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Abstract

The clustering and classification of fracture orientations are important in rock mechanics and in brittle tectonics, the latter of whic!
includes the paleostress analysis of extension fractures hosting dikes or mineral veins. Here, we present an unsupervised cluste
method for the orientations of extension fractures using mixed Bingham distributions. The method not only detects the elliptice
clusters and girdles made by the poles to such planar features, but also determines the appropriate number of those groups
means of Bayesian information criterion (BIC) without a priori information. The method was tested with artificial data sets, and
successfully detected the assumed groups, when the clusters had little overlaps. However, clusters with the common maxim
concentration orientation and large aspect ratios were distinguished, provided that their minimum concentration orientations we
separated by a large angle. Our method separated two stress states from natural data from a Miocene dike swarm in SW Japan.
method also evaluated the probabilities of the stresses to form each of the dike.

Keywords: Bingham statistics, Bayesian information criterion, mixture model, cluster analysis, tectonic stress, dike, magma
pressure

1. Introduction (e.g., Etchecopar etal., 1981; Nemcok and Lisle, 1995; Yamaiji,
2000; Shan et al., 2003; Sato, 2006; Yamaji et al., 2006). The
The clustering of orientation data is important in variousfault-slip data resulting from such tectonics is called heteroge-
branches of science and engineering. Discontinuity orientaneous. Likewise, we call a data set heterogeneous, if the data
tions in rock material are carefully observed when surface andre collected from from the fractures that should be classified
underground excavations are made frofiiceency and safety into some groups with éierent origins.
standpoints (Priest, 1993). Their orientation distribution is im-
portant for wellbore stability (Chen et al., 2008) and ground- In this paper we present a clustering method for dealing with
water hydrology (e.g., Panda and Kultilake, 1999; Ohtsu et al heterogeneous orientation data. It is assumed that the poles to
2008). Accordingly, various clustering techniques for the ori-planar features of the same origin make an elliptical cluster or
entations have been proposed since the 1970s by researchargirdle that is approximated by a Bingham distribution (Bing-
mainly in civil engineering (e.g., Shanley and Mahtab, 1976;ham, 1974). This is the simplest orientation distribution to de-
Wallbrecher, 1978; Hammah and Curran, 1998, 1999; Pedineates them (Fig. 1), and is easily related with the dilation of
et al., 2001; Marcotte and Henry, 2002; Klose et al., 2005fractures by overpressured fluids (Baer et al., 1994; Jolly and
Jimenez-Rodriguez and Sitar, 2006). Dortet-Bernadet an&anderson, 1997; Yamaiji et al., 2010). Our method simulta-
Wicker (2008) suggest that Peel et al. (2001), who clusteredeously fits a few Bingham distributions to a set of heteroge-
rock joints, stimulated researchers in other fields of science tneous data. That is, a mixed Bingham distribution is fitted to
tackle the problem. them. Our numerical technique not only detects and separates
Such clustering is important for understanding brittle tectonthe clusters and girdles, but also determines their number from
ics as well. The orientations of healed microcracks (Lespinassie orientation data themselves. The method was tested with ar-
and Fecher, 1986; Kowallis et al., 1987) and joints (Whitaker tificial data sets to demonstrate its resolution, and with natural
and Engelder, 2005) are thought to indicate paleostress orientdata sets from a dike swarm.
tions. In addition, dike and vein orientations are used to infer
all the axes of the paleostress at the time of the vein or dike The analysis of clustering of dike orientations and vein ori-
formation (Baer et al., 1994; Jolly and Sanderson, 1997; Yaentations will stimulate structural geologists and researchers in
maji et al., 2010). The clustering of vein orientations was usedelated areas. Once fractures are classified, radiometric dating,
by Ahmadhadi et al. (2008) to infer the timing of folding. The paleomagnetic, petrological and geochemical analyses, etc., of
clustering of fracture orientations has potential for investigatinghe members of each class shed new light on the formation of
polyphase tectonics. the dike and vein clusters and on their tectonic, volcanological
Fault-slip analysis has been used to study polyphase tectoniesd hydrological implications.
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wherev is the unit vector representing an orientatioh,is
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the normalization constant; indicates matrix transposg, =
(e1, &, &) is the orthogonal matrix representing the attitude of
the Bingham distribution, an = diagi, x2, 0). The distri-
bution has five degrees of freedom: three for the orthonormal
Figure 1: Equal-area projections showing the probability densities of the BingVECtOrs €1, € andes, and two for the concentration parameters.
ham distributions with dferentx; and«, values, both of which are negative Accordingly, the parameters of the distribution are represented
in sign. The distributions have orthorhombic symmetry, meaning that they argy a position vectory, in a five-dimensional parameter space
symmetric with respect to the planes perpendicular to the unit ve@qnrs; A dix A). That . th ired t E' h
or e3. Note that the stereograms havéelient contour intervals: the range be- (Appendix A). atis, the pal-re par_am_e efs, E}, have a
tween the minimum and maximum densities, s (e1/K, E) andPg(e3K, E), one-to-one correspondence with a point in the space. We refer
is divided into 5 intervals. Pg(Vv|X) to the probability density of the Bingham distribution
with the parameters that are denotedxby

The Bingham distribution is so flexible as to denote either
an elliptical cluster or a girdle made by the poles to fractures.
Accordingly, it is useful to assume that a heterogeneous set of

The Bingham distribution is the simplest extension of the tation data ob the mixed Binaham distributi hich
multivariate normal distribution to the three-dimensional orien-2"'eNtation data obeys the mixed singham distribution, whic
has the probability density

tation distribution of lines (e.g., Love, 2007). Itis convenient to
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2. Bingham and mixed Bingham distributions

consider antipodally distributed points on a sphere to represent K

the lines that meet at the center of the sphere. The Bingham dis- Pra(V]0, @) = Z T Pg(v|x¥), (1)
tribution is depicted by a girdle or an elliptical cluster of such k=1

points.

whereK is the number of elliptical clusters or girdlesX is

An elliptical cluster or a girdle has orthorhombic symmetry : . - : :
i it is described by the Bingham distribution. That is, it has the ' comPounding ratio or the mixing déeient (Bishop, 2006)
of the kth Bingham distribution of which parameters are rep-

three symmetry axes that m_eet at right a_ngles;two of them.'nd'fesented by, The codficients satisfy 0< @* < 1 and
cate the orientations of maximum and minimum concentrations. ; K 1. Kk S
+---+w" = 1: w* means the significance of thth subset.

The remaining axis is known as the orientation of intermediatezl_uh
concentration. Following Love (2007), we use the unit columnt

vectors,eq, & ande;z, to refer to the orientations of the mini-

mum, intermediate and maximum concentrations, respectively

(Table 1). The cluster center is representeeéfwhich is iden-

e argument), of the functiorP,g() in Eq. (1) stands for all
heK vectors:
0:{x1,x2,...,xK}, 2)

and another argument of the functiords= {@?, @?, ..., @X).

tified with theo-s-axis in section 5 (Baer et al., 1994; Jolly and Fig. 2 shows an example with the paramet&rs; 2, @* = 0.4

Sanderson, 1997; Yamaiji et al., 2010).
The paired parameterg, andx,, distinguish uniform, ellip-

andw? = 0.6. Fig. 3a shows the artificial data made from the
mixed Bingham distribution with three Bingham components

tical and girdle distributions (Fig. 1): They are negative in sign,(K = 3). The orientations generated from the first, second and

and their absolute valugs; | and|«,|, indicate the concentration
of data points frone; to e; and frome; to &, respectively, on
the sphere. A uniform distribution is indicated by= x, = 0.
Circular and elliptical distributions are indicated by= x> < 0

third components are distinguished by symboals, i.e., triangles,
circles and squares, respectively, on the equal-area projection.

Our task is the unsupervised clustering (e.g., Tan et al., 2005)
of the orientations. That is, in the case of Fig. 3a, it is required

andk; < k2 < 0, respectively. Girdle distributions are denotedto group the orientations into three by the orientations them-

by the parameters that satisfy < «, < 0.

selves under the condition that the distinction of the symbols is

If points on a unit sphere obey Bingham distribution, theymasked.
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Table 1: List of symbols. Superscript at the upper left and upper right of a symbol denote, respectively, the number of iterations in the EM algorithm and th
consecutive number of Bingham components in a mixed Bingham distribution. Circumflex accents indicate the quantities of the mixed Bingham distributior
optimized for a data set.

BIC Bayesian information criterion
E orthogonal matrix representing the symmetry axes of a Bingham distribution
€ the minimum concentration axis of a Bingham distribution
& the intermediate concentration axis of a Bingham distribution
) the maximum concentration axis of a Bingham distribution
K the number of Bingham component of a mixed Bingham distribution
K diagonal matrix with the diagonal componenisg,«, and O
L() logarithmic likelihood function
N the number of data
Pa() probability density function of Bingham distribution
Pma() probability density function of mixed Bingham distribution
% unit vector normal to a fracture plane
Vi v of thenth fracture
X a five-dimensional vector representing a Bingham distribution
z the membership of thieth datum to thékth Bingham component or
the responsibility of théth one for thenth datum
6 the set of theK vectors representing Bingham distributions
K1, K2 concentration parameters of a Bingham distributian< «, < 0)
w the set ofK mixing codficients
@X the mixing codicient of thekth Bingham component
01, 02,03 principal stresses; > o, > 03)
(0] stress ratio
3. Clustering E-step. If data were obtained from a mixure &f fracture sets

with different origins, each datum should belong to one of the
usters or the girdles corresponding to esets. LetZ be

e membership of theth datum to thekth set. This is exactly
xpressed by the binary attributes 0 and Zas --- = 2! =

,Z = landz"! = ... = Z&X = 0. However, we do not
know which of theK sets thenth datum should be assigned to.

Given heterogeneous orientation data, we determine th%
mixed Bingham distribution (Eqg. 1) that best fits the data. Each
Bingham component represents a homogeneous subset.
goodness of fit is evaluated by the logarithmic likelihood func-

tion, N Therefore, the validity for thath datum to belong to thith set
. H k . . .
L0, @) = Z 10G, Prog (Ve | 6, ), 3) with the parametex” is estlmated- not exactly but fuzzily as
n=1 iZﬁ — PB(Vn | ka) (4)
wherev,, is the unit vector indicating theth datum,N is the Y1 Po(Va | X9)

number of data. The mixed distribution that best fits Mie  The |eft-hand side of this equation is called the responsibility of
data is given by the optimal parameter 4ét,@}, that maxi-  the kth one for thenth datum or the membership of the datum
mizes this function. The optimization of the parameter set igqg thekth group, and satisfies© 'z < 1. In case oK = 2, the
performed using the expectation-maximization (EM) algorithmnth gatum belongs to the first and second groups at the proba-
(e.g., Bishop, 2006) from the following initial conditions. bilities of, say, 10% and 90%, respectively. Then, the mixing
codficients are updated in this step ‘as‘ o ' + .- + &,

Initial conditions. The EM algorithm starts from the initial Where the constant of proportionality is given by the normaliza-

. . i itioniwl + ... +igK = i i
parameter sefd, where the superscript refers to the ordinalion condition,'@™ +--- +'@" = 1. The set,w, is composed
number of iterations. K points are casted randomly around ©f those cofficients.

the origin of the parameter space to make the initial VeCtorSM-step. Keeping'w unchangedd is improved td*16 by the

Oyl  OyK i e 0 : o
x,..., x" thatfill up®6 (Eq. 2). This parameter is improved pmerical maximization of the logarithmic likelihood function

through the following E- and M-steps. The optimal parame-eq - 3). The simplex method (Nelder and Mead, 1965) was
ter set,{6, @}, at the time the algorithm is terminated depends, ;e for this purpose.

on the initial conditions. Accordingly, the EM algorithm was
started with diferent initial conditions more than 100 times to Termination condition.The parameter se{f, @}, is gradually
optimize the parameter set. improved by shuttling the E- and M-steps for the mixed Bing-



ham distribution to approximate the given data. This iterative When three components were assumed=(3), the symme-
process is terminated when the improvemenfpts} becomes try axes of the Bingham components were accurately located
small. That is, the termination conditioHL - i‘1£|/“1£ < (Fig. 3a). But, the mixing cdicientsz* andz? were slightly
1078, is used for this purpose, wheré£ and'£ are the values under- and over-estimated, respectively (Fig. 3c), because the
of the logarithmic likelihood function (Eg. 3) at the end of the peripheral parts of the corresponding clusters overlapped with
(i — Dth andith M-step, respectively. We refer to the parametereach other. In contrast® was accurately evaluated, as the
set optimized for the data #sand@. Likewise, if necessary, cluster of the third component was clearly separated from the
the optimal quantities are indicated by circumflex accents suchther clusters.
asZ, etc. The membership of thath datum to the first, second and
third Bingham componentg},"22 andZ, are depicted by the
Number of componentsGiven a data set, the goodness of fit color hue of the symbols plotted on the stereogram in Fig. 3a.
(Eg. 3) is generally improved by the increasing number of comit follows from Eq. (4) that the memberships of thian datum
ponentsK. However, every data set includes random errors. IsatisfyZ + 22 + 23 = 1. Therefore, the ternary diagram in this
is meaningless to fit the mixed distribution to erroneous datasubfigure is used to depict the correspondence between a color
this makes the inferred mixed distribution too complex. In ad-and a triplet of the memberships. Most of the data points in
dition, it is usually dificult to describe entire fracture orienta- Fig. 3a have one of the primary colors, red, green and blue,
tions in a rock body in question. Biased observation can make indicating that the separation of the data set into homogeneous
happen that two or three clusters appear from the fracture oriesubsets was almost perfect. A few exceptions to this appeared
tations that actually make a girdle. Accordingly, it is importantin the peripheral part of the first subset where the first and sec-
to estimate an appropriaté value from data themselves in a ond subsets overlapped. There are a few green triangles in Fig.

statistical sense. This is accomplished by using 3a, indicating misclassified data. In contrast, all the data from
. the third Bingham component were correctly classified into the
BIC = -2£(0, @) + (6K — 1) log, N, third class € ~ 1).

When four components were assuméd € 4), the third
called the Bayesian information criterion (Schwarz, 1978). Theluster was divided into two: the fourth one was located at the
right-hand side of this equation is evaluated from data and afensest part of the third cluster. In this case, the memberships
assumed value: The cofficient (K — 1) is the degree of free-  satisfyZ + 22 + 2 + 22 = 1. It follows that, in the same way as
dom of the mixed Bingham distribution witk components. the case oK = 3 where a ternary plot indicates memberships, a
The final term in this equation is the penalty against increasinguartet of the memberships in the cas&of 4 are represented
components. The be#t value minimizes BIC. That is, BICs by a point in or on the surface of a regular tetrahedron. So, the
are evaluated for various values, and the value corresponding quartets are denoted by a colored tetrahedron in Fig. 3b. Its
to the minimum BIC is chosen as the best. The mixed Bingharfour vertices indicate the permutations, (10, 0], [0, 1,0, 0],
distribution with the besk value is thought to be the optimal [0, 0, 1,0] or [0,0,0, 1], where the first through fourth member-
mixture model for the given data. ships are bracketed. These are indicated by red, green, blue and
black, respectively, in the subfigure.

The symmetry axes, mixing cfiegients and responsibilities
were accurately evaluated, but the optimal values;and«;

The present method was tested, first, with artificial data set ere less accurate than them. The open circles and crosses in

To this end, orientations obeying Bingham distributions were lg. 3e show that the parameters were determined with the er-

—2009 IS i ~
generated using the rejection method (e.g., Press et al., 2007 ’rs of 10 ZO.A)' This is becguse the para_meters were deter
and were combined to make a data set. The sample data s ned from minute dferences in the elongation and spread of

were generated with the assumed value&pd andw. The the clusters.
method was tested with the data if the values were restored 0”'1_2, Resolution
from the data.

4, Test

The next test was made for investigating the resolution of the
method using a suite of artificial data sets with the two Bingham
components that were generated by the procedure in Fig. 4.

We tested the present method, first, with the data in Fig. 3®ata of the component 1 were rotated about the horizontal E—
to see if BIC works. The data set was made of 60-, 40- and 404V orientation and mixed with those of the component 2. The
element subsets. As a result, the correct number of the subsetstation angle/ was increased from°Go 90° with the interval
was obtained by minimizing BIC. There are three distinctiveof 10° to see if the method can separate them. The smaller the
clusters in Fig. 3a. Therefore, if we do not know the method ofangle, the more dicult it is to separate the components from a
data generation, three seems the appropriate valu€.farhe  mixed data set. Figs. 5, 6 and 7 show the results.
best K value, which is indicated by the minimum value of BIC, It was found that the two components were separated suc-
was consistent with this intuition (Fig. 3c). Firgreater than cessfully fory £ 40°. This is demonstrated by the graphs of
3, the three clusters were unnecessarily subdivided into two dIC in Fig. 6. The angle of this threshold angle is not surpris-
more groups (Fig. 3b). ing because the clusters of both the components have the half

4.1. Number of components
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Figure 3: Artificial data generated from the mixed Bingham distribution with three components. The data should be classified into 60-, 40- and 40-element subse
the distinction of which are indicated by triangles, circles and squares. (a) Equal-area projection showing the data set. In this case, three ¢omR)neats (
assumed. Therefore, the membership of each datum is depicted by a color in the ternary plot. Contours show thePyad@sf (b) Equal-area projection
showing the optimal mixture model for the casekot 4 by the contours and by the memberships of data. The tetrahedron with red, green, blue and black vertices
indicate the correspondence of the memberships with colors. (c) The BIC wershswing the prominent minimum & = 3. (d) The optimal mixing ratios for

the cases oK = 3 and 4. The third subset was erroneously subdivided into two in the latter case. (e) Assumed and optimal concentration parameters. Those of t
component 4 foK = 4 Werek‘l1 =-158 andx‘z‘ = —63. Solid lines with the labels from 0.1 through 1.0 are the contours thexgi. "

Component 1 Component 2 Mixed Bingham distribution
60 orientations 40 orientations 100 orientations
Ky=-16, kK, =-83 Ky=-17, kK,=-43 (Y =60°)
Ky/kq =0.52 Ky/ky=0.25

Figure 4: Equal-area projections illustrating the method of generating artificial data sets. Subsets 1 and 2 were generated from the Bingham distributions whose
parameters are shown under the stereoplots. Both the groups have the maximum concentration orientations in common. The orientations of Subset 1 were rot
about thee; -axis of the subset by the anglepfind mixed with those of Subset 2 to make a mixed Bingham distribution. The orientations from Subsets 1 and 2 are
denoted by triangles and closed circles, respectively. Ten data sets were generated in this way Qyilld, . .., 90°.
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Figure 6: The BIC versu& for the artificial data sets generated in the way
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Figure 7: The concentration parameters of the mixed Bingham distributions
that best fit the data sets with titevalues from 0 through 90. Crosses denote

the assumed values. Gray lines with the labels from 0.2 through 0.7 are the
contours of the ratia@;/ko.

widths of about 20 (Figs. 4 and 5a). The clusters were easily
resolved ify was greater than the summation of the half widths.

Figure 5: Equal-area projections showing the mixed Bingham distributions genThe orientation data on the borders of the clusters had interme-

erated through the procedure of Fig. 4 with= 40° and 0. Bold crosses
denote the symmetry axes that were used to generate the artificial data. The
timal stress axes and memberships were obtainedkvith2. TheZ value of

diate memberships, which are depicted by red to yellow in Fig.

Ba.

each orientation datum is indicated by color gradation. That is, if triangles and  Since the first component had an oval cluster with a relatively
circles in the stereoplots are painted black and white, respectively, the mixegmg]| aspect ratice;- ande,-axes were determined with errors

data are separated into the correct two classes.

larger than those of the second component. The cluster of the
latter was so elongated that its three axes were accurately de-
termined even foy < 20°. The misfit of the determined axes
from the assumed ones was less thahfd®y = 0° (Fig. 5b).
In contrast, the determination of the concentration parameters
was dificult and the results were unstable. Even for the cases of
¥ > 4@, thek; andk; values deviated from the assumed values
(Fig. 7).

Even when two clusters have common maximum concentra-
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Figure 8: (a) Equal-area projection demonstrating the possibility of separating

the two Bingham components that have the maximum concentration orienta-

tions in common. Theie, orientations meet at a right angle. (b) BIC vergus ~ Figure 9: The benchmark test of the present method using the fracture orienta-

for the mixed data in (a). tion data from San Manual Copper mine, Arizona (Shanley and Mahtab, 1976).
(a) The clustering result for the caselof= 3. Crosses denote the cluster cen-
ters, and the probability distribution of the mixed Bingham distribution optimal

tion orientations, the Bingham components corresponding tf?; tThr?ed;tgi)sff::ggtziﬁgxtsom:m?r?imﬁg?’ ';’VYﬁé}gzz::SmZ;‘ethF’ef(geC“O”-
the clusters can be accurately separated from mixed Qata [ﬁopriate number of partitions was 3. ' 9 P
some cases. Fig. 8 shows an example, where the two Bingham
components, each of which had 100 data, had elongated clusters
with the e;-axis (elongation axis) making a right angle. The as-
sumed mixing cofficients werew! = @? = 0.50. The optimal
mixture model had the céigcientsz® = 0.55 andw? = 0.45,
indicating roughly correct separation. In addition, the BIC ex-
hibited a prominent minimum correctly &t = 2. The method
succeeded in separating the Bingham components. In this case,
the success was due to the conditions: (1) both the components
had large enough number of data, and (2) the elongated clusters
had the intermediate concentration orientations separated by a
large enough angle. Orientation data in the overlapping part of
the two clusters had intermediate memberships, but those away
from the overlapping part had the extreme valezres 0 or 1.
Table 2: The parameters of the clusters detected from the San Manual data set
4.3. Application to natural data by the present method (Fig. 9).

The present method was applied to the orientation data from
286 fracture surfaces in San Manual copper mine, Arizona
(Shanley and Mahtab, 1976), because the data set has been
used as a benchmark of clustering techniques (Klose et al.,
2005; Jimenez-Rodriguez and Sitar, 2006). Equal-area pro-

Cluster1  Cluster2  Cluster 3
259 /75 040 /75 092/16
162 /02 258 /12 184 /08
071 /15 166/09 300 /72

P> PP @

jection of the data clearly shows three clusters (Shanley and _gg _12‘2 _128
Mahtab, 1976) (Fig. 9a). Since the cluster centers were sepa- 6 52 6 éO 6 18

rated by~90°, it was easy for our method to capture the clusters
(Table 2).

The BIC of the San Manual data set demonstrated that three
was the most adequate number of clusters for the data (Fig. 9b).
There are a small number of data points with intermediate col-
ors in Fig. 9a, indicating the clear separation of the data into
three groups. In case &f = 4, such data points appeared along
the base circle of the stereo plot, resulting in a larger BIC value.
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Figure 10: Geologic map of around the Ishizuchi area, Southwest Japan, simplified from Yoshida (1984). Dotted line shows the area where the attitudes of dik
were measured by Kusushashi and Yamaji (2001).

5. Paleostress analysis of dike or vein orientations found in the Lower Miocene Kuma Group and the coeval vol-
canic rocks. At the time they intruded, the volcanic center ex-
5.1. Method isted under Mount Saragamine just before the collapse event to

Bingham distributions or the orientation distribution with or- form the Ishizuchi cauldron atl5 Ma (Yoshida, 1984). We use

thorhombic symmetry were applied to dike orientations by Baethe orientation data from the 37 dikes reported by Kusushashi
et al. (1994) and Jolly and Sanderson (1997) to infer the statend Yamaji (2001). Fig. 11 shows the data and the result.

of stress when the dikes were formed. The Jolly-Sanderson We found that the data were explained by the mixture of two
method was applied not only to igneous dikes but also to minBingham distributions: BIC of the data showed the minimum
eral veins (e.g., Andret al., 2001; Mazzarini and Isola, 2007; atK = 2 (Fig. 11b). The two cluster centers in the stereogram
Yamaji et al., 2010). Those authors identified the symmetrywere located in the SSW and NNW directions. The stress state
axes of the distributione;, e, andes, with the -, o2- and  corresponding to the former, referred to as Stress A, had the
os-axes, respectively. Recently, Yamaiji et al. (2010) showedialues = 0.69, &1 = —126, & = —4.00 and® = 0.32.

that the stress ratid) = (o2 — 03)/(01 — 073), Of the stress state The second cluster represents Stress B with the paranigters
that afected the formation of epithermal veins could be approx0.31, &, = —79.4, &, = —6.3 and® = 0.08.

imated by the ratio of the concentration parameters;. Both the stress states hag-axes that meet the trend of the
ACCOFdIngly, when a mixed B|ngham distribution is fitted to Southwest Japan arc at ang|es greater wB0Y. The rough|y
the orientation distribution_of dikes or veins, we interprgt t_hearc-perpendicuIam-g—orientations are consistent with the inter-
symmetry axes of each Bingham component as the pr_'”c'p%retation that the magmatism in the Ishizuchi area began in the
axes _of the paleostrgss thafesrted the formation of _the dikes final stage of back arc opening in the Japan Sea (Kobayashi,
orveins corresponding to the data that have the_ highest mem979; Yoshida, 1984; Yamaji and Yoshida, 1998; Kusushashi
berships to the component. And, the concentration parameteghqd Yamaji, 2001). Stress B was possibly the regional exten-
are converted to stress ratios. sional tectonics. Local factors, i.e., the topographic loading of
It is not Surprising that factors inClUding fluctuation in the Volcanoes and the pressure from a magma Chamber may have
state of stress, interactions among fractures, etc., lead to thgrected Stress A, which had a westerly plungingaxis. Mt.
errors of stress axes byl(” in paleostress analysis. The dif- saragamine is thought to have been the volcanic center at the
ference Of principal Orientations at th|S |eVe| COI’I’ESpOﬂdS to Qime of dike intrusion (Yoshida’ 1984) The p|ane defined by
~0.2 difference in stress ratio (Yamaji and Sato, 2006). Therethe ;- ando»-axes of Stress A runs roughly through the study

fore, we should be tolerant of Uncertainty in the ratio at aroun%rea and Mt. Saragamine’ Suggesting tiieot of magma pres-
0.2. In addition, the ratio is determined less accurately thagre.

stress axes, because the errors of the concentration parameter

X . Bimilar stresses were found independently from mesoscale
propagate to that of the ratio (Figs. 3e and 7).

faults in the Kuma Group, a non-marine sedimentary package
L older than the dike swarm by a few million years. Fault-slip
5.2. Application to natural data data were collected in the same area (dashed line in Fig. 10)

The present method was applied to the natural data frorby Kusushashi and Yamaji (2001). Fig. 11c shows the result
Miocene andesitic dikes in the Ishizuchi area (Nagai andf the multiple inverse method (Yamaji, 2000), where clusters
Horikoshi, 1955), Southwest Japan (Fig. 10). They are calledn stereograms represent the stresses significant for the data.
the Kuromoritoge dike swarm (Yoshida et al., 1993), and werdNamely, stresses with nearly vertical and westerly incliogd
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Figure 12: Contours on an equal-area projection show normal stress magnitudes
acting on planes with various orientations. In this cdse assumed to be/2.
This pattern is symmetric with respect to the principal stress planes.

axes were found, and both the stresses had horizogtakes.
The principal orientations are similar to those inferred from the
dikes.

The purpose of this subsection is to test the method with a
natural data set, and to see if it leads to geologically relevant re-
sults. The tectonic and volcanological implications of the dikes

A
A » 4
J Stress A

®=032 should be drawn from increased data.
@ =069
b) o | | | | 6. Discussion
- Several numerical methods have been proposed for cluster-
v g o ing fracture orientations (Shanley and Mahtab, 1976; Pecher,
@ - ° 1989; Hammah and Curran, 1998; Peel et al., 2001). Klose et
25 © . : | al. (2005), Jimenez-Rodriguez and Sitar (2006) compared some
1 2 3 4 5 of the methods and their own ones using the San Manual data
K (Fig. 9). All the methods determined cluster centers in similar
(0) . . orientations folK = 3.

Unlike those techniques, the present method aims not only
at clustering orientation data but also at paleostress analysis of
dikes and mineral veins. If a group of dikes or mineral veins
were formed in fractures dilated by overpressured fluids, the
variation in fracture orientations enables us to estimate the state
of stress fecting the formation. The reason for this is that
the pressure must have overcome the normal stresses on the
fractures (Delaney et al., 1986), where the normal stress act-
ing on the plane normal to the unit vectorunder the stress
tensoro is written asv" ov. It is seen that normal stress has or-
thorhombic symmetry with respect to the principal stress planes

Figure 11: Result of the present method applied to the 37 dike orientationﬂ:ig. 12)‘ Therefore elongated clusters and girdles made by the
obtained at the western flank of the Ishizuchi Cauldron (Fig. 10). (a) Lower- '

hemisphere, equal-area projection. The principal axes of Stresses A and B ip-des to those St_rUCtures must be identified t?y clustering for pa-
ferred from the orientations are indicated by stars and diamonds, respectivellg0stress analysis, because the orthorhombic symmetry of such
Solid lines are the contours of the theoretical probability density of the mixedclusters reflects that of a stress tensor (Baer et al., 1994; JoIIy
Bingham distribution that best fit the data. Memberships of the data points argpq Sanderson, 1997; Yamaiji et al., 2010). There is no need
denoted by the gradation between black and white circles. (b) BIC vérsus - . . .
for the Ishizuchi data. (c) The1- andos-axes of the paleostresses determined tq distinguish the eIonga_ted clusters with t_he common ce_nter n
by the multiple inverse method (version 5) (Yamaji, 2000) from the fault-slip Fig. 8 for people who aim only at clustering fracture orienta-
data obtained in the same area by Kusushashi and Yamaji (2001). The datons. However, we have to distinguish such clusters so that we
were collected from the Kuma Group (Fig. 10). Dotted lines highlight the

: . _ .can detect the stresses indicated by the clusters. Therefore, we
clusters of stress tensors possibly corresponding to the stresses in (a). Paire

stereograms show the; - ando-s-axes of stress tensors inferred from the data. em'ployed. Bingham diStr?bUtionS, WhiCh'have probability distri-
Lower-hemisphere, equal-area projections. butions with orthorhombic symmetry (Fig. 1).

The present method is not the first to make use of an infor-
mation criterion to determine the number of partitions in the
clustering of orientation data. This has been done by Hammah
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and Curran (1998), Peel et al. (2001) and Dortet-Bernadewherep andé¢ are distance from the origin of the 5-dimensional
and Wicker (2008), but the clusters captured by their methodspace and the unit vector indicating a ray from it. The combina-
did not always have orthorhombic symmetry. The method otion of the parameterd, «1, k»} is transformed tx as follows.
Hammah and Curran (1998) detected circular clusters. Accord- In this work, we use the distance,

ingly, those methods are not convenient for paleostress analy-

sis. Fitting a mixed Bingham distribution combined with an p= 1/K% + K1K2 +K§. (6)
information criterion is suitable for determining stresses from . . . o
heterogeneous orientation data. The right-hand side of this equation is the square root of the sec-

ond basic invariant of the tensor, diag{ — 2, x2, k1), which is
one of the simplest deviatoric tensors composed fepandx..
7. Conclusion The second basic invariant is generally a measure of anisotropy.
By definition, the concentration parameters satisfx «» < 0.
For geotechnical modeling and understanding brittle tectonThus, in case of; = 0, we obtairx = 0 from Egs. (5) and (6).
ics, we propose a clustering technique for heterogeneous orien-In case ofc; # 0, we use the ratia; = «2/«1, to calculate
tation data by means of the mixed Bingham distribution. Bing-$. This ratio has a value between 0 and 1. And, we use the
ham distributions are so flexible that they can describe not onlgleviatoric tensor,
the elliptical clusters but also the girdles of the orientations. In diag(2—r,2r — 1, — 1)
addition, paleostress analysis is straightforward when the dis- =E : : ET
tributions are fitted to the orientations of tensile fractures. If the 3r2-3r+3
clusters have little overlap, it is easy for our method to separatget sij be theijth component of this tensor. Since the tracg of

them and to determine the size and the aspect ratio of the clugs invariant under the rotation by the action®fn Eq. (7), the
ters. In addition, elongated clusters with a common maximungquation

concen_trgtion orientation can be separated, if a few conditions c11+¢Sm+c33=0, (8)
are satisfied.

Tests with artificial data sets demonstrated that the number
of Bingham components was successfully estimated by meargs
of Bayesian information criterion (BIC), if Bingham compo- £ = _(ﬁ i) N (ﬁ B i) L1
nents were identified from heterogeneous orientation data. The 1= 77 T ST\ Tz )22 f $33
method was applied to a dike swarm near a Miocene cauldron & = (% -2 )gll (‘f + T\g)Qz + 76“3 9)
in Southwest Japan, and detected two paleostress states.

(7)

holds independent dE. Then, the components of the ray are
en by

<‘

&3=¢623, &a=¢31, &5=¢1

This linear equation was originally introduced to fault-slip anal-
Acknowledgments ysis by Sato and Yamaji (2006). In terms of Egs. (5), (6) and
(9), we obtairx corresponding t¢E, 1, k2}.

We are grateful to Tom Blenkinsop and an anonymous re- On the other hand, given a poinin the parameter space, the
viewer, whose comments and suggestions were very helpful fgfarameterg, «; andx, are calculated as follows. In casexof
improving the manuscript. We thank Takeyoshi Yoshida for hisp, we immediately obtaimr; = k» = 0. This means a uniform
comment on the magmatism in the Ishizuchi area. This worlgrientation distribution in the physical space. Therefore, we do
was partly supported by the grants 22340150 and 21740364ot need to calculatE. In case of # 0, we havep = |x| and

from JSPS. £ = x/p. It follows from Egs. (8) and (9) that
: S11=~ ( )51+(i i)fz
Appendix A. Parameter space V2 VB V2 VB
S22 = ( )51 % %)fz
For the EM algorithm to work, a parameter space was defined Gaz = \/7 L+ &)
to indicate the parameters of a Bingham compongérandK. S3=¢p=£&, ¢u=c¢13=E&, 12 ==&,

There are two necessary conditions for this space. First, the ev-

ery point in the space should have a one-to-one correspondenddereé; is theith component of. Then, E andr are ob-
with the pair,E andK. Second, distances in the space should@ined by solving the eigenproblem of(Eq. 7). That isE
not be dfected by the coordinate rotations in the physical spacéS composed a& = (e, &, €3), wheree is the 3x 1-maitrix

to guarantee the accuracy and resolution of the method to J&presenting the eigenvector correspondingitheigenvalue.
free from the choice of a coordinate system. To meet these déet s1 = ¢2 > ¢3 be the eigenvalues. Then, we obtain
mands, we modified the 5-dimensional stress space of Sato ahd= (S2 — §3)/(§1 — ¢3). Substitutingk, = r«; into Egs. (6)

Yamaiji (2006). we havep? = (r2 +r + 1)K1 Sincex; must be negative in sign,
A point in this modified space was represented by the posiV€ obtain
tion vector k1 =—=p/Nr2+r+1 (10)
X = p& (5) Using Eq. (10) we finally get, = r«;.
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