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Abstract 

The symbiosis between legume plants and rhizobia causes the development of new organs, 

nodules, which function as an apparatus for nitrogen fixation. In this study, the roles of auxin 

in nodule development in Lotus japonicus have been demonstrated using molecular genetic 

tools and auxin inhibitors. The expression of an auxin-reporter GH3 fused to -glucuronidase 

(GUS) was analyzed in L. japonicus roots, and showed a strong signal in the central cylinder of 

the root, whereas upon rhizobium infection, generation of GUS signal was observed at the 

dividing outer cortical cells during the first nodule cell divisions. When nodules were developed 

to maturity, strong GUS staining was detected in vascular tissues of nodules, suggesting 

distinct auxin involvement in the determinate nodule development. Numbers and the 

development of nodules were affected by auxin transport inhibitors (1-naphtylphthalamic acid; 

NPA and tri-indobenzoic acid; TIBA), and by a newly synthesized auxin antagonist, α-(phenyl 

ethyl-2-one)-indole-3-acetic acid (PEO-IAA). The common phenotypical alteration by these 

auxin inhibitors was the inhibition in forming lenticel, which is normally developed on the 

nodule surface from the root outer cortex. The inhibition of lenticel formation was correlated 

with the inhibition of nodule vascular bundle development. These results indicate that auxin is 

required for the normal development of determinate nodules in a multidirectional manner.  
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Abbreviations 

DsRed  Discoma sp. red fluorescent protein 

dpi  days post inoculation 

GUS  - glucuronidase 

NPA  1-naphtylphthalamic acid 

PEO-IAA α -(phenyl ethyl-2-one)- indole-3-acetic acid 

TIBA  tri-indobenzoic acid 
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Introduction 

 

Legume plants can establish symbiosis with rhizobia by forming a nitrogen-fixing apparatus 

called nodules, which are mostly developed on roots following legume–rhizobium signal 

exchanges that trigger the plant meristem formation that allows bacterial invasion from plant 

root hairs to underlying cortical cells (Brewin 2004). The initiation of nodules by rhizobia is 

stimulated by lipochitin oligosaccharides, also called Nod factors (Denarie et al. 1996), and the 

start of cell division involves the re-initiation of the cell cycle in the cortical and pericycle cells 

of the host plant root. In indeterminate legume plants, nodules are initiated from the inner 

cortex and form a persistent nodule meristem, which allows continuous growth, and leads to 

the formation of elongated nodules, whereas in determinate legumes nodules are mostly 

developed from outer cortical cells and form spherical nodules (Hirsch 1992). This nodule 

formation process is regulated by several phytohormones, such as auxin, cytokinins, 

gibberellins, and brassinosteroids as positive regulators of nodule formation (Ferguson et al. 

2005; Frugier et al. 2008; Maekawa et al. 2009; Mathesius 2008), while ethylene, jasmonic acid 

and abscic acid as negative regulators (Ding et al. 2008; Nakagawa and Kawaguchi 2006; 

Penmetsa et al. 2008).   

Auxin regulates plant growth and development in a highly sophisticated manner, in 

particular auxin functions by the regulated polar movement along the vertical axis leading to 

its concentration gradient through-out the plant. Since the possible involvement of auxin in 

nodule formation was first reported by Thimann in 1936, auxin distribution during nodulation 

has been studied in particular with indeterminate nodules (Thimann 1936). GH3 and DR5 

promoters are often used as auxin reporter genes. In white clover (Trifolium repens), 

Mathesius and coworkers reported that rhizobia caused a reduction in the GH3 signal at the 

site of infection and at the area beneath. In their study, GH3 was observed to be highly 

expressed in early dividing pericycle and cortical cells of nodules, and subsequently, the 
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expression decreased in the forming primordium. Finally, GH3 expression remained only in 

the nodule meristem and the vascular bundles (Mathesius et al. 1998). A similar expression 

pattern was also observed in Medicago truncatura using a DR5 promoter (Huo et al. 2006). 

Compared to these indeterminate nodules, auxin distribution of determinate nodules was 

seldom studied. In the determinate nodulating legume Lotus japonicus, GH3 expression did 

not disappear below the site of infection, but was found in the first dividing outer cortical cells, 

suggesting that there is a different auxin contribution pattern between determinate and 

indeterminate nodules (Pacios-Bras et al. 2003).  

Inhibitors of auxin transport, i.e., 1-naphtylphthalamic acid (NPA) and 

tri-indobenzoic acid (TIBA) have been generally used to observe developmental effects on 

changes in auxin transport. NPA is thought to interfere with the intracellular cycling of the 

PIN-FORMED (PIN) proteins between the plasma membrane and endosomal vesicles 

(Blakeslee et al. 2005; Geldner et al. 2001). NPA also inhibits the auxin transport mediation by 

ATP-binding cassette proteins by binding these membrane proteins (Bailly et al. 2008). 

Several classes of flavonoids show a similar effect on auxin transport as NPA in white clover 

and also in the non-leguminous plant Arabidopsis thaliana (Brown et al. 2001; Jacobs and 

Rubery 1988; Mathesius et al. 1998). As another biochemical tool to study auxin functions, tert 

-butoxycarbonylaminohexyl-indole-3-acetic acid (BH-IAA) was reported to be an auxin 

antagonist (Hayashi et al. 2008). This -alkyl-IAA specifically binds to the auxin binding site 

of TIR1/AFBs auxin receptors and blocks their functions in many plant species such as 

Arabidopsis, rice (Oryza sativa) and moss (Physcomitrella patens). More recently, α-(phenyl 

ethyl-2-one)-indole-3-acetic acid (PEO-IAA) has been provided by Dr. Hayashi as another 

α-alkyl-IAA that shows more potent anti-auxin activity, and reveals the antagonistic activities 

to auxin-responsive gene expression, cell division, and the elongation pathway mediated by 

SCF TIR1/AFBs (Hayashi et al. unpublished data). In this study, we have shown the auxin 

distribution in the determinate nodules of L. japonicus using auxin inhibitors of different 

mechanisms and have found that the development of lenticels and nodule vascular bundles 
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was strongly affected by auxin during the nodulation process. 

 

Materials and methods 

 

Plant materials, rhizobia strain and growth conditions 

 

Lotus japonicus B129 Gifu and its GH3:GUS transgenic line, Lj3632.5.127, (kindly provided by 

Dr. Herman P. Spaink, Leiden State University, Netherlands) were used in this work 

(Pacios-Bras et al. 2003). All analyses were conducted in a cultivation chamber under a 16-h 

day/8-h night cycle at a temperatures of 23ºC. For inoculation, Mesorhizobium loti 

MAFF303099 carrying the DsRed (Discoma sp. red fluorescent protein) reporter gene (kind gift 

from Dr. Makoto Hayashi, National Institute of Agrobiological Sciences, Japan) was cultured 

overnight in TY medium at 28 ºC (Beringer 1974).  

 

Treatment with auxin inhibitors 

 

To study the effect of auxin transport inhibitors and auxin antagonist on plant growth and 

nodulation, NPA (TCI, Tokyo, Japan), TIBA (Sigma–Aldrich, St. Louis, MO), or PEO-IAA 

(kindly provided from Dr. Ken-ichiro Hayashi, Okayama University of Science, Japan) were 

dissolved in dimethyl sulfoxide (DMSO) and used to treat L. japonicus. Seeds were 

surface-sterilized with a 1% sodium hypochloride solution for 10 min, rinsed five times with 

sterile distilled water, then germinated on water agar plates (0.8%).  

For nodulation experiments, five-day-old seedlings were transferred to plant boxes 

filled with sterile fine vermiculite with 100 ml of 1/2 B&D liquid medium (Broughton and 

Dilworth 1971), to which 100 l of either TIBA, NPA, or PEO-IAA were added with final 

concentration of 10 or 100 M, and 108 cells of M. loti was inoculated after two days. Plants 

grown on 1/2 B&D medium containing the same volume of DMSO was used as a control. After 
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19 days plants were sampled and their nodules including primordia were observed under a 

digital stereomicroscope system (VB-S20, Keyence, Osaka, Japan). Nodule primodia were 

defined as nodules with a diameter of 0.55 mm or less. Total root growth was evaluated as 

the sum of main and lateral root lengths. 

To evaluate the effect of PEO-IAA on normal growth, five-day-old seedlings were 

transferred on 1/2 B&D plate containing PEO-IAA. After 7 days plants were sampled and their 

phenotypes were observed under a stereomicroscope VB-S20 (Keyence). For scanning electron 

microscopy, roots were put on a dental impression material (Provil novo Light, Heraeus Kulzer, 

Wehrheim, Germany). After 2 hrs the negative molds were peeled and then filled with epoxy 

resin (GM-6600, Blenny Giken, Isezaki, Japan). The replicas were polymerized at room 

temperature for 48 hrs. The positive resin replicas were peeled from the negative molds and 

examined with a scanning electron microscope (S3500N, Hitachi, Tokyo, Japan).  

 For chloral hydrate clearance, nodules were fixed in fixative solution (ethanol : acetic 

acid = 3 : 1) for 3 hrs, and then hydrated through an ethanol series. The fixed samples were 

immersed in clearing solution containing 4 mg/ml chloral hydrate (Wako, Osaka, Japan) and 

0.5 ml/ml glycerol at 4ºC for a week, and then observed under a microscope (Axioscope2, Zeiss, 

Oberkochen, Germany). 

 

Histochemical analysis of GH3:GUS transformant of L. japonicus 

 

For GUS staining, tissues were prefixed in ice-cold 90% acetone for 15 min, rinsed once with 

cold water, immersed with staining solution (50 mM sodium phosphate buffer, pH 7.0, 0.1% 

Triton X-100, 0.5 mM potassium ferrocyanide, 0.5 mM potassium ferricyanide, and 1mM 

X-Gluc), and incubated at 37ºC for 40 min. The stained samples were dehydrated through an 

ethanol series. The fixed samples were embedded in Technovit 7100 (Heraeus Kulzer) 

according to the manufacturer’s protocol. Tissue sections (10 m thick) prepared with a 

microtome (RM2155, Leica, Wetzlar, Germany) were mounted on slides and observed with a 
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microscope (Axioscope2). 

 

Results 

 

Distribution of auxin in nodule development 

 

The auxin-regulated soybean promoter GH3 (Hagen et al. 1991) fused to a reporter gene has 

provided a molecular tool to monitor auxin distribution in, among others, leguminous plants. 

Using GH3:GUS transformants we have investigated the auxin localization in developing 

nodules of L. japonicus. In uninoculated L. japonicus root, strong GUS staining was observed 

in the central cylinder (Fig. 1a, b), which represents high auxin level in these root tissues. At 

two days post inoculation (dpi) of M. loti, the GUS activity became detectable in part of root 

cortex, where a young nodule primordium was developing (Fig. 1c). When a section was 

prepared from this region, the cell division was seen in cortical cells, where GUS staining was 

observed at the basal part connecting the vascular tissues of the main root (closed arrow in Fig. 

1d), and at the front of the young developing nodule as well, which is still under root epidermis 

(open arrow at Fig. 1d). In mature nodules (14 dpi), strong GUS staining was observed 

surrounding the infected zone of the nodule (Fig. 1e). The cross-section of the mature nodule 

revealed the strong GUS staining at vascular tissues of the nodule, and the continuous signal 

was seen at the root vascular tissues, from which a nodule vascular bundle was developed (Fig. 

1f). These data strongly suggest that the possible involvement of auxin in the development of 

determinate nodules, which is consistent with the observation by Pacios-Bras (Pacios-Bras et 

al. 2003). 

 

Effects of inhibitors of auxin transport on nodule formation in L. japonicus 

 

Auxin is mainly synthesized in the apical region including shoot apical meristem and young 
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leaves, and transported in a basipetal direction in the stem, and in an acropetal direction in 

the root (Baluska et al. 2005). This polar transport of auxin maintains the gradient of auxin 

concentration in a plant body, which is essential for normal plant growth and development. To 

test the effect of this polar auxin transport on the nodulation process, plants were treated with 

auxin transport inhibitors, such as NPA and TIBA. Plants grown in the presence of NPA at 

concentration of 10 M and 100 M showed an apparent reduction in the total root length (70% 

and 73% inhibition, respectively) and nodule numbers (Fig. 2a, b). When plants were treated 

with 10 M of TIBA, a weak inhibition in the root growth (19%) was observed while the nodule 

number was strongly reduced. Interestingly, a clear increment in the number of nodule 

primordia was observed when plants were treated with 100 M of TIBA, while root length was 

strongly reduced (68% inhibition) at this concentration. Because NPA and TIBA inhibited the 

root growth of L. japonicus in particular at 100 M, the reduction in nodule number might be 

due to an indirect effect of auxin transport inhibition, at least in part. 

 

Effects of auxin antagonist on nodule formation 

 

A newly synthesized auxin antagonist, PEO-IAA, binds to TIR1/AFBs receptors and blocks 

their functions leading to an auxin defective phenotype. To evaluate the direct auxin effects on 

nodulation, we employed this compound in this study. To investigate the effective dose of 

PEO-IAA in L. japonicus, we first observed the growth phenotype in the presence of different 

concentrations of PEO-IAA. At 10 M, L. japonicus root elongation was slightly enhanced, but 

this auxin antagonist started to inhibit from 100 M on agar plates, and at 300 M the main 

root growth was strongly inhibited (Fig. 3a, b). We also found that PEO-IAA inhibited root hair 

emergence and development at low concentrations as 10 to 30 M (supplementary Fig. S1a, b).  

In L. japonicus, the rhizobium infection occurs via infection threads that pass through 

root hairs in the root cortex, and then the bacteria are distributed to the cells, which become 

infected symbiosome-containing nitrogen-fixing cells (Karas et al. 2005; van Spronsen et al. 
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2001). It was also reported that rhizobia could infect a root hairless mutant through cortical 

root hairs, which were induced by Nod factors (Karas et al. 2005). In that case, reduction of 

nodule number and increase of nodule primordia were observed in the root hairless mutant at 

21 dpi. To study the effect of PEO-IAA on nodulation we inoculated M. loti on L. japonicus 

grown in plant boxes filled with vermiculite, which had been treated with 10 M or 100 M 

PEO-IAA. The results are shown in Fig. 4a and 4b. Surprisingly, when plants were grown on 

vermiculites, there was no significant difference in the development of root hairs even at the 

high concentration of PEO-IAA, probably due to the apparent difference in the effective 

concentration of PEO-IAA between on agar plate, which gives more precise effective 

concentration by the tight contact of entire roots with agar medium, and in vermiculite, in 

which contact surface of root tissues with inhibitor-containing vermiculite particles is limited. 

The number, size and the typical red color of nodules of L. japonicus treated with 10 M or 100 

M PEO-IAA were not influenced either, but we found one clear phenotype alteration, i.e., the 

lenticels on the surface of nodules disappeared under the treatment of PEO-IAA (100 M) (Fig. 

5a). The development of lenticels, which arise from specific phellogen cells, was also strongly 

inhibited by the auxin transport inhibitors (Fig. 5a). Lenticels develop above the nodule 

vascular bundles which were postulated to provide growth substances to the lenticels 

(Pankhurst and Sprent 1975). To investigate the effect of auxin inhibitors on the development 

of vascular bundles, nodules were cleared with chloral hydrate after treatment with auxin 

inhibitors. Developed vascular bundles were observed in nodules with lenticels (control), while 

in nodules treated with auxin inhibitors, neither vascular bundle nor lenticels were observed 

accordingly (Fig. 5b). These correlations were also observed in GH3:GUS nodules which were 

treated with auxin inhibitors (Fig. 5c). Fluorescence of DsRed carried by M. loti was detected 

in all nodules observed, indicating that no pseudonodule was developed by the treatment of 

these inhibitors (supplementary Fig. S2). 

 

Discussion 
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Among several types of nodules in legume plants, indeterminate nodules and determinate 

nodules are well studied their nodulation process. In the former, for which alfalfa and M. 

truncatula are representatives, nodules are derived from the inner cortex of the root and 

develop a meristem, whereas in the latter (for instance, soybean and L. japonicus) nodules are 

derived from the outer cortex cells and grow via non-meristematic cell division. Due to these 

morphological and developmental differences, many comparisons have been made between 

these two types of nodules. Several previous reports suggested that auxin is involved in 

nodulation, especially in indeterminate nodules because, for example, nodules contain elevated 

levels of auxin, auxin response genes are differentially expressed during nodule initiation, 

auxin transport is inhibited by rhizobia, and auxin transport inhibitors can induce 

pseudonodules (Mathesius 2008). Compared to indeterminate nodules, the involvement of 

auxin on the development of determinate nodules is still largely unknown. In the present study, 

we have shown the distribution of auxin during the formation of determinate nodules, the 

effects of inhibitors of auxin polar transport and a new auxin antagonist on nodulation.  

The GH3:GUS transformant of L. japonicus showed auxin responses during nodule 

development. In uninoculated root, GH3 expression was observed only in central cylinder (Fig. 

1a, b), whereas in inoculated roots, GH3 expression started to increase in the outer cortical 

cells where cell divisions occurred in nodule primordia. It is also to be noted that the GH3 

expression was connected to the main root vascular tissues. In mature nodules, GUS staining 

disappeared in both infected and non-infected cells derived from the cortex, whereas strong 

expression was observed in vascular tissues. These results suggest that auxin plays an 

important role in nodule formation, especially in the development of vascular tissues. Similar 

GUS expression was observed in dividing root cortex when M. loti was inoculated into L. 

japonicus, which was transformed with the GUS gene under the control of the Arabidopsis 

cytokinin-responsive gene, ARR5 (Lohar et al. 2004). Cytokinin signaling is necessary to 

induce cortical cell divisions and nodule organogenesis, because the gain-of-function mutant in 
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the cytokinin receptor, LHK1, spontaneously develops nodules in the absence of rhizobia 

whereas loss-of-function mutant in LHK1 abolishes nodule primordium formation (Murray et 

al. 2007; Tirichine et al. 2007). Together with cytokinin, auxin may participate in the initiation 

of cell divisions in a coordinated fashion. 

Polar auxin transport is mediated by cell-to-cell movement that is generated by a 

chemiosmotic model where the existence of auxin-carrier proteins localized to the plasma 

membrane responsible for the auxin uptake and efflux out of the cells has been proposed 

(Raven 1975; Rubery and Ar 1974). The model is rationalized by the asymmetric localization of 

the efflux carriers at one side of the cells, which determines the direction of the intercellular 

auxin movement in plants. In the current model, polar auxin transport is mediated by several 

different classes of transporter proteins i.e., AUXIN/LIKE-AUXIN (AUX/LAX) permeases 

(Kramer and Bennett 2006), PIN proteins (Teale et al. 2006; Vieten et al. 2007), and ABC 

proteins of the ABCB subfamily (Geisler and Murphy 2006). In L. japonicus, rhizobium 

inoculation induced GH3 expression and auxin transport was up-regulated after the treatment 

of purified Nod factors at a root tip (Pacios-Bras et al. 2003), which suggested that an 

increased auxin level is necessary for the nodulation process. We have demonstrated in this 

study the effects of auxin transport inhibitors on nodulation, i.e., the treatment of L. japonicus 

with NPA or TIBA altered the nodule number at concentrations 10 M and 100 M, in which 

the plant growth was not drastically suppressed.  

PEO-IAA can block auxin functions since this α-alkyl-IAA competitively binds to the 

auxin-binding site of receptor molecules TIR1/AFBs. Some auxin-deficient phenotypes of this 

compound are similar to those resulting from treatment with NPA, but most effects are 

different and more direct effects can be observed with the auxin antagonist (Hayashi et al. 

2008). Thus, we investigated the effects of PEO-IAA on nodulation in L. japonicus. Although 

PEO-IAA affected the root growth and root hair formation in L. japonicus at 10 to 300 M in 

agar plates, the number of nodules was not strongly altered as compared to that of control at 

concentrations 10 M and 100 M in vermiculite. One striking effect of PEO-IAA was that this 
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auxin antagonist strongly suppressed the development of lenticels on nodules in a similar 

manner as those with NPA and TIBA (Fig. 5a). We also found the inhibition of nodule vascular 

bundle development under the treatment of these inhibitors (Fig. 5b, c). The effective 

concentration of PEO-IAA for various auxin responses differs depending on the tissues, e.g., 

the inhibition of lenticel formation was observed at 100 M whereas root hair development was 

more sensitive (30 M) (Supplementary Fig. S1). Inhibition of lateral root formation was only 

observed at high concentrations of PEO-IAA such as 300 M in L. japonicus (Fig. 3c). 

Lenticels develop opposite the nodule vascular bundle and are suggested to arise from 

specific phellogen cells in the nodule cortex. These cells become meristematic and by repeated 

divisions rupture the epidermis, whereby the lenticels appear on the nodule surface as bands 

of loosely packed tissue (Pankhurst and Sprent 1975). Lenticels regulate gas permeability of 

nodules and develop more extensively under low oxygen or waterlogged conditions, whereas 

during water insufficient condition or high oxygen pressure they collapse, or develop very 

little externally (Pankhurst and Sprent 1975; Walsh 1995). Grønlund et al. showed that the 

lenticel development was also inhibited as well as the vascular tissues, when the expression of 

two homeodomain proteins, Ljndx1 and Ljndx2, was suppressed (Grønlund et al. 2003). The 

relation between the lenticels and the nodule vascular system is unknown. However, due to 

their relative location, it was suggested that lenticel development is associated with growth 

substances supplied from the vascular system (Pankhurst and Sprent 1975). Taken together, 

our data suggested that auxin is also one of the candidates of the growth substances 

controlling lenticel formation, or that auxin is necessary to form the nodule vascular bundle 

and lack of lenticel may be an indirect effect of abnormal development of vascular bundle after 

treatment of these auxin inhibitors. 

In this study, we have shown the involvement of auxin in the formation of vascular 

bundle and lenticel on the nodules. For further understanding of the auxin distribution and 

the role of auxin in the nodules of L. japonicus, identification and characterization of auxin 

transporter genes that respond to nodulation will be necessary. (Brown et al. 2001) 
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Figure Legends 

Fig. 1 GH3:GUS expression during the nodulation in L. japonicus. a GH3:GUS expression was 

observed in central cylinder of uninoculated root. b Cross section of a. c Enhanced GH3:GUS 

expression was observed in outer cortex of the root, where M. loti was inoculated. d Cross 

section of c. GH3:GUS expressed in vascular tissues of the main root, and basal (closed arrow) 

and apical parts (open arrow) of the nodule primordia. e In mature nodule, strong GH3:GUS 

expression was detected only in vascular tissues. f Cross section of e. Scale bars 100 m 

 

Fig. 2 Effect of auxin transport inhibitor on the nodule development. a Growth phenotype and 

b nodule number of L. japonicus treated with NPA and TIBA. The data are represented as 

averages of 18 individual plants, and values represent mean +SD. *P<0.05 and **P<0.01 

compared with control (DMSO) by ANOVA (Bonferroni test). Scale bars 1.0 cm 

 

Fig. 3 Effect of PEO-IAA on the growth of L. japonicus. Five-day-old seedlings were treated 

with PEO-IAA. After 7 days plants were sampled and the phenotype was observed. a Seedlings 

grown in the presence of PEO-IAA. Scale bars 1.0 cm. b Main root length was measured after 

treatment of PEO-IAA. The data are represented as averages of 6 individual plants, and values 

represent mean + SD. *P<0.05 compared with control by ANOVA (Bonferroni test). 

 

Fig. 4 Effect of PEO-IAA on the nodule development. a Growth phenotype and b nodule 

numbers of L. japonicus. The growth was inhibited by PEO-IAA, but nodule number and 

development were not significantly affected. The data are represented as averages of 18 

individual plants and values represent mean + SD. Scale bars 1.0 cm 

 

Fig. 5 Nodules of L. japonicus grown with PEO-IAA or auxin transport inhibitors. Five-day-old 

seedlings were treated with PEO-IAA, NPA or TIBA, respectively, and then inoculated with M. 

loti 2 days later. After 19 days plants were sampled and the phenotype of nodules was observed. 
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a Developments of lenticels (yellow arrowheads) were inhibited by auxin inhibitors except 

plant treated with 10 M PEO-IAA. Scale bars 1.0 mm. b Chloral-hydrate-cleared nodules 

showed the lack of nodule vascular bundles. Developments of nodule vascular bundles (white 

arrowheads) were also inhibited by auxin inhibitors in accordance with the inhibition of 

lenticels formation. Scale bars 200 m. c Nodules of GH3:GUS transformant showed also the 

correlation of lack of lenticels and nodule vascular bundles. Scale bars 1.0 mm. 
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Supplementary Fig. S1  Effect of PEO-IAA on the root hair of L. japonicus. Five-
day-old seedlings were treated with PEO-IAA. After 7 days plants were sampled 
and the phenotype was observed. a Zone of mature root hairs. Development of root 
hair was inhibited under treatment of PEO-IAA. Scale bars 1.0 mm. b Zone of root 
hair emergence. Scale bars 200 m. 
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Supplementary Fig. S2  Effect of auxin inhibitors on the pseudonodule formation. 
Plants were inoculated with M. loti carrying DsRed reporter gene after application 
of auxin inhibitors. Fluorescents of DsRed were observed in all nodules. Scale bars 
100 m. 
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