted that in many real world applications, saving computational resources is
of prime importance. Complex optimization problems for instance endure an intensive
function evaluation process. By stopping the search right before unnecessary function
evaluations are performed, it is the algorithmic efficiency that is increased.

In this regard though, an undesirable phenomenon is the premature convergence.
When diversity of the population decreases below a certain level, the population may
converge to a suboptimal similar individual. Thus when dealing with stopping crite-
ria, one should also pay meticulous attention to the balance between exploration and
exploitation. Hence, good automatic termination criteria should assure that the search
avoids premature termination but also indicates the point in time when further com-
putations becomes unnecessary. This feature is of key importance in some real-world
applications such as in evolutionary testing (O’Sullivan et al, 1998; McMinn, 2004).
Indeed, during the development of embedded systems, testing is one of the most im-
portant quality assurance measure. A huge amount of effort and budget are allocated
for testing. In evolutionary testing, EAs are used for test data generation and to verify
the logical and temporal correctness of a system. Most testing methods are special-
ized in the logical correctness. However, for real-time systems, it is also essential to
check the temporal correctness. Evolutionary testing fills this gap by testing the tim-
ing constraints where a temporal error occurs when outputs are produced too early or
if the computational time is too long. In such situations, it is crucial to have reliable
automatic termination criteria for EAs.

Multi-start methods may also benefit from automatic termination criteria. Among
the main components of a multi-start method, we note the stopping criterion used
within the generation mechanism of candidate solutions. The stopping criterion, in
this case also referred to as the restarting criterion, is prespecified by the user and has
a big impact on the overall computational cost of the method. Consequently, a reliable
automatic termination criterion may have a positive effect on multi-start methods, by
reducing the cost of generating candidate solutions, thereby more iterations can be al-
lowed with a fixed budget. In the same way, automatic termination criteria may also
be used effectively for dynamic EA (Koo et al, 2010) where the convergence is very
dependent on the behavior of the dynamic problem.

Basically, EAs cannot decide when or where they can terminate the search and usu-
ally a user should prespecify the maximum number of generations or function evalua-
tions as termination criteria. There are only a few recent works on termination criteria
for EAs (Giggs et al, 2006; Kwok et al, 2007; Jain et al, 2001). In (Giggs et al, 2006),
an empirical study is conducted to detect the maximum number of generations using
the problem characteristics. In (Kwok et al, 2007), the particle swarm optimization
algorithm is stopped using a termination condition based on statistics. The hypothesis
testing non-parametric sign-test method is considered as a decision making process us-

2

ing a list of the stored highest fitness values in each iteration. The search stops when the
hypothetical test indicates that no significant improvement in terms of solution quality
is going to occur. In (Jain et al, 2001), eight termination criteria have been studied
with an interesting idea of using clustering techniques to examine the distribution of
individuals in the search space at a given generation.

The most commonly employed termination criteria for EAs can be enumerated as
the TFit Criterion, the TPop Criterion, the TBud Criterion and the TSFB Criterion. The
TFit Criterion uses convergence measures of the best fitness function values over gen-
erations. This criterion is used for instance in (Ong et al, 2006; Tsai et al, 2004; Zhong
et al, 2004; Hansen and Kern, 2004), where the goal is to get as close as possible to the
known global minima. In (Leung and Wang, 2001), the search stops after reaching the
maximum number of consecutive generations without improvement. When used alone,
however, TFit Criterion may easily lead EAs towards local minima, especially if the al-
gorithm tends to reach in early stages a deep local minimum (Hedar and Fukushima,
2006; Jain et al, 2001; Safe et al, 2004). The TPop Criterion uses convergence measures
of the population over generations. This criterion is not particularly efficient though,
since having one individual to reach a global minimum is enough. Moreover making
the whole population or a part of it convergent can be expensive. The TBud Criterion
uses a prespecified budget, that can be the number of generations or function evalua-
tions (Koumousis and Katsaras, 2006; Lee and Yao, 2004; Ong and Keane, 2004; Ong
et al, 2006; Tu and Lu, 2004; Yao et al, 1999; Zhou et al, 2007). The drawback is that
it requires prior information about the test problem and is also highly problem depen-
dent. Finally, the TSFB Criterion checks the progress of exploration and exploitation
processes by using search feedback measures. Unfortunately the use of search feed-
back may bring a complexity problem due to the need to save and check historical
search information that can be huge and is also very sensitive to the dimensionality.

Our work is devoted to the development of a GA that would terminate without a
priori knowledge of any desirable or available solution range, and of any specific num-
ber of iterations or function evaluations. It is desired that the termination instant after
completion of adequate exploration and exploitation is determined by the algorithm
itself. We propose in this paper an improved method of the Genetic Algorithm with
Automatic Accelerated Termination method (G3AT) presented in (Hedar et al, 2007).
G3AT is originally a GA with new directing strategies. The key elements of G3AT are
the Gene Matrix (GM), the mutagenesis operator and a final intensification process.
The GM is a matrix constructed to represent subranges of the possible values of each
variable and consequently reflects the distribution of genes over the search range. Its
role is to assist the exploration process in two different ways. First, GM can provide the
search with new diverse solutions by applying the mutagenesis operator. Mutagenesis
operator is a new type of mutation that works in combination with GM. It alters some
individuals in order to accelerate the exploration and exploitation processes by guiding
the search specifically towards unexplored areas. Also, GM is the key to let G3AT know
how far the exploration process has been performed in order to determine an adequate
termination instant. By definition, however, although numerical experiments lead to
positive results, the GM is a two-dimensional structure and there is no evidence that it
is able to represent the distribution of individuals in the multi-dimensional search space
accurately, especially in high-dimensional, multi-modal and highly epistatic problems.

3

We thus provide in this paper a response to those considerations, while attempting to
improve the performance of the G3AT algorithm. We keep focused however on the
main objective of this work, that is, on the automatic termination. We would like to
stress out that our main objective is not to outperform existing results, although we will
show that what is proposed in this work is competitive.

The response is a rotation-based version of the G3AT method, designated as GATR,
which stands for Genetic Algorithm with Automatic Termination and Search Space
Rotation. The main new elements are the Space Decomposition (SD) and the Space
Rotation (SR). SD and SR work in combination in order to create a two-dimensional
environment for the GM irrespective of the original dimension of the problem to be
solved. In this environment, the GM goes through a series of rotations which allow
the search to avoid premature convergence and termination due to specificities of the
problems. As a hybrid GA, GATR first emphasizes on exploring the whole search
space using the GM. Afterward, the exploitation process is invoked through a local
search method in order to refine the best candidates obtained so far. GATR thus behaves
like a “Memetic Algorithm” (Moscato, 1999; Le et al, 2009) in order to achieve faster
convergence (Ong and Keane, 2004; Ong et al, 2006; Kramer, 2010; Jakob, 2010).

The performance of the algorithm is evaluated in 10, 30 and 50 dimensions on the
set of 25 test problems of the CEC 2005 real-parameter optimization contest (Sug-
anthan et al, 2005) and compared against a number of existing algorithms such as
G3AT, a Real-Coded Memetic Algorithm (RCMA) (Lozano et al, 2005), a version of
the Evolution Strategy with Covariance Matrix Adaptation method (which is a well-
known state-of-the-art method for adaptive mutation) that is combined with a restart
strategy (L-CMA-ES) (Hansen and Kern, 2004; Hansen, 2006) as well as the recent
Non-Revisiting Genetic Algorithm with Parameter-less Adaptive Mutation (NrGA)
(Yuen and Chow, 2009), a Differential Evolution method using an adaptive local search
(DEahcSPX) (Noman and Iba, 2008) and the winner of the CEC 2005 competition,
the Restart CMA Evolution Strategy With Increasing Population Size (G-CMA-ES)
(Hansen et al, 2005b).

The rest of the paper is organized as follows. Section 2 provides a review of the
GM and the mutagenesis operator. Section 3 introduces the new concepts developed to
reinforce the GM model. The SD and SR are also described in this section. The effects
of the introduction of the new mechanisms are discussed in Section 4. In Section 5,
components and the formal algorithm of GATR are detailed. In Section 6, the method-
ology adopted for the numerical experiments is explained and results in dimensions 10,
30 and 50 are presented with the benchmark functions from CEC 2005. A comparative
study against other methods from the literature is also conducted. A summary with
conclusions and future work is provided in Section 7.

2 Gene Matrix and Mutagenesis
This section gives a description of the GM and the mutagenesis operator, both working
mutually in order to determine a proper termination instant. The benefits of those two
concepts compared with a canonical GA and some other EAs are discussed in (Hedar
et al, 2007).

4

Figure 1: An example of the Gene Matrix in R2.

2.1 Gene Matrix and Termination
G3AT adopts the real-coding representation of individuals. Hence in the search space,
every individual x consists of n variables or genes. The range of each gene is divided
into m subranges in order to check the diversity of the gene values. GM is initialized
as a 2×m zero matrix in which each entry of the i-th row refers to a subrange of
the i-th gene. As explained in Subsection 3.3, GM deals solely with two-dimensional
subspaces, although the problem being optimized can be of any dimension n≥ 2. While
the search is processing, the entries of GM are updated if new values for genes are
generated within the corresponding subranges. Those entries are granted with a non-
null value. Specifically, during the search, the value of each gene is considered in
order to extract the number associated with the subrange where the considered gene is
located, say v ∈ {1, . . . ,m}. Let xi be the representation of the i-th gene, i = 1, . . . ,n.
Once a gene gets a value corresponding to a non-explored subrange, GM is updated by
flipping a zero into a one in the corresponding (i,v) entry. Let us note that, with this
mechanism, GM is not sensitive to the number of genes lying inside each subrange.
By keeping track of explored area of the search space in order to concentrate on parts
that have not been considered yet, GM yields some similarities with tabu search ideas
(Glover, 1986; Ting et al, 2009).

Figure 1 shows an example of GM in two dimensions. In the figure, the range
of each gene is divided into ten subranges, thus partitioning the search space into a
hundred sectors. For the first gene x1, no individual has been generated inside the sub-
ranges 1, 7 and 10. Consequently, GM’s values in the (1,1), (1,7) and (1,10) entries
are still equal to zero. For the second gene x2, only the first and the last subranges are
still unexplored, hence GM’s values in entries (2,1) and (2,10) are null.

After having a GM full, i.e., with no zero entry, the search judges that an advanced
exploration process has been achieved and can be stopped. In this way, the principal
use of GM is to equip the search process with a practical termination tool. Other ver-
sions of GM, sensitive to the number of genes within each subrange, have been investi-
gated. However, our comparative study has revealed that the zero-one GM mechanism
presented here (and implemented in GATR) yields the best performances in terms of

5

number of function evaluations versus solution quality. We introduce the GM com-
pletion ratio, referred to as CP, as the number of non-null entries divided by the total
number of entries of GM.

2.2 Mutagenesis
Mutagenesis is a more artificial mutation operation that allows some characteristic chil-
dren to improve themselves by modifying their genes. It is called after computing the
offspring in each generation. Specifically, GATR sorts the current population of size µ ,
and then selects the worst Nw (< µ) individuals that will participate in the operations.

Mutagenesis operates in two ways in combination with the GM. First, in order to
keep genetic diversity and accelerate the exploration process, Mutagenesis mimics the
mutation operation by altering Nw worst individuals that have been selected to survive
for the next generation. The alteration is however guided by the status of the GM and
thus, not completely random. The second feature is to generate new diverse solutions
in some hopefully unexplored partitions of the search space, which supports the explo-
ration process by guidance of GM instead of relying solely on the crossover operation.
Specifically, a zero-position in GM is randomly chosen, say the position (i, j) (i.e., the
variable xi has not yet taken any value in the j-th partition of its range). Then a random
value for xi is chosen within this partition to alter one of the chosen individuals for
mutagenesis. Using this setting for xi, there is a chance for the crossover operation to
explore different combinations of solutions containing this new value of xi. GM is then
updated since a new partition has been visited. If there is no zero-position available
in GM, this operation is omitted. The formal procedure for Mutagenesis is given in
Procedure 2.1. This feature also guarantees that GM will eventually get full (i.e., all
subregions of the search space are explored).

Procedure 2.1 Mutagenesis (x,GM)

1. If there is no zero-position in GM, then return; otherwise, go to Step 2.
2. Choose a zero-position (i, j) in GM randomly.
3. Update x by setting xi = li +(j− r) ui−li

m , where r is a random number
from (0,1), and li,ui are the lower and upper bounds of the variable
xi, respectively.

4. Update GM and return.

3 Space Rotation and Space Decomposition
In this section, new concepts that reinforce the GM model are presented. G3AT is a
method that aims to determine a stopping point without knowledge about the problem.
We want GATR to be a method that not only possesses a proper stopping judgement
but also exhibits more accurate and versatile performance than G3AT against a wider
class of problems.

6

Figure 2: The role of crossover operation and GM.

3.1 High-dimensional Search Space
By definition, GM has a two-dimensional structure, i.e., a matrix of indicator variables
for subranges in each dimension of the search space. Consequently, it may face some
difficulties in representing the distribution of individuals in a high-dimensional search
space. Basically, for m subranges and n dimensions, we can count mn hyperrectangles
in the search space. However the GM can become complete with less than m×n points.
Therefore, there is a possibility of having a misguided termination of the exploration
process, as depicted in a simple example in Figure 2(a), where the GM is already full
although the search space is far from being entirely covered. The crossover operation
can overcome this drawback as shown in Figure 2(b). As a matter of fact, numerical
simulations show that GM explores the search space widely. However, although it is
easy to comprehend in two dimensions, it is difficult to admit whether such mecha-
nism can perform a sufficient exploration of the search space when the dimension of
the problem increases, which is one of the reasons why we introduce the SR and SD
mechanisms.

3.2 Space Rotation
Those considerations on GM prompt us to develop the space rotation mechanism. As
depicted in Figure 3(a), a particular distribution of the individuals may lead to prema-
ture completion of GM. Indeed in this case, it is clear that the entire search space has
not been fully covered. In Figure 3(b), after applying to the search space a clockwise
45 degrees rotation, the same distribution of the explored areas is seen by GM from
a different angle. Recomputing the GM then reveals unexplored regions (i.e., the ma-
trix is not complete any more). Thus in order to escape from premature termination of
the search, the idea is to “rotate” the search space and attach to the resulting spaces a
GM that do not necessarily have the same configuration as the original one at a given
instant.

Let us consider the optimization problem minx∈X f (x), where f is a real-valued

7

Figure 3: Diagonal distribution of individuals before and after rotation and the associ-
ated GM.

Figure 4: NR rotations of the search space by angle α and the associated GM.

function defined on the search space X ⊆ Rn with variable x ∈ X . The search space
X can be seen as an n-dimensional rectangle in Rn. The edges of this rectangle are
given by the lower bounds li and upper bounds ui of the variables xi with li ≤ xi ≤ ui
(i = 1, ...,n).

The rotation of the rectangle is depicted in Figure 4. Rotation is defined by the
rotation angle α , which is a divisor of 360, as well as the number of rotations, NR =
360/α . To each rotation is associated a GM, namely GMl, l = 0, . . . ,NR−1. They are
independently fed by their respective rotated spaces.

During the search process, SR applies the rotation operator, named Rotα [x], to each
individual x using angle α such that x′ = Rotα [x], where x′ represents the rotated indi-
vidual. Then the original objective function can be recomputed by f (x) = f (Rot−1

α [x′]).
Formal description of SR is given in Procedure 3.1, where xi represents the i-th gene
of each individual x within the population X , and X ′ is the population in the rotated
subspace associated with its GM that will be denoted as GM′. Each population is of
size µ .

Procedure 3.1 Rotation(X ′,GM′)

1. Set values of α . Set Rotα :=
[

cosα −sinα
sinα cosα

]
.

2. For each individual x in X, let x′i := (Rotα [x])i, i = 1, ...,n.
3. Update GM′ using all individuals x′, and return.

8

The SR mechanism can be compared to a previous work by Schwefel that first ap-
peared in (Schwefel, 1974) and also later in (Beyer and Schwefel, 2002). In that work,
Schwefel introduces the idea of correlated mutation based on rotation of the solution
space by using a rotation matrix for a variant of EA, namely, the Evolution Strategies
(ES) (Rechenberg, 1965; Beyer and Schwefel, 2002). One of the peculiarities of ES
is that individuals not only comprise the decision variables but also a set of strategy
parameters. Among them, we can find those of the mutation operator. Hence, the de-
cision variables along with the strategy parameters evolve simultaneously during the
evolution process. However, in essence this strategy is different from SR. Indeed, the
rotation matrix introduced by Schwefel aims at improving the mutation operation by
controlling the area of the search space where are generated individuals. SR, on the
other hand, do not aim at composing new individuals but rather ensuring that GM has
explored a widespread area of the search space and detecting unexplored regions.

3.3 Space Decomposition
GM and SR are by nature two-dimensional mechanisms. For problems in higher di-
mensions, we invoke the space decomposition mechanism. Its role is to transform a
high-dimensional search space of a problem into several two-dimensional subspaces.
In order to do so, before the search process, SD selects two variables, say xa and xb,
among {x1,x2, . . . ,xn}, which will be referred to as the current “active variables”. Dur-
ing the generation process, only xa and xb are directly treated as the variables to be
manipulated. The other variables, referred to as “passive variables”, momentarily hold
their values fixed (i.e., they will not participate in the improvement for a moment). The
upper and lower bounds of xa and xb are used to define the edges of the rectangle that
will be considered by SR. At the end of the search, all genes of the best individual
found (both active and passive variables) are given a chance to be improved in an in-
tensification phase. The resulting candidate (individual) is referred to as xelite. At this
point, we end the search using the GM information, but obviously the obtained xelite

does not announce the end of the entire process since we have only considered a por-
tion of variables. Thus, if “enough” genes have not participated yet in the search as
active variables, the current ones are set as passives and two other genes are selected
as new actives. The search is then resumed, as what we will call a new “era”. It is
important to understand that the entire process will end when enough active variables
have participated in their own eras. However, it is the role of the GM to terminate ad-
equately each era. The efficiency of the whole algorithm is thus under the influence of
the performance of the automatic termination. At the beginning of each era, the whole
population is randomly generated. However, once the passive variables are designated,
the values of all individuals’ passive variables (or genes) are transformed in such a way
that their values are aligned with those of the previously obtained xelite.

4 Effects of the GATR Mechanisms
Although GATR is used as an optimization tool, its parameters cannot be set to be op-
timal for all problems at the same time. Since GATR is not a self-adaptive method, in

9

order to observe the guideline proposed by the CEC 2005, we have decided to run pre-
liminary experiments on the 25 test functions presented in Subsection 6.1 and observe
which parameter values would give the best results on a large set of test functions. In
particular, we here discuss the effects of the introduction of each component of GATR
and how the parameter values have been determined and used in this work.

4.1 Number of Subranges of the GM
The parameter m regulates the size of the sub-regions and its suitable value appears to
be very problem dependent. The number of function evaluations, abbreviated as Fe-
val, is directly proportional to m in any dimension, but the success rates, referred to as
SRate and defined in Subsection 6.1, have unpredictable behaviors. For our numerical
experiments, the convergence speed has been given more importance, since the Feval
with m varying from 50 to 300 can dramatically increase, while SRate keeps fluctu-
ating and does not necessarily increase significantly. It is thus favorable to keep m as
small as possible. In our experiments, m = 100 was the value demonstrating the most
satisfactory results on a large set of functions in terms of SRate, with moderate Feval.

4.2 Effect of the Space Decomposition
Here we discuss the effects of the introduction of SD into G3AT. To do so, a variant of
G3AT, referred to as SD-G3AT, has been implemented. This variant employs SD with
G3AT, but using a single GM without rotations, and only one intensification phase
during the final era, as in G3AT. SD-G3AT is compared against G3AT in terms of
SRate and Feval in 10 and 30 dimensions.

As shown in Figure 5(a) and 6(a) for functions f1– f15 in 10 and 30 dimensions,
respectively, the use of SD (through SD-G3AT), i.e., using solely n = 2 during the
search, tends to slightly decrease the required Feval before termination (except function
f2 in 30 dimensions, for which Feval is slightly higher). Performance in terms of SRate
in 10 dimensions, as shown in Figure 5(b), is advantageous for SD-G3AT. Functions
that could be solved by G3AT were also solved by SD-G3AT. Moreover, SD-G3AT
could perform better for functions f3 and f6, and could also solve functions f7 and f9.
Figure 6(b) depicts the results achieved in 30 dimensions. We can observe that SRate
stays around the same order. Functions f1 and f2 could be solved by both variants. We
also note that function f7 could not be solved by G3AT, but could be handled (with a
small SRate) by SD-G3AT.

Thus, in terms of Feval and SRate, the introduction of SD could slightly accelerate
the convergence of the algorithm, and obtain equivalent or better SRate.

4.3 Number of Space Rotations
In GATR, the role of the rotations is to lower the possibility of premature termination at
a non-optimal solution, which is caused by insufficient exploration of the search space
due to the structure of the GM. We have tested GATR with different numbers of space
rotations NR ranging between 0 and 4, where NR = 0 means no rotation. Thus only
the impact of SD was measured, as in Subsection 4.2. We could observe that Feval is

10

(a) (b)

Figure 5: Comparison of Feval and SRate for G3AT vs SD-G3AT on functions f1– f15
in 10 dimensions.

(a) (b)

Figure 6: Comparison of Feval and SRate for G3AT vs SD-G3AT on functions f1– f15
in 30 dimensions.

directly proportional to NR. It can be estimated that the introduction of one rotation in
30 dimensions increases the Feval by around 5.4% on average, while in 10 dimensions
it increases the Feval by around 10%. Also high NR tends to slow down the algorithm.
Starting with no rotation, after 3 rotations, the functions that could not be solved before
came with positive results. Thus, to keep an acceptable convergence speed, we have
decided to adopt NR = 3 as the default value in our numerical experiments.

4.4 Combination List
The CL is a list that keeps track of the pairs of variables that are designated to partic-
ipate during the eras. Let us consider the pair {xa,xb}. Obviously xa and xb should
not be identical. One of the easiest and most intuitive way to construct the CL is to
select randomly xa and xb from the set of all possible variables {x1,x2, . . . ,xn} with the
only condition that xa is different from xb. However, experiments show that selecting
the active variables in a sequential manner (i.e., starting with x1 and x2, then x3 and
x4, etc.) could provide equal or better results for all functions. Although there is no
theoretical proof to support this finding, we decided to adopt the “sequential” way of
creating the CL (as opposed to the random construction) in GATR.

11

Now, we are concerned about the length of the CL (CL length) (i.e., the number
of eras), which has a direct impact on the convergence speed of the search. According
to our preliminary experiments, it is without surprise that the cost in Feval increases
proportionally with the length of the CL. Intuitively, one can expect better SRate with a
longer CL, since more eras would be allowed to refine a solution. However, the results
show that SRate increases slowly or fluctuates with CL length for many functions.
Moreover, a length of 5 and 15 in 10 and 30 dimensions, respectively, provided in
general good performance in terms of SRate on a large set of problems. Increasing
those values may improve slightly the SRate, but the Feval will considerably increase
at the same time. According to those results, in GATR, CL length has been set equal to
round(n/2), where the operation round rounds towards the nearest integer. This value
aims at good SRate with acceptable Feval. Note that setting CL length = round(n/2)
guarantees that each variable is given a chance to participate in the search as an active
variable at least once.

4.5 Intensification
Intensification is the process whose purpose is to refine the elite solution obtained at
the end of an era. In GATR, intensification calls a local search process based on the
Kelley’s modification (Kelley, 1999) of the Nelder-Mead (NM) method (Nelder and
Mead, 1965). The use of systematic intensification at the end of each era, however, can
be expensive in terms of Feval. In GATR, intensification is therefore sparingly called
by specific eras since it yields positive effects when called at intermediate stages of
the search. We should remark, however, that the final refinement by intensification at
the end of the search is most important to achieve higher accuracy. Indeed, GM com-
bined with the SD and SR can be seen as the components that will explore the search
space widely in order to find promising individuals. Those individuals will be given
a chance to improve further through an exploitation phase handled by intensification.
The numbers designating the eras that will go through an intensification step are stored
in the intensification list (IL). Preliminary experiments, using the terminology intro-
duced in Subsection 6.1 concerning the test functions and methodology, show that the
best results are obtained when the first and last eras are subject to intensification. Var-
ious patterns to select the remaining eras have been studied. However, no significative
differences can be observed when compared to a random selection of the intermediate
intensified eras. The total number of eras that go through intensification (i.e., the length
of IL) has also been studied. Intensification calls a local search method at the end of an
era. Consequently, it relatively requires a considerable amount of additional computa-
tional resources. As a matter of fact, experiments show that a longer IL considerably
increase Feval. However, SRate does not necessarily increase for all functions. Thus,
in order to keep a good balance between exploration and exploitation, the length of IL
in GATR has been set equal to n/5.

It should also be noted that although GATR relies on intensification when it comes
to the exploitation phase, intensification alone cannot reach the results obtained by
GATR. Indeed, experiments on some functions, such as f9 for instance, revealed that
the success rate for that function could reach 36% using GATR over the 25 trials. On
the same function, the use of intensification only and using random starting points led to

12

a success rate of 0%. From this simple experiment, we may observe that intensification
has an important part to play in GATR. However, if used alone, the results are not
satisfactory compared to GATR. It is thus in combination with GATR that superior
results could be achieved.

4.6 Termination
In order to estimate whether the GMs are able to provide the search with a correct ter-
mination point, the automatic termination has been compared for each function with
the same run in the same conditions, as described in Subsection 6.1, but with an ar-
tificially maintained higher number of generations and only one final intensification
occurring during the last era. For function f10 in 10 dimensions for instance, Figure
7(a) represents the evolution of the error with Feval using GATR and only one final in-
tensification, referred to as Short-GATR. We can observe that around 5100 Fevals were
required to reach an error level of around 1.6. The dotted vertical line represents the
instant at which the algorithm decided to stop and launch the final intensification phase.
Intensification could improve the results by reducing the error from roughly 1.8 to 1.6.
Figure 7(b) depicts the evolution of the error over Feval obtained by a modified version
of GATR, called Long-GATR, whose termination instant was artificially delayed. To
do so, CL length has been set equal to 15 instead of 5 (i.e., round(n/2)) in the original
setting. More eras were thus allowed to explore the search space. Also, CR was set
equal to 100% instead of 90% in order to obtain longer eras and let the search refine the
obtained solutions further. In Long-GATR, around 16500 Fevals were necessary be-
fore termination, which is slightly more than 3 times the short version. We can see that
after around 4000 Fevals, which is the instant at which Short-GATR decided to stop,
the improvement in terms of error begins to stagnate at around 1.8. After 10000 func-
tion evaluations, the error improvement is still not significative. Finally, intensification
could reduce the error from around 1.75 to 1.5. This experiment reveals that letting the
search run after the original termination instant does not necessarily improve the best
solution obtained, considering the substantial amount of additional Feval required to
improve a solution further.

5 Formal GATR Algorithm
Before stating the formal algorithm of GATR, basic components that compose a GA
and that are used by GATR are briefly described in this section.

5.1 GA Operators
The parent selection mechanism implemented in GATR is based on the linear rank-
ing selection mechanism (Baker, 1985; Hedar and Fukushima, 2003). This mechanism
ranks the initial population P according to the fitness function value of each individual.
From P, an intermediate population P′ is produced by copying repeatedly individuals
based on their fitness ranking until P′ becomes full. Note that an already chosen indi-
vidual can be selected more than once. In GATR, since n = 2 during the search, the

13

(a) (b)

Figure 7: Comparison of termination instant after intensification (vertical dotted line)
for function f10 using Short-GATR (a) and Long-GATR (b).

crossover operation is straightforward. The procedure consists in swapping the active
variables of two parents p1 and p2, and create two children c1 and c2. The mutation
operator is designed to take advantage of the information contained in the GM. Indeed,
existing zeros from GM are randomly selected, say in the position (i, j), and a ran-
domly chosen individual from the intermediate pool IPM has its variable xi modified
by a new value lying inside the j-th partition of its range. For each individual in the
intermediate population P′ and for each gene, a random number from the interval (0,1)
is associated. If the associated number is less than a prespecified mutation probability
πm, then the individual is copied to the intermediate pool IPM . The number of times the
associated numbers are less than the mutation probability πm is counted, and let numm
denote this number. Afterward the mutation operation ensures that the total number
numm of genes to be mutated does not exceed the number of zeros in the GM, denoted
numzeros. Otherwise the number of genes is reduced to numzeros. The formal procedure
for mutation is analogous to Procedure 2.1, where m represents the number of each
gene’s subranges. Parents and children then compete together for survival, making
GATR a steady-state GA.

Procedure 5.1 Mutation(x,GM)

1. If GM is full, then return; otherwise, go to Step 2.
2. Choose a zero-position (i, j) in GM randomly.
3. Update x by setting xi = li +(j− r) ui−li

m , where r is a random number
from (0,1), and li,ui are the lower and upper bounds of the variable
xi, respectively.

4. Update GM and return.

5.2 Formal Algorithm
The search process in GATR is repeated several times, with different active variables
taking part in distinct eras. Each search can be considered to be a G3AT run for a
two-dimensional problem, taking advantage of GM and SR to terminate adequately.

14

Preliminaries consist in SD whose role is to transform an n-dimensional search space
into several two-dimensional subspaces. During an era, GATR starts by generating an
initial population of size µ and dimension n. Two variables, xa and xb, are chosen as
active variables. They will participate in the current era’s evolution, while the other
genes have their values replicated from xelite’s respective gene values. In the very first
era, however, each gene of xelite is pre-initialized as xelite

i := (ui+li
2), where li and ui are

the lower and upper bounds of gene xi, respectively. For any n-dimensional problem,
CL length eras are carried out with distinct pairs of active variables, and the values of
passive genes remain unchanged during each era.

As a GA based method, GATR evaluates the population members, and then gen-
erates offsprings by applying parent selection, crossover and mutation operations. SR’s
role is to manipulate the two-dimensional space in which the active variables are evolved
by executing NR rotations of angle α . NR distinct GMs are updated, each correspond-
ing to one of the NR rotated subspaces. Mutagenesis is invoked until the GM comple-
tion ratio CP, which may be set as different from 1, is reached. An era terminates when
all NR GMs reach CP. Eventually, it is guaranteed that the GMs will reach CP since
mutagenesis makes sure that new individuals are generated within unvisited areas. It is
worthwhile to mention that the main role of GM and SR is to guide the search towards
unexplored regions, while exploration by itself is conducted by the crossover and muta-
genesis operations. The termination of the algorithm is thus guaranteed. Finally, an era
ends with a final intensification phase that uses a local search method in order to refine
the best solution found so far. Let us emphasize that each era consecutively improves
the current best solution xelite by using the active variables. However, intensification
improves all genes, actives and passives. The solution xelite is then used in the starting
point for the next era, where a different couple of active variables is selected and the
remaining ones become passive. When all the pairs of variables in CL have actively
participated in some eras, GATR terminates with the last refined solution. A formal
description of GATR is given below.

Algorithm 5.2 GATR Algorithm

1. Initialization. Set values of m, µ , Nw, NR, α , CP, and (li,ui) for i =
1, . . . ,n. Set the crossover and mutation probabilities πc ∈ (0,1) and
πm ∈ (0,1), respectively. Set the Intensification List IL as described in
Subsection 4.5. Set the Combination List CL := {x1,x2, . . . ,xn}. If the
number of elements in CL is odd, add a randomly chosen element from
{x1,x2, . . . ,xn}. Set the generation counter t := 1. Compute xelite by
xelite

i := ui+li
2 for i = 1, . . . ,n.

2. Set all variables to be passive. Select xa and xb from CL. Update CL by
CL := CL\{xa,xb} and designate xa and xb as active variables.

2.1. Generate an initial population P0 of size µ and update each individual
xk in P0 so that xk

i := xelite
i for i ∈ {1, . . . ,n}\{a,b}.

2.2. Initialize Gene Matrices GMl , l = 1, ...,NR, as 2×m zero matrices,
where GMl corresponds to the l-th space rotation.

3. Parent Selection. Evaluate the fitness function F for all individuals in
Pt . Select an intermediate population of parents P′t from the current

15

population Pt . Let the initial parent pool SPt and children pool SCt be
empty.

4. Crossover. Associate a random number from (0,1) with each individual
in P′t and add this individual to the parent pool SPt if the associated
number is less than πc. Repeat the following Steps 4.1 and 4.2 until all
chosen parents from SPt are mated:

4.1. Choose two parents p1 and p2 from SPt . Mate p1 and p2 by swapping
their active variables to create children c1 and c2.

4.2. Update the children pool SCt by SCt := SCt ∪{c1,c2} and update SPt
by SPt := SPt \{p1, p2}.

5. Mutation. Associate a random number from (0,1) with each gene in
each individual in P′t . Let numm be the number of genes whose asso-
ciated number is less than πm, and let numzeros be the number of zero
elements in GM. If numm ≥ numzeros, then set numm := numzeros. Mu-
tate numm individuals among those which have an associated number
less than πm by applying Procedure 5.1. Add the mutated individual to
the children pool SCt . Update GMl , l = 1, ...,NR with SR by applying
Procedure 3.1.

6. If all GMs have reached the completion ratio CP, go to Step 9. Other-
wise go to Step 7.

7. Survivor Selection. Evaluate the fitness function for all generated chil-
dren SCt , and choose the µ best individuals in Pt ∪ SCt for the next
generation Pt+1.

8. Mutagenesis. Apply Procedure 2.1 to alter the Nw worst individuals
in Pt+1, set t := t + 1, update GMl , l = 1, ...,NR with SR by applying
Procedure 3.1, and go to Step 3.

9. Intensification. If the current era is in IL, then go to Step 9.1. Otherwise
go to Step 9.2.

9.1. Apply a local search method starting from the best solution obtained
in the previous search stage using all variables, and go to Step 9.2.

9.2. Let xelite be the best solution obtained so far. If CL 6= /0, go to Step 2.
Otherwise, terminate with xelite.

6 Numerical Results
Numerical experiments were carried out to evaluate the performance of GATR. Before
presenting the results, we describe the methodology adopted to conduct the numerical
study of GATR.

6.1 Methodology
The numerical study performed in this work is based on a test bed of 25 standard test
functions from the special session on real-parameter optimization in the IEEE Congress

16

on Evolutionary Computations, CEC 2005 (Suganthan et al, 2005). The set was care-
fully built based on classic benchmark functions in an attempt to cover a diverse set
of problem properties. The first 5 functions are unimodal functions while the 20 other
functions are multimodal, with functions f13 to f25 being hybrid composition func-
tions. The mathematical form of the 25 test problems can be found in (Suganthan et al,
2005).

Before proceeding to the description of the test settings and results, some remarks
should be stated in order to emphasize the particularity of the proposed GATR method.
This is to clarify the dissimilarities in the way we present and compare the data with
other methods, which does not exactly follow the evaluation guideline suggested in
CEC 2005. When conducting numerical experiments, the CEC 2005 guideline recom-
mends the use of common evaluation criteria such as the initialization scheme, the size
of problems, a common termination criterion, etc. The guideline in particular indicates
that the search should be stopped when reaching a pre-specified maximum number of
function evaluations (10,000× n) or if the error in the function value becomes lower
than a given threshold (10−8). Solution quality is measured through the function error
value given by (f (x)− f (x∗)), where f (x) represents the best function value obtained
by the algorithm and f (x∗) is the known exact global minimum value. Also, when
evaluating the amount of function evaluations needed, the search is stopped as soon
as a fixed accuracy level is achieved. It is clear that GATR cannot fully comply with
those termination criteria, since the point here is to let the search terminate automati-
cally. Consequently, the results of the numerical experiments are not reported exactly
as suggested in CEC 2005, but comparison is still possible and realistic, as done in this
section, where interesting findings are discussed.

Table 1 summarizes the GATR parameters with their assigned values. GATR was
programmed using MATLAB and the code for each test function was run 25 times in
10, 30 and 50 dimensions, in accordance with the guideline proposed in CEC 2005.
Also, a run is considered successful when the fixed accuracy level is achieved within
the pre-specified maximum number of function evaluations (before 100,000 Fevals in
10 dimensions, 300,000 Fevals in 30 dimensions and 500,000 Fevals in 50 dimensions).
The success rate (SRate) is defined as the number of successful runs divided by the total
number of runs.

In this study, the Wilcoxon matched-pairs signed-ranks non-parametric test is used
for directly comparing the results of two methods. This test, as described in (Garcı́a
et al, 2009), does not assume that the data are sampled from a normal distribution.
It assumes however that the data are symmetrically distributed around the median.
We employ the Wilcoxon non-parametric test because, for the methods that follow
the framework suggested by the CEC 2005, the authors report their achieved average
results using the same conditions for each algorithm and test problem. In particular,
we consider in this work the function error values obtained by each method.

6.2 Discussion from the Benchmark Results
The 25 test functions of the CEC 2005 can be classified according to their character-
istics. Hence, we will discuss here the performance of GATR by taking into account
the nature of the functions. Results are available in Table 2 for GATR, where the mean

17

Table 1: GATR Parameter Setting
Parameter Definition Value
µ Population size 30
pc Crossover probability 0.6
pm Mutation probability 0.1
m No. of GM Subranges 100
Nw No. of individuals used by Mutagenesis 2
NR Number of space rotations 3
α Space rotation angle 45o

CP GM Completion ratio 90%

error values are reported for each functions as well the SRate, in parentheses, when not
null. To begin with, the first five functions are unimodal functions and the others are
multimodal. Functions f1 and f2 are relatively easy to solve, in 10, 30 and 50 dimen-
sions. The increase in dimensionality did not affect substantially the performance of the
algorithm in terms of mean error value. Function f3 is the shifted rotated high condi-
tioned elliptic function and the optima could be found only in 10 dimensions. Function
f4 is similar to f2 but shifted with noise. The addition of noise seems to have affected
the performance. Function f6 could be solved in all dimensions with decent success
rates, due to the local search capability of GATR through intensification. Function f7 is
a shifted rotated version of Griewank’s function and does not have predefined bounds.
It was easy to solve even in high dimensions. Function f8 has a “needle in a haystack”
profile and is thus very challenging to solve for most methods. GATR got stuck at the
same mean error value order in all dimensions. Functions f9 and f10 are shifted and
rotated shifted versions of the Rastrigin function, respectively, and f11 is also a shifted
rotated function. The global optimum was missed in all runs for f10 and f11. Func-
tion f12 is Schwefel’s problem and it could be solved in 10 dimensions. Function f13
and f14 are expanded functions and could not be solved. Functions f15– f25 are hybrid
composition functions based on basic functions. In particular, comparing functions f21
and f23 that have the same error order, we see that the algorithm did not seem affected
when discontinuity is introduced. In general, functions f15– f25 are designed to be very
hard to solve for any algorithm. Except f15 in 10 dimensions with low success rate,
GATR as well could not locate a global optimum for them under the requirements set
by the CEC 2005 guideline.

6.3 Comparison with G3AT
With the intention of improving the G3AT method, the SD and SR mechanisms have
been developed and implemented within the GATR method. The aim of this section is
to study the impact of those new mechanisms within GATR against G3AT by compar-
ing their results.

We first try to determine whether there is any significant difference between the
two methods using the Wilcoxon non-parametric test over the 25 benchmark functions
of the CEC 2005. Table 3 summarizes the results of the test in 10, 30 and 50 dimen-
sions. The signed ranked statistics are reported (R– for GATR and R+ for the compared

18

Table 2: Solution Qualities for GATR and G3AT with significant method in bold and
SRate in parentheses

n = 10 n = 30 n = 50

f
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25

GATR G3AT
Error Mean

6.84e–13 (100%)
2.54e–12 (100%)
4.73e–12 (100%)

1.02e+04
2.28e+02

3.19e–01 (92%)
9.72e–02 (12%)

2.00e+01
3.98e–13 (88%)

4.63e+01
1.12e+01

9.48e–12 (100%)
4.92e–01
4.01e+00

3.79e+01 (8%)
1.46e+02
2.10e+02
9.00e+02
9.00e+02
9.00e+02
4.78e+02
8.38e+02
7.86e+02
2.91e+02
4.37e+02

Error Mean
6.21e-13 (100%)
2.23e-12 (100%)
1.20e-03 (92%)

1.54e+03
1.38e+02

1.50e+00 (72%)
2.25e-01
2.00e+01
2.83e+00
1.83e+01
7.59e+00

3.09e+02 (44%)
7.34e-01
3.94e+00
1.48e+02
1.34e+02
1.89e+02
8.71e+02
8.84e+02
8.43e+02
8.86e+02
8.13e+02
9.99e+02
2.48e+02
6.54e+02

GATR G3AT
Error Mean

1.12e-12 (100%)
1.45e-09 (100%)

2.11e+02
1.03e+05
2.29e+03

5.91e-01 (96%)
3.22e-04 (100%)

2.00e+01
2.61e-12 (36%)

5.53e+01
3.10e+01
3.94e+01
1.73e+00
1.32e+01
3.67e+02
7.47e+01
2.77e+02
9.00e+02
9.00e+02
9.00e+02
8.82e+02
5.30e+02
7.40e+02
2.24e+02
2.22e+02

Error Mean
2.01e-12 (100%)
4.32e-06 (100%)

6.89e+04
4.27e+04
5.79e+03
9.57e+01
1.12e-02
2.00e+01
2.17e+01
1.20e+02
2.98e+01
2.06e+03
4.66e+00
1.30e+01
3.88e+02
1.83e+02
3.31e+02
9.00e+02
9.00e+02
9.00e+02
5.70e+02
7.92e+02
6.77e+02
2.96e+02
2.98e+02

GATR G3AT
Error Mean

6.539e-12 (100%)
4.676e-08 (100%)

6.790e+02
5.066e+05
5.473e+03

2.718e+00 (56%)
1.102e-03 (100%)

2.000e+01
4.975e+00
1.830e+02
7.572e+01
3.535e+03
3.092e+00
2.257e+01
2.726e+02
8.559e+01
3.528e+02
9.000e+02
9.000e+02
9.000e+02
7.439e+02
5.007e+02
7.529e+02
3.189e+02
3.230e+02

Error Mean
9.779e-12 (100%)
3.844e-03 (96%)

1.395e+05
1.227e+05
1.614e+04
4.677e+02

8.689e-03 (60%)
2.001e+01
7.053e+01
3.161e+02
5.704e+01
9.016e+03
1.813e+01
2.254e+01
4.470e+02
2.147e+02
4.219e+02
9.000e+02
9.000e+02
9.000e+02
7.446e+02
5.144e+02
7.522e+02
8.712e+02
8.259e+02

Table 3: Wilcoxon’s test for GATR against G3AT (at level 0.05)
n GATR (R–) G3AT (R+) Significant Method
10
30
50

147
236
261

178
89
64

–
GATR
GATR

method, here G3AT) along with the indication of the significantly superior method at
significance level 0.05 (for this test bed, the Wilcoxon critical value is equal to 89). The
highest values of the test statistics represent the best results. From Table 3, we note that
in dimension 10, GATR and G3AT are not significantly different. In higher dimensions
however, for dimensions 30 and 50, GATR significantly outperforms G3AT, the gap
getting bigger as the dimension increases. The introduction of the SD and SR mecha-
nisms thus seems particularly effective in higher dimensions.

Since both G3AT and GATR are under automatic termination, it is possible to em-
pirically compare their results using the framework proposed in CEC 2005 and get a
better insight of the performance of GATR on a function-level rather than on a method-
level. We support our findings by the paired Student’s t-test (Montgomery and Runger,
2003) using the mean error as well as the error standard deviation (not reported). Table
2 reports the results of G3AT and GATR in 10, 30 and 50 dimensions using the same
test bed as for the Wilcoxon’s test. The results of a significantly superior method at
level 0.05 for each function are reported in bold font. The Feval, reported in Table 4,
indicates that GATR is on average around 1.4 times more expensive in terms of func-
tion evaluations in 10 dimensions. In 30 and 50 dimensions, the computational cost in
Feval approximately doubles on average. The introduction of SD and SR mechanisms
is however not the principal cause of the raise of Feval. It is the increase of frequency
of the local searches during the intensification phase, which has a more predominant

19

Table 4: Solution Costs for GATR and G3AT
n = 10 n = 30 n = 50

f
f1
f2
f3
f4
f5
f6
f7
f8
f9
f10
f11
f12
f13
f14
f15
f16
f17
f18
f19
f20
f21
f22
f23
f24
f25

GATR G3AT
Feval Mean

6.24e+03
6.31e+03
1.26e+04
4.63e+03
5.72e+03
1.17e+04
6.21e+03
4.01e+03
5.41e+03
5.61e+03
4.51e+03
6.39e+03
6.01e+03
6.13e+03
5.12e+03
5.34e+03
5.02e+03
6.12e+03
6.25e+03
6.26e+03
6.94e+03
5.15e+03
5.24e+03
5.27e+03
4.83e+03

Feval Mean
4.22e+03
4.28e+03
7.87e+03
3.60e+03
3.91e+03
9.05e+03
4.18e+03
3.52e+03
4.14e+03
4.16e+03
3.55e+03
4.30e+03
4.28e+03
4.67e+03
3.85e+03
3.87e+03
3.64e+03
4.10e+03
4.24e+03
4.23e+03
4.10e+03
3.77e+03
3.72e+03
4.65e+03
3.67e+03

GATR G3AT
Feval Mean

3.05e+04
1.41e+05
1.50e+05
1.46e+04
1.99e+04
2.03e+05
3.41e+04
1.30e+04
1.57e+04
1.79e+04
1.47e+04
3.16e+04
1.67e+05
3.89e+04
1.60e+04
1.89e+04
1.66e+04
2.25e+04
2.41e+04
2.24e+04
2.16e+04
1.99e+04
2.00e+04
1.99e+04
1.80e+04

Feval Mean
1.41e+04
4.08e+04
3.40e+04
1.16e+04
1.30e+04
4.66e+04
1.44e+04
1.16e+04
1.19e+04
1.21e+04
1.16e+04
1.39e+04
4.66e+04
1.56e+04
1.21e+04
1.24e+04
1.18e+04
1.22e+04
1.32e+04
1.22e+04
1.45e+04
1.22e+04
1.24e+04
1.25e+04
1.23e+04

GATR G3AT
Feval Mean
7.347e+04
5.258e+05
5.535e+05
2.571e+04
3.721e+04
4.437e+05
4.537e+04
2.245e+04
3.066e+04
3.135e+04
2.634e+04
3.121e+04
1.686e+05
8.994e+04
2.842e+04
3.206e+04
2.916e+04
4.674e+04
5.067e+04
4.854e+04
4.417e+04
5.154e+04
4.041e+04
3.499e+04
3.195e+04

Feval Mean
2.836e+04
7.841e+04
7.888e+04
2.357e+04
2.562e+04
7.988e+04
2.657e+04
2.346e+04
2.365e+04
2.402e+04
2.345e+04
2.367e+04
7.910e+04
2.927e+04
2.440e+04
2.472e+04
2.379e+04
2.492e+04
2.511e+04
2.578e+04
2.527e+04
2.847e+04
2.497e+04
2.410e+04
2.415e+04

Table 5: Wilcoxon’s test for GATR against RCMA (at level 0.05)
n GATR (R–) RCMA (R+) Significant Method
10
30

131
162

194
163

–
–

weight in the total Feval cost of GATR. In 10 dimensions, t-tests indicate that GATR
gives significantly better solutions than G3AT in terms of solution quality on 9 func-
tions, while G3AT is significantly better on 5 functions. The gap gets bigger in 30 and
50 dimensions. In 30 dimensions, GATR performs significantly better on 10 functions
while G3AT performs better on 3 functions. In 50 dimensions, out of the 25 problems,
G3AT achieves significantly better results for only 3 problems, while GATR outper-
forms G3AT in 14 problems. Those improved results, especially in higher dimensions,
demonstrate the efficiency of the SD and SR mechanisms, especially when the problem
complexity increases. In addition, it is worth pointing out that the SD and SR mech-
anisms themselves do not increase the running time of the algorithm. The additional
running time in GATR when compared to G3AT comes from the intensification steps.
Roughly speaking, the running time is proportional to Fevals in both GATR and G3AT.
Experiments carried out using a computer with 3 GHz Intel Core 2 Duo processor and
3 GB of RAM reveals that for function f1 in 50 dimensions for instance, the measured
CPU time was around 37 seconds for G3AT and 95 seconds for GATR.

6.4 Comparison with a Real-Coded Memetic Algorithm
Performance of GATR is now compared against a Real-Coded Memetic Algorithm
(RCMA) introduced in (Lozano et al, 2005). As Memetic Algorithms (MA) are GAs
combined with a local search (LS) process to refine individuals (Moscato, 1999), RCMA
is a Real-Coded GA combined with LS techniques. Real-Coded means that the struc-

20

Table 6: Wilcoxon’s test for GATR against L-CMA-ES (at level 0.05)
n GATR (R–) L-CMA-ES (R+) Significant Method

10
30
50

154
191
199

171
134
126

–
–
–

ture of an individual is based on the real number representation (in opposition with
the binary coding for example), as it is the case for GATR. This representation seems
particularly natural when dealing with variables in a continuous domain. In (Lozano
et al, 2005), the authors propose an RCMA that uses an adaptive LS process with a
high diversity global exploration. The LS process depends on the individual fitness,
which is used to compute a probability to decide whether LS is applied or not and also
to determine the LS intensity.

Numerical experiments described in (Lozano et al, 2005) follow the guideline of
CEC 2005 (consequently it should be reminded that the required optimal number of
function evaluations is defined under some specific termination conditions, i.e., when
the maximum number of Feval is reached or when the optimal accuracy is obtained).
Results of the Wilcoxon’s test in 10 and 30 dimensions are presented in Table 5 (RCMA
was not tested for 50 dimensions in (Lozano et al, 2005)). It reveals that the two meth-
ods are not significantly different in any dimension, although RCMA seems to have
a slight advantage in lower dimensions. Let us note however that in 10 dimensions,
the precision obtained by RCMA was mostly achieved after 105 function evaluations,
while GATR decided to stop before 104 function evaluations. In 30 dimensions, similar
performance was obtained after around 10 times less function evaluations for GATR,
thus showing the effectiveness of the automatic termination of GATR.

6.5 Comparison with CMA-ES
In this subsection, GATR is compared against the Evolution Strategy with Covariance
Matrix Adaptation (CMA-ES) method (Hansen and Kern, 2004; Hansen, 2006), which
is a state-of-the-art method recommended by experts for adaptive mutation (Lobo et al,
2007). CMA-ES has been designed to improve the local search performance of ES
(Hansen and Ostermeier, 1996). An important property of CMA-ES is its invariance
under linear transformations of the search space. The CMA-ES version considered for
our comparisons also implements the so-called rank-µ-update, abbreviated as L-CMA-
ES (Hansen et al, 2005a) which reduces significantly the needed number of generations
to reach a certain function value (Hansen et al, 2003).

Results of the Wilcoxon’s statistical test are shown in Table 6. In 10, 30 and 50
dimensions, the test does not reveal any statistically significant difference at level 0.05.
Nevertheless, we may notice that L-CMA-ES shows slightly higher quality solution in
10 dimensions, but the situation is opposite in 30 and 50 dimensions. Thus, we may
conclude that the SR and SD mechanisms seem to enhance the performance of GATR
particularly in higher dimensions.

21

6.6 Comparison with State-of-the-Art GA
In this section, GATR is compared against a recent GA that is equipped with a mem-
ory and designed in such a way that positions that have already been searched are
never revisited. This version of GA is named Non-Revisiting Genetic Algorithm with
Parameter-less Adaptive Mutation (NrGA) (Yuen and Chow, 2009) and makes use of
a binary space partitioning (BSP) tree which is dynamically constructed and designed
to reflect the evolution history of the search by remembering the positions already ex-
plored and avoid the reevaluation of the fitness of those positions. The BSP search
history is also employed to guide the search towards unvisited positions through a new
adaptive mutation mechanism (Yuen and Chow, 2009).

In order to compare GATR with NrGA, we use the numerical results reported in
(Yuen and Chow, 2009) for NrGA and the paired Student’s t-test. The authors of the
NrGA method (Yuen and Chow, 2009) tested the performance of their algorithm by
using a set of 19 well-known benchmark functions. Among those 19 functions, five are
taken from the CEC 2005 contest. They were however slightly modified by removing
the shift of the positions of global optima. For this reason, although the difference is
minor, the numerical results reported here for GATR might be slightly different from
those reported elsewhere in this paper.

The functions used for the comparison are the Rotated high conditioned elliptic
function (f3), the Rotated Griewanks function (f7), the Rotated Rastrigins function
(f9), the Rotated Weierstrasss function (f11) and the Hybrid Composition function (f15)
(Suganthan et al, 2005). Simulation settings for G3AT have been slightly adjusted in
order to correspond with NrgA’s and allow a fair competition. In NrGA, the search
has been set to stop after exactly 40100 function evaluations in 10 and 30 dimensions.
GATR stopped according to its own automatic termination criteria. Except for function
f3 in 30 dimensions, the Fevals for all functions in 10 and 30 dimensions were less than
40100 for GATR. Function f3 in 30 dimensions required more Fevals and therefore has
been artificially stopped when Feval reached 40100.

The results are reported in Tables 7 and 8, where NrGA’s data for those five com-
mon benchmark functions in 10 and 30 dimensions are taken from (Yuen and Chow,
2009). It is worthwhile to note that, except for function f3 in 30 dimensions, GATR
stopped automatically with notably less Fevals than NrGA. Comparisons based on 100
independent runs for each test function indicate that GATR performs quite well, com-
pared to NrGA. In particular, it significantly outperformed NrGA on 3 out of 5 func-
tions, namely functions f3, f9 and f15.

6.7 Comparison with State-of-the-Art MA
Here we confront GATR with one of the current best MA for continuous optimization:
the DEahcSPX method (Noman and Iba, 2008). It combines differential evolution (DE)
with a crossover-based local search (XLS) that adaptively determines the length of the
LS using a hill-climbing heuristic and feedback from the search. The crossover opera-
tor in DEahcSPX is based on the simplex multi-parent crossover, described in (Tsutsui
et al, 1999). According to the authors, DEahcSPX is superior or at least comparable to
other well-known MAs.

22

Table 7: Comparison of GATR and NrGA on the Best Fitness Values Found and Feval
in 10 and 30 Dimensions: f3, f7 and f9

Method
NrGA mean

std. dev.
Feval

GATR mean
std. dev.
Feval

Significant Method (at level 0.05)

f3 f7 f9
n = 10 n = 30

2.56e+06 1.15e+08
1.50e+06 5.51e+07

40100 40100
2.23e-12 2.31e+03
4.13e-12 4.90e+02
12620.6 39448.5
GATR GATR

n = 10 n = 30
0.00e+00 0.00e+00
0.00e+00 0.00e+00

40100 40100
9.72e-02 2.88e-04
1.01e-01 5.63e-04
6208.6 34123.7
NrGA NrGA

n = 10 n = 30
3.98e+00 2.89e+01
6.49e+00 1.36e+01

40100 40100
1.59e-01 1.89e+00
4.70e-01 1.75e+00
5410.1 15657.3
GATR GATR

The DE algorithm has been proposed by Storn and Price (Storn and Price, 1997).
It is one of the most recent EAs and is known to be a relatively simple but powerful
population-based stochastic search technique. DE uses a limited number of parameters
but they may greatly influence the performance of the algorithm. In particular, we note
the population size, the scaling factor and the crossover rate.

Numerical results of DEahcSPX for the CEC 2005 test suite functions f6 to f25
are directly available in the literature (Noman and Iba, 2008). The performance com-
parison with GATR was carried out by means of the Wilcoxon’s test. The results are
reported in Table 9. We can see that in all dimensions, GATR achieves similar perfor-
mance to DEahcSPX, the differences being not statistically significant. We can how-
ever point out a slight tendency of GATR to obtain better solution quality compared to
DEahcSPX as the dimension increases. Specifically, in 10 dimensions, DEahcSPX is
slightly superior, but it is outperformed by GATR in 50 dimensions.

6.8 Comparison with the Winner of the CEC 2005 Contest
G-CMA-ES (Hansen et al, 2005b) is the winner of the CEC 2005 competition (Langdon
and Poli, 2007) and recognized as a very powerful algorithm for continuous optimiza-
tion problems (Lunacek and Whitley, 2006; Langdon and Poli, 2007). G-CMA-ES is a
restart CMA-ES that stops whenever some prespecified stopping conditions are met and
repeats the search with the population size being doubled on each restart. Compared
to the pure CMA-ES, G-CMA-ES is significantly superior in particular on multimodal
functions.

Table 8: Comparison of GATR and NrGA on the Best Fitness Values Found and Feval
in 10 and 30 Dimensions: f11 and f15

Method
NrGA mean

std. dev.
Feval

GATR mean
std. dev.
Feval

Significant Method (at level 0.05)

f11 f15
n = 10 n = 30

9.00e-02 5.40e-01
8.00e-02 4.10e-01

40100 40100
1.07e+01 4.25e+01
1.57e+00 3.09e+00

4513.6 14725.7
NrGA NrGA

n = 10 n = 30
3.83e+03 4.41e+03
6.34e+02 2.79e+02

40100 40100
3.79e+01 4.09e+02
3.35e+01 1.73e+01

5116 15959.2
GATR GATR

23

Table 9: Wilcoxon’s test for GATR against DEahcSPX (at level 0.05)
n GATR (R–) DEahcSPX (R+) Significant Method

10
30
50

95
109
127

115
101
83

–
–
–

Table 10: Wilcoxon’s test for GATR against G-CMA-ES (at level 0.05)
n GATR (R–) G-CMA-ES (R+) Significant Method

10
30
50

61
131
227

264
194
98

G-CMA-ES
–

GATR

The performance comparison was carried out by means of the Wilcoxon’s test. The
results in 10, 30 and 50 dimensions are reported in Table 10. We observe that G-CMA-
ES clearly outperforms GATR in 10 dimensions. In 30 dimensions, G-CMA-ES still
shows better results but the difference is not statistically significant. In 50 dimensions,
it is now the turn of GATR to exhibit significantly superior performance.

These results allow us to conclude again that the SD and SR mechanisms improve
the search process of GATR particularly in higher dimensions. Also, the use of the au-
tomatic termination did not have negative effect on the quality of the solutions achieved
by GATR, even outperforming G-CMA-ES in higher dimensions.

7 Conclusion
In this paper, we have introduced a new EA, called GATR, that can terminate the search
without conventional predefined criteria such as the maximum number of generations
or function evaluations. It is based on the GM and implements new strategies equipped
with the SD and SR mechanisms. The SD and SR mechanisms provide an innovative
way of handling problems by creating a two-dimensional environment in which the
GMs evolve irrespective of the dimension of the original problem. In this environment,
the GM goes through a series of rotations, which allow the search to avoid premature
convergence and termination.

Numerical experiments were carried out on a set of 25 test functions presented
at the CEC 2005 in 10, 30 and 50 dimensions. GATR was compared against G3AT,
RCMA, a version of CMA-ES, the state-of-the-art NrGA and DEahcSPX as well as the
CEC 2005 competition winner G-CMA-ES. The results indicate that GATR is compet-
itive with state-of-the-art EAs. Especially in higher dimensions, the performance of
GATR is comparable or superior to many of the well-known EAs. The competitive
overall performance of GATR demonstrates that the quality of the solutions obtained
did not suffer from premature termination. The proposed automatic termination thus
enabled us to stop the search without undue objective function evaluations and without
negative impact on the quality of the solution obtained.

We believe that GATR, with SD and SR, raises an interesting feature that deserves

24

further investigations. There is also a scope for future work that addresses the potential
of GM, SD and SR mechanisms for other EAs.

References
Back T, Fogel DB, Michalewicz Z (eds) (1997) Handbook of Evolutionary Computa-

tion. IOP Publishing Ltd., Bristol, UK

Baker JE (1985) Adaptive selection methods for genetic algorithms. In: Proceedings
of the 1st International Conference on Genetic Algorithms, L. Erlbaum Associates
Inc., Hillsdale, NJ, USA, pp 101–111

Beyer HG, Schwefel HP (2002) Evolution strategies - A comprehensive introduction.
Natural Computing 1:3–52

Garcı́a S, Molina D, Lozano M, Herrera F (2009) A study on the use of non-parametric
tests for analyzing the evolutionary algorithms’ behaviour: a case study on the
CEC’2005 special session on real parameter optimization. Journal of Heuristics
15(6):617–644

Giggs MS, Maier HR, Dandy GC, Nixon JB (2006) Minimum number of genera-
tions required for convergence of genetic algorithms. In: Proceedings of 2006 IEEE
Congress on Evolutionary Computation, Vancouver, BC, Canada, pp 2580–2587

Glover F (1986) Future paths for integer programming and links to artificial intelli-
gence. Computers & Operations Research 13:533–549

Hansen N (2006) The CMA evolution strategy: A comparing review. In: Lozano J,
Larranaga P, Inza I, Bengoetxea E (eds) Towards a new evolutionary computation.
Advances on estimation of distribution algorithms, Springer, pp 75–102

Hansen N, Kern S (2004) Evaluating the CMA evolution strategy on multimodal test
functions. In: Proceedings of Eighth International Conference on Parallel Problem
Solving from Nature PPSN VIII, pp 82–291

Hansen N, Ostermeier A (1996) Adapting arbitrary normal mutation distributions in
evolution strategies: The covariance matrix adaptation. In: Proceedings of the 1996
IEEE International Conference on Evolutionary Computation, Morgan Kaufmann,
pp 312–317

Hansen N, Müller SD, Koumoutsakos P (2003) Reducing the time complexity of the
derandomized evolution strategy with covariance matrix adaptation (CMA-ES).
Evolutionary Computation 11(1):1–18

Hansen N, Auger A, Kern S (2005a) Performance evaluation of an advanced local
search evolutionary algorithm. In: Proceedings of the IEEE Congress on Evolution-
ary Computation, IEEE Press, pp 1777–1784

25

Hansen N, Auger A, Kern S (2005b) A restart CMA evolution strategy with increasing
population size. In: Proceedings of the IEEE Congress on Evolutionary Computa-
tion, IEEE Press, pp 1769–1776

Hedar AR, Fukushima M (2003) Minimizing multimodal functions by simplex coding
genetic algorithm. Optimization Methods and Software 18:265–282

Hedar AR, Fukushima M (2006) Directed evolutionary programming: Towards an im-
proved performance of evolutionary programming. In: Proceedings of Congress on
Evolutionary Computation, IEEE World Congress on Computational Intelligence,
Vancouver, Canada, pp 1521–1528

Hedar AR, Ong BT, Fukushima M (2007) Genetic algorithms with automatic accel-
erated termination. Tech. rep., Dept. of Applied Mathematics and Physics, Kyoto
University

Holland JH (1975) Adaptation in Natural and Artificial Systems. The University of
Michigan Press

Jain BJ, Pohlheim H, Wegener J (2001) On termination criteria of evolutionary algo-
rithms. In: Proceedings of the Genetic and Evolutionary Computation Conference,
Morgan Kaufmann Publishers, p 768

Jakob W (2010) A general cost-benefit-based adaptation framework for multimeme
algorithms. Memetic Computing 2:201–218

Kelley CT (1999) Detection and remediation of stagnation in the Nelder-Mead al-
gorithm using a sufficient decrease condition. SIAM Journal on Optimization
10(1):43–55

Konar A (2005) Computational Intelligence: Principles, Techniques and Applications.
Springer-Verlag, Berlin

Koo W, Goh C, Tan K (2010) A predictive gradient strategy for multiobjective evolu-
tionary algorithms in a fast changing environment. Memetic Computing 2:87–110

Koumousis VK, Katsaras CP (2006) A saw-tooth genetic algorithm combining the ef-
fects of variable popultion size and reinitialization to enhance performance. IEEE
Transactions on Evolutionary Computation 10(1):19–28

Kramer O (2010) Iterated local search with Powell’s method: A memetic algorithm for
continuous global optimization. Memetic Computing 2:69–83

Kwok NM, Ha QP, Liu DK, Fang G, Tan KC (2007) Efficient particle swarm optimiza-
tion: A termination condition based on the decision-making approach. In: Proceed-
ings of the IEEE Congress on Evolutionary Computation, Singapore, pp 25–28

Langdon WB, Poli R (2007) Evolving problems to learn about particle swarm optimiz-
ers and other search algorithms. IEEE Transactions on Evolutionary Computation
11(5):561–578

26

Le M, Ong YS, Jin Y, Sendhoff B (2009) Lamarckian memetic algorithms: local opti-
mum and connectivity structure analysis. Memetic Computing 1:175–190

Lee C, Yao X (2004) Evolutionary programming using the mutations based on the Lévy
probability distribution. IEEE Transactions on Evolutionary Computation 8:1–13

Leung YW, Wang Y (2001) An orthogonal genetic algorithm with quantization for
numerical optimization. IEEE Transactions on Evolutionary Computation 5:41–53

Lobo FG, Lima CF, Michalewicz Z (2007) Parameter Setting in Evolutionary Algo-
rithms. Springer Publishing Company, Incorporated

Lozano M, Herrera F, Molina D (2005) Adaptive local search parameters for real-coded
memetic algorithms. In: Proceedings of the 2005 IEEE Congress on Evolutionary
Computation, pp 888–895

Lunacek M, Whitley D (2006) The dispersion metric and the CMA evolution strategy.
In: GECCO ’06: Proceedings of the 8th annual conference on Genetic and evolu-
tionary computation, ACM, New York, NY, USA, pp 477–484

McMinn P (2004) Search-based software test data generation: A survey. Software Test-
ing Verification and Reliability 14(2):105–156

Montgomery D, Runger G (2003) Applied Statistics and Probability for Engineers.
John Wiley & Sons Inc

Moscato P (1999) Memetic algorithms: An introduction. In: Corne D, Dorigo M,
Glover F, Dasgupta D, Moscato P, Poli R, Price KV (eds) New ideas in optimiza-
tion, McGraw-Hill Ltd., UK, Maidenhead, UK, England

Nelder J, Mead R (1965) A simplex method for function minimization. Computer Jour-
nal 7:308–313

Noman N, Iba H (2008) Accelerating differential evolution using an adaptive local
search. IEEE Transactions on Evolutionary Computation 12(1):107–125

Ong YS, Keane A (2004) Meta-Lamarckian learning in memetic algorithms. IEEE
Transactions on Evolutionary Computation 8(2):99–110

Ong YS, Lim MH, Zhu N, Wong K (2006) Classification of adaptive memetic algo-
rithms: A comparative study. IEEE Transactions on Systems, Man, and Cybernetics–
Part B 36(1):141–152

O’Sullivan M, Vssner S, Wegener J (1998) Testing temporal correctness of real-time
systems. In: EuroSTAR’98: Proceedings of the Sixth International Conference on
Software Testing Analysis and Review, Munich, Germany

Rechenberg I (1965) Cybernetic solution path of an experimental problem. Tech. rep.,
Royal Air Force Establishment

27

Safe M, Carballido J, Ponzoni I, Brignole N (2004) On stopping criteria for genetic
algorithms. Lecture Notes in Computer Science 3171:405–413

Schwefel HP (1974) Adaptive mechanismen in der biologischen evolution und ihr
einfluss auf die evolutionsgeschwindigkeit (abschlussbericht zum dfg-vorhaben re
215/2). Tech. rep., Technical University of Berlin, Berlin

Storn R, Price K (1997) Differential evolution – a simple and efficient heuristic
for global optimization over continuous spaces. Journal of Global Optimization
11(4):341–359

Suganthan PN, Hansen N, Liang JJ, Deb K, Chen YP, Auger A, Tiwari S (2005) Prob-
lem definitions and evaluation criteria for the CEC-2005 special session on real-
parameter optimization. Tech. rep., Singapore: Nanyang Technol. Univ.

Ting CK, Ko CF, Huang CH (2009) Selecting survivors in genetic algorithm using tabu
search strategies. Memetic Computing 1:191–203

Tsai JT, Liu TK, Chou JH (2004) Hybrid Taguchi-genetic algorithm for global numer-
ical optimization. IEEE Transactions on Evolutionary Computation 8(2):365–377

Tsutsui S, Yamamura M, Higuchi T (1999) Multi-parent recombination with simplex
crossover in real-coded genetic algorithms. In: GECCO ’99: Proceedings of the
Genetic and Evolutionary Computation Conference, pp 657–664

Tu Z, Lu Y (2004) A robust stochastic genetic algorithm (STGA) for global numerical
optimization. IEEE Transactions on Evolutionary Computation 8(5):456–470

Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Transactions
on Evolutionary Computation 3(2):82–102

Yuen SY, Chow CK (2009) A genetic algorithm that adaptively mutates and never
revisits. IEEE Transactions on Evolutionary Computation 13(2):454–472

Zhong W, Liu J, Xue M, Jiao L (2004) A multiagent genetic algorithm for global nu-
merical optimization. IEEE Transactions on Systems, Man, and Cybernetics–Part B
34(2):1128–1141

Zhou Z, Ong YS, Nair P, Keane A, Lum K (2007) Combining global and local surro-
gate models to accelerate evolutionary optimization. IEEE Transactions on Systems,
Man, and Cybernetics–Part B 37(1):66–76

28

