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Abstract

We give the definition of a convergence of the differentials of Lipschitz functions

with respect to the measured Gromov-Hausdorff topology, and several properties of

the convergence.

1 Introduction

Let {(Mi,mi)}i∈N be a sequence of pointed n-dimensional complete Riemannian manifolds

(n ≥ 2) with RicMi
≥ −(n − 1), and (Y, y, υ) a pointed proper metric space (i.e. every

bounded subset of Y is relatively compact) with a Radon measure υ on Y satisfying that

(Mi,mi, vol) converges to (Y, y, υ) with respect to the measured Gromov-Hausdorff topol-

ogy. Here vol is the renormalized Riemannian volume of (Mi,mi): vol = vol/volB1(mi).

Fix R > 0, a sequence {f}1≤i<∞ of Lipschitz functions fi on BR(mi) = {w ∈Mi;w,mi <

R}, and a Lipschitz function f∞ on BR(y) with supi Lipfi <∞. Here w,mi is the distance

between w and mi, Lipfi is the Lipschitz constant of fi. Then we say that fi converges

to f∞ on BR(y) if fi(xi) → f∞(x∞) for every xi ∈ BR(mi) and every x∞ ∈ BR(y) satis-

fying that xi converges to x∞. See section 2 for these precise definitions. Assume that fi

converges to f∞ on BR(y), below.

The purpose of this paper is to give a definition: the differentials dfi of fi converges

to the differential df∞ of f∞ in this setting. In order to give the definition below, we shall

recall celebrated works on limit spaces of Riemannian manifolds by Cheeger-Colding. By

[1] and [6], it is known that the cotangent bundle T ∗Y of Y exists. We remark that each

fiber T ∗
wY is a finite dimensional real vector space with canonical inner product ⟨·, ·⟩(w)
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for a.e. w ∈ Y , and that every Lipschitz function g on BR(y) has the canonical differential

section: dg(w) ∈ T ∗
wY for a.e. w ∈ BR(y). See section 4 in [1], and section 6 in [6] for the

details.

We shall give the definition of a convergence of the differentials of Lipschitz functions

(see Definition 4.15):

Definition 1.1 (Convergence of the differentials of Lipschitz functions). We say that

dfi converges to df∞ on BR(y) if for every ϵ > 0, every x∞ ∈ BR(y), every z∞ ∈ Y , every

sequence {xi}1≤i<∞ of points xi ∈ BR(mi) satisfying that xi converges to x∞, and every

sequence {zi}1≤i<∞ of points zi ∈Mi satisfying that zi converges to z∞, there exists r > 0

such that

lim sup
i→∞

∣∣∣∣ 1

volBt(xi)

∫
Bt(xi)

⟨drzi , dfi⟩dvol−
1

υ(Bt(x∞))

∫
Bt(x∞)

⟨drz∞ , df∞⟩dυ
∣∣∣∣ < ϵ

and

lim sup
i→∞

1

volBt(xi)

∫
Bt(xi)

|dfi|2dvol ≤
1

υ(Bt(x∞))

∫
Bt(x∞)

|df∞|2dυ + ϵ

for every 0 < t < r. Here rzi is the distance function from zi: rzi(w) = zi, w.

Roughly speaking, this convergence: dfi → df∞, implies “H1,2 (or H1,p)-convergence

with respect to the measured Gromov-Hausdorff topology”. See Theorem 1.2 and Remark

4.23. If dfi converges to df∞ on BR(y), then we denote it by (fi, dfi) → (f∞, df∞) on

BR(y). Assume (fi, dfi) → (f∞, df∞) and (gi, dgi) → (g∞, dg∞) on BR(y) below.

In the paper, we will study several properties of the convergence and give their appli-

cations. For example, we will show the following in section 4:

Theorem 1.2. Let {Fi}1≤i≤∞ be a sequence of continuous functions on R. Assume

that Fi converges to F∞ with respect to the compact uniformly topology. Then, we have

lim
i→∞

∫
BR(mi)

Fi(⟨dfi, dgi⟩)dvol =
∫
BR(y)

F∞(⟨df∞, dg∞⟩)dυ.

Especially, if f∞ = g∞, then

lim
i→∞

∫
BR(mi)

Fi(|dfi − dgi|)dvol = F∞(0)υ(BR(y)).

See Corollary 4.20 for the proof. We will also show the following in section 4:

Theorem 1.3. Let {hi}1≤i<∞ be a sequence of harmonic functions hi on BR(mi), and

h∞ a Lipschitz function on BR(y). Assume that supi Liphi < ∞ and that hi converges

to h∞ on BR(y). Then we have (hi, dhi) → (h∞, dh∞) on BR(y).
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We remark that in Theorem 1.3, h∞ is a harmonic function on BR(y), proved in [11]

by Ding. We will give an alternative proof of it in section 4. See Corollary 4.34.

The organization of this paper is as follows:

In the next section, we will recall several important notions and propeties of metric

spaces, Riemannian manifolds and their limit spaces. Most of statements in section 2 do

not have the proof, we will give a reference for them only.

In section 3, we will show several results about rectifiability of limit spaces of Rieman-

nian manifolds. See Theorem 3.16 and Theorem 3.49. It is important that their functions

in these theorems which give a rectifiability of limit spaces, are distance functions. As

a corollary of them, we will give an explicit geometric formula for the radial derivative

of Lipschitz functions from a given point. See Theorem 3.30. These results are used in

section 4 essentially.

In section 4, we will give two-definitions of pointwise convergence of L∞-functions

with respect to the measured Gromov-Hausdorff topology, and give the definition of a

convergence of the differentials of Lipschitz functions again via the definitions of conver-

gence of L∞-functions. We will also give several properties of the convergence. The main

properties are Theorem 4.17, Theorem 4.24 and Corollary 4.32.

Finally, we shall introduce several applications of this paper. In [24], we will give an

application of this section 4 to a study of harmonic functions with polynomial growth

on asymptotic cones of non-negatively Ricci curved manifolds having Euclidean volume

growth. For example, we will show that a space of harmonic functions on asymptotic

cones with polynomial growth of a fixed rate is a finite dimensional vector space. We can

regard it as asymptotic cones version of the conjecture [9, Conjecture 0.1] by Yau. More-

over, in [24], we will give “Laplacian comparison theorems on limit spaces of Riemannian

manifolds” by using several results given in section 4, and show a stability of lower bounds

on Ricci curavture with respect to the Gromov-Hausdorff topology as a corollary of them.

In [25], we will also give a geometric application by using several results in this section 4,

to limit spaces of Riemannian manifolds with Ricci curvature bounded below.
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2 Background

Our aim in this section is to give several notation, important notions and properties for

metric measure spaces and manifolds. For a positive number ϵ > 0 and real numbers a, b,

we use the following notations:

a = b± ϵ⇐⇒ |a− b| < ϵ.

We denote by Ψ(ϵ1, ϵ2, . . . , ϵk; c1, c2, . . . , cl) (more simply, Ψ) some positive function on

Rk
>0 ×Rl satisfying

lim
ϵ1,ϵ2,...,ϵk→0

Ψ(ϵ1, ϵ2, . . . , ϵk; c1, c2, . . . , cl) = 0

for each fixed real numbers c1, c2, . . . , cl. We often denote by C(c1, c2, . . . , cl) some positive

constant depending only on fixed real numbers c1, c2, . . . , cl.

2.1 Metric measure spaces

For a metric space Z, a point z ∈ Z and positive numbers r,R with r < R, we use the

following notations: Br(z) = {x ∈ Z; z, x < r}, Br(z) = {x ∈ Z; z, x ≤ r}, ∂Br(z) =

{x ∈ Z; z, x = r}. Here y, x is the distance between y and x, we often denote the distance

by dZ(y, x). For every subset A of Z, we also put Br(A) = {x ∈ Z;A,w < r} and

Br(A) = {x ∈ Z;A, x ≤ r}. For z ∈ Z, we define an 1-Lipschitz function rz on Z by

rz(w) = z, w. For a Lipschitz function f on Z and a point z ∈ Z which is not isolated in

Z, we put

lipf(z) = lim inf
r→0

(
sup

x∈Br(z)\{z}

|f(x)− f(z)|
x, z

)
,Lipf(z) = lim sup

r→0

(
sup

x∈Br(z)\{z}

|f(x)− f(z)|
x, z

)
.

If z is an isolated point in Z, then we put lipf(z) = Lipf(z) = 0. We also denote the

Lipschitz constant of f by Lipf . We remark that for every subset A of Z and every

Lipschitz function f on A, there exists a Lipschitz function f ∗ on Z such that f ∗|A = f

and Lipf ∗ = Lipf . See for instance (8.2) in [2].

We say that Z is proper if every bounded subset of Z is relatively compact. We

also say that Z is a geodesic space if for every x1, x2 ∈ Z, there exists an isometric

embedding γ from [0, x1, x2] to Z such that γ(0) = x1, γ(x1, x2) = x2. γ is called a

minimal geodesic from x1 to x2. For a proper geodesic space W and a point w in W , we

put Cw = {z ∈ W ;w, z + z, x > w, x for every x ∈ W \ {z}} (if W is a single point, then

we put Cw = ∅), and call it the cut locus of W at w.

For a proper metric space Z and a Radon measure υ on Z, we say that the pair (Z, υ)

is a metric measure space in this paper. For a metric measure space (Z, υ), a point z in
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Z and a nonnegative integer k, we say that υ is Ahlfors k-regular at z if there exist r > 0

and C ≥ 1 such that C−1 ≤ υ(Bt(z))/t
k ≤ C for every 0 < t < r. We shall introduce the

notion of υ-rectifiability for metric measure spaces by Cheeger-Colding. See [6, Definition

5.3] and [6, Theorem 5.7]. For metric spaces X1, X2, a positive number δ with δ < 1, and

a bijection map f from X1 to X2, we say that f is (1± δ)-bi-Lipschitz to X2 if f and f−1

are (1 + δ)-Lipschitz maps.

Definition 2.1 (Rectifiability for a Borel subset of metric measure spaces). For a

metric measure space (Z, υ) and a Borel subset A of Z, we say that A is υ-rectifiable if

there exist a positive integer m, a collection of Borel subsets {Ck,i}1≤k≤m,i∈N of A, and

a collection of bi-Lipschitz embedding maps {ϕk,i : Ck,i → Rk}k,i such that the following

properties hold:

1. υ(A \
∪

k,iCk,i) = 0

2. υ is Ahlfors k-regular at each x ∈ Ck,i.

3. For every k, x ∈
∪

i∈NCk,i and every 0 < δ < 1, there exists Ck,i such that x ∈ Ck,i

and that the map ϕk,i is (1± δ)-bi-Lipschitz to the image ϕk,i(Ck,i).

Remark 2.2. The third (1 ± δ)-bi-Lipschitz condition in the above definition is im-

portant. Actually, the existence of the canonical inner product of the cotangent bundle

of Ricci limit spaces follows from this property. See condition iii) of page 60 of [6] and

section 6 in [6].

2.2 Gromov-Hausdorff convergence

For compact metric spaces X1, X2, we denote the Gromov-Hausdorff distance between X1

and X2 by dGH(X1, X2). See [17] for the definition. On the other hand, for compact metric

spaces X1, X2, a positive number ϵ > 0 and a map ϕ from X1 to X2, we say that ϕ is an ϵ-

Gromov-Hausdorff approximation if X2 = Bϵ(Imageϕ) and |x, y−ϕ(x), ϕ(y)| < ϵ for every

x, y ∈ X1. For a sequence of compact metric spaces {Xi}1≤i≤∞, we say that Xi converges

to X∞ if dGH(Xi, X∞) converges to 0. Then we denote it by Xi → X∞. Similarly,

for pointed compact metric spaces (X1, x1), (X2, x2), we can define the pointed Gromov-

Hausdorff distance dGH((X1, x1), (X2, x2)). Moreover, for a sequence of pointed proper

geodesic spaces {(Zi, zi)}1≤i≤∞, we say that (Zi, zi) converges to (Z∞, z∞) if there exist

sequences {ϵi}i, {Ri}i of positive numbers, and {ϕi}i of Borel maps ϕi from (BRi
(zi), zi) to

(BRi
(z∞), z∞) such that ϵi → 0, Ri → ∞ as i→ ∞, BRi

(z∞) ⊂ Bϵi(Imageϕi) and |α, β −
ϕi(α), ϕi(β)| ≤ ϵi for every α, β ∈ BRi

(xi). We denote it by (Zi, zi)
(ϕ1,Ri,ϵi)→ (Z∞, z∞),

or more simply, (Zi, zi) → (Z∞, z∞). It is easy to check that (Zi, zi) → (Z∞, z∞) if and
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only if dGH((BR(zi), zi), (BR(z∞), z∞)) → 0 for every R > 0. For a sequence {xi}1≤i≤∞ of

points xi ∈ Zi, we say that xi converges to x∞ if xi ∈ BRi
(zi) and ϕi(xi), x∞ → 0. Then,

we denote it by xi → x∞.

Let (Zi, zi) → (Z∞, z∞). For a sequence {Ai}1≤i≤∞ of subsetsAi of Zi with supi zi, Ai <

∞, we say that Ai is included by A∞ asymptotically if for every ϵ > 0, there exists i0

such that ϕi(Ai) ⊂ Bϵ(A∞) for every i ≥ i0. Then we denote it by lim supGH
i→∞Ai ⊂ A∞

(if A∞ = ∅, then lim supGH
i→∞Ai ⊂ A∞ implies Ai = ∅ for every sufficiently large i).

Similarly, we also say that A∞ is included by Ai asymptotically if for every ϵ > 0,

there exists i0 such that A∞ ⊂ Bϵ(ϕi(Ai)) for every i ≥ i0. Then we denote it by

A∞ ⊂ lim infGH
i→∞Ai. Let C∞ ⊂ lim infGH

i→∞Ci. For a sequence {fi}1≤i≤∞ of Lipschitz

functions fi on Ci with supi Lip fi < ∞, we say that f∞ is a restriction of fi asymptoti-

cally if limi→∞ fn(i)(wn(i)) = f∞(w) for every w ∈ C∞, every subsequence {n(i)}i ofN, and

every wn(i) ∈ Cn(i) with ϕn(i)(wn(i)), w → 0. Let lim supi→∞Di ⊂ D∞ and assume thatD∞

is compact. For a sequence {gi}1≤i≤∞ of Lipschitz function gi on Di with supi Lip gi <∞,

we say that g∞ is an extension of gi asymptotically if limi→∞ gn(i)(wn(i)) = g∞(w) for every

w ∈ D∞, every subsequence {n(i)}i of N, and every wn(i) ∈ Dn(i) with ϕn(i)(wn(i)), w → 0.

For a sequence {Ki}1≤i≤∞ of compact subsets Ki of Zi, we say that (Zi, zi, Ki) con-

verges to (Z∞, z∞, K∞) if lim supGH
i→∞Ki ⊂ K∞ and K∞ ⊂ lim infGH

i→∞Ki hold. Then we

denote it by (Zi, zi, Ki)
(ϕi,Ri,ϵi)→ (Z∞, z∞, K∞), or more simply, (Zi, zi, Ki) → (Z∞, z∞, K∞),

or Ki → K∞.

Let (Zi, zi, Ki) → (Z∞, z∞, K∞). For sequences {f 1
i }1≤i≤∞, . . . , {fk

i }1≤i≤∞ of Lipschitz

functions f l
i on Ki with supi,l(Lipf

l
i + |f l

i |L∞) < ∞, we say that (Zi, zi, Ki, f
1
i , . . . , f

k
i )

converges to (Z∞, z∞, K∞, f
1
∞, . . . , f

k
∞) if f l

∞ is an extension of {f l
i}i asymptotically for

every l. We denote it by (Zi, zi, Ki, f
1
i , . . . , f

k
i ) → (Z∞, z∞, K∞, f

1
∞, . . . , f

k
∞), or more

simply, f l
i → f l

∞ for every l. Then it is easy to check that limi→∞ |f l
i − f l

∞ ◦ϕi|L∞(Ki) = 0.

It is not difficult to check the following proposition:

Proposition 2.3. Let {(Zi, zi)}1≤i≤∞ be a sequence of pointed proper geodesic spaces,

Λ a set and {Aλ
i }λ∈Λ a collection of bounded subsets of Zi for every 1 ≤ i ≤ ∞. As-

sume that (Zi, zi) converges to (Z∞, z∞), Aλ
∞ is compact for every λ ∈ Λ and that

lim supGH
i→∞Aλ

i ⊂ Aλ
∞ for every λ ∈ Λ. Then, we have lim supGH

i→∞
∩

λ∈ΛA
λ
i ⊂

∩
λ∈ΛA

λ
∞

and lim supGH
i→∞(Ai \ Br(xi)) ⊂ A∞ \ Br(x∞) for every r > 0 and every sequence {xi}i of

points xi in Zi with xi → x∞.

We shall recall a fundamental covering lemma for proper metric spaces. See chapter

1 in [38] for the proof.

Proposition 2.4. Let X be a proper metric space, A a subset of X, Λ a set, {xλ}λ∈Λ
a collection of points in X and {rλ}λ∈Λ a collection of positive numbers. Assume that for
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every x ∈ A and every ϵ > 0, there exists λ ∈ Λ such that x ∈ Brλ(xλ) and diamBrλ(xλ) <

ϵ. Then, there exists a countable subset Λ1 of Λ such that the following properties hold:

1. {Brλ1
(xλ1)}λ1∈Λ1 are pairwise disjoint collection.

2. We have

A \
∪

λ2∈Λ2

Brλ2
(xλ2) ⊂

∪
λ∈Λ1\Λ2

B5rλ(xλ)

for every finite subset Λ2 of Λ1.

We shall recall the definition of measured Gromov-Hausdorff convergence. Let (Zi, zi) →
(Z∞, z∞). For a sequence {υi}1≤i≤∞ of Radon measures υi on Zi, we say that (Zi, zi, υi)

converges to (Z∞, z∞, υ∞) with respect to the measured Gromov-Hausdorff topology if

limi→∞ υi(Br(xi)) = υ∞(Br(x∞)) for every r > 0 and every sequence {xi}i of points

xi in Zi with xi → x∞. Then we denote it by (Zi, zi, υi) → (Z∞, z∞, υ∞). The next

proposition is used many times in this paper. We skip the proof because it is not difficult

to check it by using Proposition 2.4.

Proposition 2.5. Let {(Zi, zi, υi)}1≤i≤∞ be a sequence of pointed proper geodesic

spaces with Radon measures, and {Ai}1≤i≤∞ a sequence of Borel subsets Ai of Zi. Assume

that υi(B1(zi)) = 1, A∞ is compact, (Zi, zi, υi) → (Z∞, z∞, υ∞), lim supGH
i→∞Ai ⊂ A∞ and

that for every R > 0 there exists κ = κ(R) ≥ 1 such that υi(B2r(xi)) ≤ 2κυi(Br(xi)) for

every 0 < r < R, every 1 ≤ i ≤ ∞ and every xi ∈ Zi. Then we have

lim sup
i→∞

υi(Ai) ≤ υ∞(A∞).

We shall give a proof of the following proposition:

Proposition 2.6. Let {(Zi, zi, υi)}1≤i≤∞ be a sequence of pointed proper geodesic

spaces with Radon measures. Assume that υi(B1(zi)) = 1 for every i, diamZ∞ > 0,

(Zi, zi, υi)
(ϕi,Ri,ϵi)→ (Z∞, z∞, υ∞), and that for every R > 0, there exists κ = κ(R) ≥ 1 such

that υi(B2r(xi)) ≤ 2κυi(Br(xi)) for every 0 < r < R, every 1 ≤ i ≤ ∞ and every xi ∈ Zi.

Then, we have

lim
i→∞

sup
xi∈BR(zi),0<r<R

|υi(Br(xi))− υ∞(Br(ϕi(xi)))| = 0

for every R ≥ 1.

Proof. It is easy to check that radZ∞ > 0. Here radX = infx2∈X(supx1∈X x1, x2)

for a metric space X. Put κ = κ(100R). Let τ > 0 with τ << radZ∞. Then, there

exists N such that for every N ≤ i ≤ ∞ and every w ∈ Zi, there exists ŵ ∈ Zi such
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that w, ŵ = τ . Since Bδ(w) ⊂ Bτ+δ(ŵ) \ Bτ−δ(ŵ) for every 0 < δ < τ , by [10, Lemma

3.3], there exists τ̂ << τ such that υi(Bt(w)) ≤ Ψ(t;κ,R)υi(B10τ (w)) for every N ≤
i ≤ ∞, every w ∈ Zi and every 0 < t < τ̂ . Fix ϵ > 0. Then, there exist N1 ∈ N

and 0 < r1 << min{R, τ̂ , ϵ, 1} such that υi(Bs(z)) ≤ ϵ for every N1 ≤ i ≤ ∞, every

0 < s < r1 and every z ∈ BR(zi). Let {xj}1≤j≤l ⊂ BR(z∞) and {tj}1≤j≤l̂ ⊂ [0, R]

satisfying that BR(z∞) ⊂
∪l

j=1Bϵr1(xj) and [0, R] ⊂
∪l̂

j=1Bϵr1(tj). Let xj(i) ∈ BR(zi)

with xj(i) → xj. There exists N2 ≥ N1 such that |υi(Btĵ
(xj(i))) − υ∞(Btĵ

(xj))| < ϵ

for every i ≥ N2, every 1 ≤ j ≤ l and every 1 ≤ ĵ ≤ l̂. Fix z ∈ BR(z∞) and s ∈
[r1, R]. Let j ∈ {1, . . . , l} and ĵ ∈ {1, . . . , l̂} satisfying that z, xj < ϵr1 and |s − tĵ| <
ϵr1. Then, by [10, Lemma 3.3], we have |υ∞(Bs(z)) − υ∞(Btĵ

(xj))| ≤ υ∞(Bs+5ϵr1(z)) −
υ∞(Bs−5ϵr1(z)) ≤ Ψ(ϵ;κ,R, τ)υ∞(BR(z∞)) On the other hand, for a sequence {z(i)}i of
points z(i) in BR(zi) with z(i) → z, |υi(Bs(z(i)))− υi(Btĵ

(xj(i)))| ≤ υi(Bs+10ϵr1(z(i)))−
υi(Bs−10ϵr1(z(i))) ≤ Ψ(ϵ;κ,R, τ)υi(BR(zi)) ≤ Ψ(ϵ;κ,R, τ)υ∞(BR(z∞)) for every i ≥ N2.

Thus, we have |υi(Bs(z(i))) − υ∞(Bs(z))| < Ψ(ϵ;κ,R, τ)υ∞(BR(z∞)) for every i ≥ N2.

Therefore, we have the assertion.

2.3 Riemannian manifolds and their limit spaces

For a real number K and a pointed proper geodesic space (Y, y), in this paper, we say

that (Y, y) is a (n,K)-Ricci limit space if there exist sequences of real numbers {Ki}i,
and of pointed n-dimensional complete Riemannian manifolds {(Mi,mi)}i with RicMi

≥
Ki(n − 1) such that Ki → K and (Mi,mi) → (Y, y). Similarly, for a pointed proper

geodesic space with Radon measure (Y, y, υ), we also say that (Y, y, υ) is a (n,K)-Ricci

limit space (of {(Mi,mi, vol)}i) if (Mi,mi, vol) → (Y, y, υ) as above. More simply, for a

(n,−1)-Ricci limit space (Y, y) (or (Y, y, υ)), we say that (Y, y) is a Ricci limit space. See

for instance section 4.1 in [34]. We shall fix a Ricci limit space (Y, y, υ) in this subsection

and give a very short review of structure theory of Ricci limit spaces developed by Cheeger-

Colding, below. See [4, 5, 6] for the details.

For pointed proper geodesic spaces (Z, z) and (X, x), we say that (Z, z) is a tangent

cone of X at x if there exists a sequence of positive numbers {ri}i such that ri → 0

and (X, x, r−1
i dX) → (Z, z). For k ≥ 1, we put Rk(Y ) = {x ∈ Y ; All tangent cones

at x are isometric to Rk} and call it the k-dimensional regular set. More simply, we

shall denote it by Rk. We also put R =
∪

1≤k≤n Rk and call it the regular set. Then we

have υ(Y \ R) = 0. See [4, Theorem 2.1] for the proof. For δ, r > 0 and 0 < α < 1,

we put (Rk)δ,r = {x ∈ Y ; dGH((Bs(x), x), (Bs(0k), 0k)) ≤ δs for every 0 < s ≤ r} and

(Rk;α)r = {x ∈ Y ; dGH((Bs(x), x), (Bs(0k), 0k)) ≤ s1+α for every 0 < s ≤ r}. Here

0k ∈ Rk. We remark that (Rk)δ,r and (Rk;α)r are closed,
∩

δ>0

(∪
r>0(Rk)δ,r

)
= Rk. We

also put Rk;α =
∪

r>0(Rk;α)r. By [4, Theorem 3.23] and [4, Theorem 4.6], there exists
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0 < α(n) < 1 such that υ(Rk \Rk;α(n)) = 0 and that υ is Ahlfors k-regular at every point

in Rk;α(n) for every k.

On the other hand, it is known that Y is υ-rectifiable. See [6, Theorem 5.5] and [6,

Theorem 5.7]. Thus, by section 6 in [6] or section 4 in [2], the cotangent bundle T ∗Y of

Y exists. We will give several fundamental properties of the cotangent bundle only:

1. T ∗Y is a topological space.

2. There exists a Borel map π : T ∗Y → Y such that υ(Y \ π(T ∗Y )) = 0.

3. π−1(w) is a finite dimensional real vector space with canonical inner product ⟨·, ·⟩(w)
for every w ∈ π(T ∗Y ).

4. For every open subset U of Y and every Lipschitz function f on U , there exist a

Borel subset V of U , and a Borel map df (called the differential section of f or the

differential of f) from V to T ∗Y such that υ(U \ V ) = 0 and that π ◦ df(w) = w,

|df |(w) = Lipf(w) = lipf(w) for every w ∈ V , where |v|(w) =
√
⟨v, v⟩(w).

We call {⟨·, ·⟩(w)}w∈π(T ∗Y ) the Riemannian metric of Y and denote it by ⟨·, ·⟩. Finally,

we remark that υ(Cx) = 0 for every x ∈ Y . See [22, Theorem 3.2]. These results above

are used in section 3, essentially.

3 Rectifiability on limit spaces

In this section, we shall study a rectifiability of Ricci limit spaces. These results given in

this section are used in section 4, essentially.

3.1 Radial rectifiability

The main result in this subsection is Theorem 3.16.

Lemma 3.1. Let Z be a proper geodesic space, z a point in Z, s, δ positive numbers,

υ a Radon measure on Z and F a nonnegative valued Borel function on Bs(m). Assume

that
1

υ(Bs(z))

∫
Bs(z)

Fdυ ≤ δ

and that there exists κ ≥ 1 such that 0 < υ(B2t(w)) ≤ 2κυ(Bt(w)) for every w ∈ Bs(z)

and every 0 < t ≤ s. Then, there exists a compact subset K of Bs/102(z) such that

υ(K)/υ(Bs/102(z)) ≥ 1−Ψ(δ;κ) and

1

υ(Bt(x))

∫
Bt(x)

Fdυ ≤ Ψ(δ;κ)

9



for every x ∈ K and every 0 < t ≤ s/102.

Proof. Without loss of generality, we can assume that F is a nonnegative valued

Borel function on Z by defining F ≡ 0 on Z \ Bs(z). Fix C > 0 and put A1(C) =

{w ∈ Bs(z);
∫
Bs/102 (w)

Fdυ ≥ Cυ(Bs/102(w))}. Let {x1j}1≤j≤k1 be an s/10-maximal sep-

arated subset of A1(C). Put A2(C) = {w ∈ Bs(m) \
∪k1

i=1Bs(x
1
i );
∫
Bs/103 (w)

Fdυ ≥
Cυ(Bs/103(w))}. Let {x2j}1≤j≤k2 be an s/10

2-maximal separated subset of A2(C). By iter-

ating this argument, putAl(C) = {w ∈ Bs(m)\
∪

1≤j≤l−1, 1≤i≤kj
Bs/10l−2(xl−1

i );
∫
B

s/10l+1 (w)
Fdυ ≥

Cυ(Bs/10l+1(w))}. Let {xlj}1≤j≤kl be an s/10l-maximal separated subset of Al(C).

Claim 3.2. The collection {Bs/10l+1(xli)}i,l are pairwise disjoint.

Let w ∈ Bs/10l̂+1(xl̂î) ∩Bs/10l+1(xli). Assume that l < l̂. Then, by the construction, we

have xl̂
î
∈M \

∪kl
j=1Bs/10l−1(xlj). Especially, we have x

l̂
î
, xli ≥ s/10l−1. Therefore, we have

Bs/10l̂+1(xl̂î) ∩ Bs/10l+1(xli) = ∅. This is a contradiction. Therefore, we have l = l̂. By the

definition, we have i = î. Thus, we have Claim 3.2.

It is easy to check the following claim:

Claim 3.3. We have
∪

i∈NAi(C) ⊂
∪

l∈N,1≤i≤kl
Bs/10l−2(xli)

We have∑
l∈N,1≤i≤kl

∫
B s

10l+1
(xl

i)

Fdυ ≥ C
∑

l∈N,1≤i≤kl

υ(B s

10l+1
(xli))

≥ CC(κ)
∑

l∈N,1≤i≤kl

υ(B s

10l−2
(xli)) ≥ CC(κ)υ

( ∪
l∈N,1≤i≤kl

B s

10l−2
(xli)

)
.

On the other hand, we have∑
l∈N,1≤i≤kl

∫
B s

10l+1
(xl

i)

Fdυ =

∫
∪

l∈N,1≤i≤kl
B s

10l+1
(xl

i)

Fdυ ≤
∫
Bs(z)

Fdυ ≤ C(κ)υ(Bs(z))δ.

Therefore, we have

υ
(∪

l∈N,1≤i≤kl
B s

10l−2
(xli)

)
υ(Bs(m))

≤ δ

C
C(κ).

By letting C =
√
δ and K = Bs/102(z) \

∪
l∈N,1≤i≤kl

B s

10l−2
(xli), we have the assertion.

Let (Y, y) be a Ricci limit space, k an integer with k ≤ n, and r, δ positive numbers

with r < 1, δ < 1. Let (Rk)
y
δ,r be the set of points w in Y satisfying that for every

0 < s ≤ r, there exists a map Φ from Bs(w) to Rk such that π1 ◦ Φ = ry and that Φ

is an δs-Gromov-Hausdorff approximation to Bs(Φ(w)) Here, π1 is the projection from

Rk = R×Rk−1 to R defined by π1(x1, . . . , xk) = x1.

10



Lemma 3.4. We have

∩
δ>0

(∪
r>0

(
(Rk)

x
δ,r \ Cx

))
= Rk \ Cx.

Proof. It is easy to check that

∩
δ>0

(∪
r>0

(
(Rk)

x
δ,r \ Cx

))
⊂ Rk \ Cx.

Let w ∈ Rk \ Cx. For every δ > 0, there exists r > 0 such that for every 0 < s < r, there

exists an δs-Gromov-Hausdorff approximation from (Bs(0k), 0k) to (Bs(w), w). Here,

0k ∈ Rk. On the other hand, by the splitting theorem on limit spaces [2, Theorem 9.27],

there exist a pointed proper geodesic space (Ws, ws) and a map Φ̂ from (Bs(w), w) to

(Bs(0, ws), (0, ws)) such that πR ◦ Φ̂ = rx − x,w and that Φ̂ is an δs-Gromov-Hausdorff

approximation. Here, Bs(0, ws) ⊂ R ×Ws with the product metric
√
d2R + d2Ws

, πR is

the projection from R ×Ws to R. By rescaling s−1dRk and [21, Claim 4.4], there exists

an Ψ(δ;n)s-Gromov-Hausdorff approximation f from (Bs(ws), ws) to (Bs(0k−1), 0k−1).

Define a map g from Bs(w) to Rk by g(z) = (x, z, f ◦ Φ̂). Let πs be the canonical

retraction from Rk to Bs(g(w)). Put ĝ = πs ◦ g. Then, it is easy to check that ĝ is an

Ψ(δ;n)s-Gromov-Hausdorff approximation to (Bs(ĝ(w)), g(w)). Since δ is arbitrary, we

have the assertion.

Put Dτ
x = {w ∈ X; There exists α ∈ X such that α,w ≥ τ and x,w + w,α = x, α}

for a proper geodesic space X, a point x ∈ X and a positive number τ > 0. It is

easy to check that Dτ
x is closed. By the definition, we have

∪
τ>0Dτ

x = X \ Cx. Let

LebA = {a ∈ A; limr→0 υ(Br(a) ∩ A)/υ(Br(a)) = 1} for a metric measure space (X, υ)

and a Borel subset A of X.

We shall give a fundamental result about rectifiability of limit spaces by distance func-

tions. The essential idea of the proof is to replace harmonic functions giving rectifiability

in [6, Theorem 3.26] with suitable distance functions via the Poincaré inequality.

Lemma 3.5. Let (Y, y, υ) be a Ricci limit space, k a positive integer satisfying k ≤ n,

δ, r positive numbers satisfying δ < 1, r < 1, x a point in Y and w a point in (Rk)
x
δ,r ∩

Leb((Rk)δ,r) \ (Cx ∪ {x}). Then, there exists η(w) > 0 such that the following property

holds: For every 0 < s ≤ η(w), there exist a compact subset L of Bs(w) ∩ (Rk)δ,r and a

collection of points {xj}2≤j≤k in Y such that υ(L)/υ(Bs(w)) ≥ 1 − Ψ(δ;n) and that the

map Φ = (rx, rx2 , . . . , rxk
) from L to Rk, is an (1±Ψ(δ;n))-bi-Lipschitz equivalent to the

image Φ(L).
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Proof. There exists 0 < τ < r such that w ∈ Dτ
x\Bτ (x) and υ(Bs(w)∩(Rk)δ,r)/υ(Bs(w)) ≥

1− δ for every 0 < s < τ . Let (Mi,mi, vol) → (Y, y, υ), and let {xi}i, {wi}i be sequences

of points xi, wi in Mi satisfying that wi → w and xi → x. Fix 0 < s << min{δ, τ}.
Then, for every sufficiently large i, there exists an δs-Gromov-Hausdorff approximation

Φi = (Φi
1, . . . ,Φ

i
k) from (Bs(wi), wi) to (Bs(0k), 0k) such that Φi

1 = rxi
− rxi

(wi). Put

s0 =
√
δs. For convenience, we shall use the following notations for rescaled metrics

s−1
0 dMi

, s−1
0 dY : v̂ol = vols

−1
0 dMi , r̂w(α) = s−1

0 rw(α), B̂t(α) = B
s−1
0 dMi

t (α) = Bs0t(α),

υ̂ = υ/υ(Bs0(y)), ĝ = s−1
0 g for a Lipschitz function g and so on. We also denote the

differential section of g as rescaled manifolds (Mi, s
−1
0 dMi

) by d̂g : Mi → T ∗Mi and

denote the Riemannian metric of (Mi, s
−1
0 dMi

) by ⟨·, ·⟩s0 = s−2
0 ⟨·, ·⟩. We remark that

(Mi,mi, s
−1
0 dMi

, vols
−1
0 dMi ) → (Y, y, s−1

0 dY , υ̂). The following claim follows from the proof

of the splitting theorem on limit spaces (see for instance [2, Lemma 9.8], [2, Lemma 9.10]

and [2, Lemma 9.13]).

Claim 3.6. For every sufficiently large i, there exist collections of harmonic func-

tions {b̂i
j}1≤j≤k on B̂1002(wi), and of points {xij}2≤j≤k in B̂√

δ
−1(wi) such that |b̂i

j −
r̂xi

j
|L∞(B̂1002 (wi))

≤ Ψ(δ;n),

1

v̂ol B̂1002(wi)

∫
B̂1002 (wi)

(
|d̂b̂i

j − d̂r̂xi
j
|2s0 + |Hessb̂i

j
|2s0
)
dv̂ol ≤ Ψ(δ;n),

and
1

v̂ol B̂1002(wi)

∫
B̂1002 (wi)

|⟨d̂b̂i
j, b̂

i
l⟩s0 |dv̂ol = δjl ±Ψ(δ;n)

for every 1 ≤ j ≤ l ≤ k, where x = xi1 for every i.

Define a nonnegative valued Borel function Fi on B̂1002(wi) by

Fi =
k∑

l=1

L̂ip(b̂i
l − r̂xi

l
)2 +

∑
l ̸=j

|⟨d̂b̂i
l, d̂b̂

i
j⟩s0|+

k∑
l=1

|Hessb̂i
l
|2s0 .

By Lemma 3.1, for every sufficiently large i, there exists a compact subset Ki of B̂100(wi)

such that v̂olKi/v̂ol B̂100(wi) ≥ 1−Ψ(δ;n) and

1

v̂ol B̂t(α)

∫
B̂t(α)

Fidv̂ol ≤ Ψ(δ;n)

for every α ∈ Ki and every 0 < t < 100.

Claim 3.7. For every sufficiently large i, every α ∈ Ki ∩ B̂50(wi), every 1 ≤ j ≤ k,

and every 0 < t < 50, there exists a constant Ci
j such that b̂i

j = r̂xi
j
+ Ci

j ± Ψ(δ;n)t on

B̂t(α).
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The proof is as follows. By the Poincaré inequality, we have

1

v̂ol B̂t(α)

∫
B̂t(α)

∣∣∣∣∣(b̂i
j − r̂xi

j
)− 1

v̂ol B̂t(α)

∫
B̂t(α)

(b̂i
j − r̂xi

j
)dv̂ol

∣∣∣∣∣ dv̂ol
≤ tC(n)

√
1

v̂ol B̂t(α)

∫
B̂t(α)

(L̂ip(b̂i
1 − r̂xi

))2dv̂ol

≤ tΨ(δ;n).

For C > 0, let Aj(C) be the set of points β ∈ B̂t(α) satisfying that∣∣∣∣∣(b̂i
j(β)− r̂xi

j
(β))− 1

v̂ol B̂t(α)

∫
B̂t(α)

(b̂i
j − r̂xi

j
)dv̂ol

∣∣∣∣∣ ≥ C.

Then, we have

Ψ(δ;n)t ≥ 1

v̂ol B̂t(α)

∫
B̂t(α)

∣∣∣∣∣(b̂i
j − r̂xi

j
)− 1

v̂ol B̂t(α)

∫
B̂t(α)

(b̂i
j − r̂xi

j
)dv̂ol

∣∣∣∣∣ dv̂ol ≥ C
v̂olAj(C)

v̂ol B̂t(α)
.

Put C =
√
Ψ(δ;n)t for Ψ(δ;n) as above. Then we have v̂olAj(C)/v̂ol B̂t(α) ≤

√
Ψ(δ;n).

Assume that there exist β ∈ B̂t(α) and ϵ > 0 such that B̂ϵt(β) ⊂ Aj(C). Then, by

Bishop-Gromov volume comparison theorem, we have C(n)ϵn ≤ v̂olBϵt(β)/v̂ol B̂t(α) ≤

v̂olAj(C)/v̂ol B̂t(α) ≤
√

Ψ(δ;n). Therefore, by letting ϵ =
(
2C(n)−1

√
Ψ(δ;n)

)1/n
, we

have a contradiction.

Put ϵ =
(
2C(n)−1

√
Ψ(δ;n)

)1/n
. Let β ∈ B̂t(α) and β̂ ∈ B̂(1−ϵ)t(α) with r̂β(β̂) < ϵt.

Then, there exists γ ∈ B̂ϵt(β̂) \ Aj(C). Especially, we have γ ∈ B̂t(α). By the definition

of Aj(C), we have

b̂i
j(γ) = r̂xi

j
(γ) +

1

v̂ol B̂100(α)

∫
B̂100(α)

(b̂i
j − r̂xi

j
)dv̂ol±

√
Ψ(δ;n)t.

By Cheng-Yau’s gradient estimate (see [7]), we have |∇̂b̂i
j|s0 ≤ C(n). Thus, we have

b̂i
j(β) = r̂xi

j
(β) +

1

v̂ol B̂100(α)

∫
B̂100(α)

(b̂i
j − r̂xi

j
)dv̂ol±Ψ(ϵ;n)t.

Therefore we have Claim 3.7.

By an argument similar to the proof of [6, Theorem 3.3], we have the following:

Claim 3.8. For every sufficiently large i, every α ∈ Ki ∩ B̂50(wi) and every 0 < t ≤
10−5, there exist a compact subset Zt of Mi, a point zt in Zt and a map ϕ from (B̂t(α), α)

to (B̂t(zt), zt) such that the map Φ = (b̂i
1, . . . , b̂

i
k, ϕ) from B̂t(α) to B̂t+Ψ(δ;n)t(Φ(α)) ⊂(

Rk × Zt,
√
d2
Rk + (s0−1dMi

)2
)
, is an Ψ(δ;n)t-Gromov-Hausdorff approximation.
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Put K̂i = Ki∩ B̂40(wi). Then, we have v̂olKi/v̂ol B̂40(wi) ≥ 1−Ψ(δ;n). By Gromov’s

compactness theorem, without loss of generality, we can assume that there exist a compact

subset K∞ of B̂40(w) and a collection {x∞j }2≤j≤k of points in Y such that xij → x∞j and

Ki → K∞. By Proposition 2.5, we have υ̂(K∞)/υ̂(B̂40(w)) ≥ 1 − Ψ(δ;n). On the other

hand, by Claim 3.7 and 3.8, for every α ∈ K∞ and every 0 < t ≤ 10−5, there exist a

compact metric space Z∞, a point z∞ in Z∞, and a map ϕ from (B̂t(α), α) to (Bt(z∞), z∞)

such that the map ϕ̂ = (r̂x, r̂x∞
2
, . . . , r̂x∞

k
, ϕ) from B̂t(α) to B̂t+Ψ(δ;n)t(ϕ̂(α)), is an Ψ(δ;n)t-

Gromov-Hausdorff approximation. Put K̂∞ = K∞∩ (Rk)δ,r ∩B10−10s0(w). Then, we have

υ(K̂∞)/υ(B10−10s0(w)) ≥ 1 − Ψ(δ;n). On the other hand, for every α ∈ K̂∞ and every

0 < t ≤ 10−5, let ϕ, Z∞, z∞ as above. Then, since α ∈ (Rk)δ,r, we have diamZ∞ ≤
Ψ(δ;n)t. Especially, the map f = (r̂x, r̂x∞

2
, . . . , r̂x∞

k
) from B̂t(α) to Bt+Ψ(δ;n)t(f(α)), is an

Ψ(δ;n)t-Gromov-Hausdorff approximation. Especially, for every α, β ∈ K̂∞ with α ̸= β,

by letting t = r̂α(β)(≤ 10−5), we have√√√√(x, αs−1
0 dY − x, β

s−1
0 dY

)2 +
k∑

l=2

(x∞l , α
s−1
0 dY − x∞l , β

s−1
0 dY

)2 = α, β
s−1
0 dY ±Ψ(δ;n)t

= (1±Ψ(δ;n))α, β
s−1
0 dY

.

Therefore, we have the assertion.

Lemma 3.9. Let (Y, y, υ) be a Ricci limit space and x a point in Y . Then, there exist

collections of compact subsets {Cx
k,i}1≤k≤n,i∈N of Y , and of points {xlk,i}2≤l≤k≤n,i∈N in Y

such that the following properties hold:

1.
∪

i∈NC
x
k,i ⊂ Rk and υ(Rk \

∪
i∈NC

x
k,i) = 0 for every k.

2. For every z ∈
∪

i∈NC
x
k,i and every 0 < δ < 1, there exists Cx

k,i such that z ∈ Cx
k,i

and that the map Φx
k,i = (rx, rx2

k,i
, . . . , rxk

k,i
) from Cx

k,i to Rk, is (1 ± δ)-bi-Lipschitz

to the image Φx
k,i(C

x
k,i).

Proof. Put

Ak =
∩

m1∈N

( ∪
m2∈N

(
(Rk)

x
1/m1,1/m2

∩ Leb((Rk)1/m1,1/m2) \ (Cx ∪ {x})
))

.

Claim 3.10. We have Ak ⊂ Rk and υ(Rk \ Ak) = 0.

The proof is as follows. Put

Bk =
∩

m1∈N

( ∪
m2∈N

(
(Rk)

x
1/m1,1/m2

∩ (Rk)1/m1,1/m2 \ (Cx ∪ {x})
))

.
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Then we have Ak ⊂ Bk and υ(Bk \ Ak) = 0. On the other hand, by Lemma 3.4, we have

Bk = Rk \ (Cx ∪ {x}). Since υ(Cx) = 0, we have Claim 3.10.

For every z ∈ Ak and every N ∈ N, there exists m2 = m2(z,N) such that z ∈
(Rk)

x
1/N,1/m2

∩ Leb((Rk)1/N,1/m2) \ (Cx ∪ {x}). By Lemma 3.5, there exists η(z,N) > 0

such that for every 0 < s ≤ η(z,N), there exist a compact subset L(z, s,N) of Bs(z) ∩
(Rk)1/N,1/m2 and a collection of points {xj(z, s,N)}1≤j≤k in Y such that υ(L(z, s,N))/υ(Bs(z)) ≥
1 − Ψ(N−1;n) and that the map Φz,s,N = (rx, rx2(z,s,N) . . . , rxk(z,s,N)) from L(z, s,N) to

Rk, is (1±Ψ(N−1;n))-bi-Lipschitz to the image. Fix R > 1 and N ∈ N. By Lemma 2.4,

there exists a pairwise disjoint collection {BsN.R
i

(zN,R
i )}i∈N such that zN,R

i ∈ Ak ∩BR(y),

0 < sN,R
i ≤ η(zN,R

i , N)/100 and Ak ∩BR(y) \
∪m

i=1BsN,R
i

(zN,R
i ) ⊂

∪∞
i=m+1B5sN,R

i
(zN,R

i ) for

every m. Put L̂(i, N,R) = L(zN,R
i , 5sN,R

i , N) ∩ Ak ∩BR(y) ⊂ Ak ∩BR(y).

Claim 3.11. υ
(
Ak ∩BR(y) \

∪
N≥N0,i∈N L̂(i, N,R)

)
= 0 for every N0 ∈ N.

Because we have

υ

(
Ak ∩BR(y) \

∪
i∈N

L̂(i, N,R)

)

≤ υ

(∪
i∈N

(
B5sN,R

i
(zN,R

i ) ∩ Ak ∩BR(y)
)
\
∪
i∈N

(
L(zN,R

i , 5sN,R
i , N) ∩ Ak ∩BR(y)

))
≤
∑
i∈N

υ
(
B5sN,R

i
(zN,R

i ) \ L(zN,R
i , 5sN,R

i , N)
)

≤ Ψ(N−1;n)
∑
i∈N

υ(B5sN,R
i

(zN,R
i )) ≤ Ψ(N−1;n)

∑
i∈N

υ(BsN,R
i

(zN,R
i )) ≤ Ψ(N−1;n)υ(B2R(y)).

for every N ≥ N0. Therefore, by letting N → ∞, we have Claim 3.11.

By Claim 3.11, we have υ
(
Ak ∩BR(y) \

∩
N0

(∪
N≥N0,i∈N L̂(i, N,R)

))
= 0. Put

E(i, N,R) = L̂(i, N,R)∩
∩

N0∈N

(∪
N≥N0,j∈N L̂(j,N,R)

)
. Then, we have υ

(
Ak ∩BR(y) \∪

i,N∈NE(i, N,R)
)
= 0. Fix z ∈

∪
i,N∈NE(i, N,R) and 0 < δ < 1. Then there ex-

ist i, N such that z ∈ E(i, N,R). Let N0 ∈ N with N−1
0 << δ. Then there ex-

ist N̂ ≥ N0 and î ∈ N such that z ∈ L̂(̂i, N̂ , R). By the definition, the map ϕ =

(rx, rx2

(
zN̂,R

î
,sN̂,R

î

), . . . , r
xk

(
zN̂,R

î
,sN̂,R

î

)) from L(zN̂,R

î
, sN̂,R

î
, N̂) toRk, is Ψ(N−1, n)-bi-Lipschitz

to the image. Especially, the map is (1 ± δ)-bi-Lipschitz to the image. We remark

that L̂(̂i, N̂ , R) ⊂ L(zN̂,R

î
, sN̂,R

î
, N̂) and z ∈ L̂(̂i, N̂ , R) ∩

∩
l∈N

(∪
j≥l,p∈N L̂(p, j, R)

)
=

E (̂i, N̂ , R). Therefore, by letting xj(i, N,R) = xj(z
N,R
i , sN,R

i , R) for every 2 ≤ j ≤ k, we

have the following claim:
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Claim 3.12. For every z ∈
∪

i,N∈NE(i, N,R) and every 0 < δ < 1, there exists

E(i, N,R) such that z ∈ E(i, N,R) and that the map ϕ = (rx, rx2(i,N,R), . . . , rxk(i,N,R))

from E(i, N,R) to Rk, is (1± δ)-bi-Lipschitz to the image.

By Claim 3.12, it is easy to check the assertion.

Lemma 3.13. With the same notaion as in Lemma 3.9, for every k, i, let {Fx
k,i,j}j∈N

be a collection of Borel subsets of Cx
k,i with υ

(
Cx

k,i \
∪

j∈NFx
k,i,j

)
= 0. Then, there exists

a collection of Borel subsets {Ex
k,i,j}k,i,j of Y such that Ex

k,i,j ⊂ Fx
k,i,j, υ(Fx

k,i,j \ Ex
k,i,j) = 0

and that for every k, every z ∈
∪

i,j∈N Ex
k,i,j and every 0 < δ < 1, there exists Ex

k,i,j

such that z ∈ Ex
k,i,j and that the map Φx

k,i,j = (rx, rx2
k,i
, . . . , rxk

k,i
) from Ex

k,i,j to Rk, is

(1± δ)-bi-Lipschitz to the image.

Proof. Fix 1 ≤ k ≤ n. For every M ∈ N, put BM = {i ∈ N; The map ϕ =

(rx, rx2
k,i
, . . . , rxk

k,i
) from Cx

k,i to Rk, is (1±M−1)-bi-Lipschitz to the image } and Ex
k,i,j =

Fx
k,i,j ∩

∩
M∈N

(∪
i∈BM ,j∈N Fx

k,i,j

)
.

Claim 3.14. υ(Fx
k,i,j \ Ex

k,i,j) = 0.

The proof is as follows. By Lemma 3.9, we have
∪

i∈NC
x
k,i ⊂

∩
M∈N

(∪
i∈BM

Cx
k,i

)
. On

the other hand, it is easy to check that
∩

M∈N
(∪

i∈BM
Cx

k,i

)
⊂
∪

i∈NC
x
k,i. Therefore, we

have
∩

M∈N
(∪

i∈BM
Cx

k,i

)
=
∪

i∈NC
x
k,i. Thus, υ(Fx

k,i,j\Ex
k,i,j) = υ

(
Fx

k,i,j ∩
∪

l∈NC
x
k,l \ Ex

k,i,j

)
=

υ
(
Fx

k,i,j ∩
∩

M∈N
(∪

l∈BM
Cx

k,l

)
\ Ex

k,i,j

)
= υ

(
Fx

k,i,j ∩
∩

M∈N

(∪
l∈BM ,j∈NFx

k,l,j

)
\ Ex

k,i,j

)
=

0. Therefore we have Claim 3.14.

Claim 3.15. For every z ∈
∪

i,j∈N Ex
k,i,j and every 0 < δ < 1, there exists Ex

k,i,j such

that z ∈ Ex
k,i,j and that the map ϕ = (rx, rx2

k,i
, . . . , rxk

k,i
) from Ex

k,i,j to Rk, is (1 ± δ)-bi-

Lipschitz to the image.

The proof is as follows. Let M, i, j be positive integers with M−1 << δ, z ∈ Ex
k,i,j.

There exist N0 ∈ BM and N1 ∈ N such that z ∈ Fx
k,N0,N1

. Therefore, we have z ∈
Fx

k,N0,N1
∩
∩

M̂∈N

(∪
î∈BM̂ ,ĵ∈N Fx

k,̂i,ĵ

)
= Ex

k,N0,N1
and that the map ϕ = (rx, rx2

k,j
, . . . , rxk

k,j
)

from Ex
k,N0,N1

to Rk, is (1±M−1)-bi-Lipschitz to the image. Thus, we have Claim 3.15.

By Claim 3.14 and 3.15, we have the assertion.

The following theorem is the main result in this subsection. See (2.2) in [5] or [22,

Definition 4.1] for the definition of the measure υ−1.

Theorem 3.16 (Radial rectifiability). Let (Y, y, υ) be a Ricci limit space with Y ̸= {y},
and x a point in Y . Then, there exist collections of Borel subsets {Cx

k,i}1≤k≤n,i∈N of Y ,

of points {xlk,i}2≤l≤k≤n,i∈N in Y , a positive number 0 < α(n) < 1 and a Borel subset A of

[0, diamY ) such that the following properties hold:
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1.
∪

i∈NC
x
k,i ⊂ Rk,α(n) \ Cx and υ

(
Rk \

∪
i∈NC

x
k,i

)
= 0 for every k.

2. limr→0 υ(Br(z) ∩ Cx
k,i)/υ(Br(z)) = 1 for every Cx

k,i and every z ∈ Cx
k,i.

3. For every Cx
k,i, there exists Ax

k,i > 1 such that (Ax
k,i)

−1 ≤ υ(Br(z))/r
k ≤ Ax

k,i for

every z ∈ Cx
k,i and every 0 < r < 1.

4. The limit measure υ and the k-dimensional Hausdorff measure Hk are mutually

absolutely continuous on Cx
k,i.

5. For every z ∈
∪

i∈NC
x
k,i and every 0 < δ < 1, there exists Cx

k,i such that z ∈ Cx
k,i

and that the map Φx
k,i = (rx, rx2

k,i
, . . . , rxk

k,i
) from Cx

k,i to Rk, is (1 ± δ)-bi-Lipschitz

to the image.

6. H1([0, diamY ) \ A) = 0.

7. For every R ∈ A, the collection {∂BR(x) ∩ Cx
k,i}k,i ⊂ ∂BR(x) \ Cx satisfies the

following properties:

(a) υ−1

(
(∂BR(x) \ Cx) \

∪
1≤k≤n,i∈NC

x
k,i

)
= 0.

(b) For every ∂BR(x) ∩ Cx
k,i, there exist Bx

k,i > 1 and τxk,i > 0 such that (Bx
k,i)

−1 ≤
υ−1(∂BR(x) ∩ Br(z) \ Cx)/r

k−1 ≤ υ−1(∂BR(x) ∩ Br(z))/r
k−1 ≤ Bx

k,i for every

z ∈ ∂BR(x) ∩ Cx
k,i and every 0 < r < τxk,i.

(c) For every z ∈
∪

i∈N(∂BR(x)∩Cx
k,i) and every 0 < δ < 1, there exists ∂BR(x)∩

Cx
k,i such that z ∈ ∂BR(x) ∩ Cx

k,i and that the map Φ̂x
k,i = (rx2

k,i
, . . . , rxk

k,i
) from

∂BR(x) ∩ Cx
k,i to Rk−1, is (1± δ)-bi-Lipschitz to the image.

Especially, ∂BR(x) \ Cx is υ−1-rectifiable.

Proof. First, we shall prove the following claim:

Claim 3.17. We have υ−1(∂Bx,z(x)∩Bϵ(z)) ≤ C(n)υ(Bϵ(z))/ϵ for every R > 0, every

z ∈ BR(x) \ {x} and every ϵ > 0 with ϵ < min{z, x/100, 1}.

The proof is as follows. By [23, Corollary 5.7], we have

υ−1(∂Bx,z(x) ∩Bϵ(z))

vol ∂Bx,z(p)
≤ C(n)

υ(Cx(∂Bx,z(x) ∩Bϵ(z)) ∩ Ax,z−2ϵ,x,z(x))

volAx,z−2ϵ,x,z(p)
.

Here Cx(A) = {z ∈ Y ; There exists a ∈ A such that x, z + z, a = z, a} for every subset

A of Y , p is a point in the n-dimensional hyperbolic space form. On the other hand, by
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triangle inequality, we have Cx(∂Bx,z(x) ∩ Bϵ(z)) ∩ Ax,z−2ϵ,x,z(x) ⊂ B100ϵ(z). Thus, we

have

υ−1(∂Bx,z(x) ∩Bϵ(z)) ≤
vol ∂Bx,z(p)

volAx,z−2ϵ,x,z(p)
υ(B100ϵ(z))C(n) ≤ C(n,R)

1

ϵ
υ(Bϵ(z)).

Therefore, we have Claim 3.17.

Let {Cx
k,i}k,i be a collection of Borel subsets of Y and {xlk,i}k,i,l a collection of points

in Y as in Lemma 3.9. By Lemma 3.13, without loss of generality, we can assume that

for every Cx
k,i, there exists τ > 0 such that Cx

k,i ⊂ Dτ
x \ Bτ (x). Moreover, by [6, Theorem

3.23] and [6, Theorem 4.6], we can assume that for every Cx
k,i, there exists Ax

k,i > 1 such

that (Ax
k,i)

−1 ≤ υ(Br(z))/r
k ≤ Ax

k,i for every 0 < r < 1 and every z ∈ Cx
k,i, and that

limr→0 υ(Br(z) ∩ Cx
k,i)/υ(Br(z)) = 1 for every Cx

k,i and every z ∈ Cx
k,i.

Claim 3.18. Let (Y, y, υ) be a Ricci limit space, x a point in Y , τ, R positive numbers

with 0 < τ < 1 < R, and z a point in Dτ
x ∩BR(x) \Bτ (x). Then, we have υ−1(∂Bx,z(x)∩

Bϵ(z) \ Cx) ≥ C(n,R)υ(Bϵ(z))/ϵ for every 0 < ϵ < τ/100.

The proof is as follows. Let w ∈ Y with z, w = ϵ/100, x, z + z, w = x,w. By [23,

Theorem 4.6 ], we have

υ(B ϵ
1000

(w))

volAx,z,x,z+ϵ(p)
≤ C(n)

υ−1

(
Cx(B ϵ

1000
(w)) ∩ ∂Bx,z(x)

)
vol ∂Bx,z(p)

.

By triangle inequality, we have Cx(Bϵ/1000(w)) ∩ ∂Bx,z(x) ⊂ ∂Bx,z(x) ∩ Bϵ(z). Thus, by

Bishop-Gromov volume comparison theorem for υ, we have

υ−1(∂Bx,z(x) ∩Bϵ(z) \ Cx) ≥ C(n)
vol ∂Bx,z(p)

volAx,z,x,z+ϵ(p)
υ(Bϵ/1000(w))

≥ C(n,R)
1

ϵ
υ(B ϵ

1000
(w)) ≥ C(n,R)

1

ϵ
υ(B5ϵ(w)) ≥ C(n,R)

υ(Bϵ(z))

ϵ
.

Therefore we have Claim 3.18.

By Claim 3.17 and 3.18, for every Cx
k,i, there exist Bx

k,i > 1 and τxk,i > 0 such that

(Bx
k,i)

−1 ≤ υ−1(∂Bx,z(x)∩Br(z) \Cx)/r
k ≤ Bx

k,i for every z ∈ Cx
k,i and every 0 < r < τxk,i.

Put Â = {t ∈ [0, diamY ); υ−1

(
∂Bt(x) \

∪
Cx

k,i

)
= 0}. Since υ

(
Y \

∪
Cx

k,i

)
= 0, it follows

from [23, Proposition 5.1] and [23, Theorem 5.2] that Â is Lebesgue measurable and that

H1([0, diamY ) \ Â) = 0. Since H1 is a Radon measure on R, we have the assertion.

3.2 Calculation of radial derivatives of Lipschitz functions

The purpose in this subsection is to calculate the radial derivative from a given point x,

of a given Lipschitz function f : ⟨drx, df⟩ explicitly. The main result in this subsection is

Theorem 3.30.
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Lemma 3.19. Let (Y, y) be a Ricci limit space with Y ̸= {y}, z a point in Y \ Cy,

f a Lipschitz function on Y , τ a positive number and γi an isometric embedding from

[0, y, z + τ ] to Y satisfying γi(0) = y, γi(y, z) = z for every i ∈ {1, 2}. Put fi = f ◦ γi.
Then, we have lipf1(y, z) = lipf2(y, z) and Lipf1(y, z) = Lipf2(y, z).

Proof. For every real number ϵ with 0 < |ϵ| << τ , by the splitting theorem on limit

space, we have γ1(x, z + ϵ), γ2(x, z + ϵ) ≤ Ψ(|ϵ|;n)|ϵ|. Therefore, we have

|f1(x, z + ϵ)− fa1(x, z)|
|ϵ|

≤ |f2(x, z + ϵ)− f2(x, z)|
|ϵ|

+ LipfΨ(|ϵ|;n).

Thus, we have Lipf1(y, z) ≤ Lipf2(y, z) and lipf1(y, z) ≤ lipf2(y, z). Therefore we have

Lipf1(y, z) = Lipf2(y, z) and lipf1(y, z) = lipf2(y, z).

Let (Y, y) be a Ricci limit space, z a point in Y \Cy, τ a positive number, γ an isometric

embedding from [0, y, z + τ ] to Y satisfying γ(0) = y, γ(y, z) = z. Put F = f ◦ γ,
liprady f(z) = lipF (y, z) and Liprad

y f(z) = LipF (y, z). It is not difficult to check the

following lemma:

Lemma 3.20. Let (Z, υ) be a metric measure space. Assume that the following prop-

erties hold:

1. υ(Br(z)) > 0 for every z ∈ Z and every r > 0

2. There exist r0 > 0 and κ > 1 such that υ(B2r(z)) ≤ 2κυ(Br(z)) for every z ∈ Z and

every 0 < r < r0.

Then, we have Lipf(a) = Lip(f |A)(a) and lipf(a) = lip(f |A)(a) for every a ∈ Leb(A),

every Lipschitz function f on Z, and every Borel subset A of Z.

The following theorem implies that ∂BR(x)⊥∇rx in some sense:

Theorem 3.21. Let (Y, y, υ) be a Ricci limit space, x a point in Y and f a Lipschitz

function on Y . Then, we have the following:

1. lipf(z)2 = lipradx f(z)2 + lip(f |∂Bx,z(x))(z)
2 for a.e. z ∈ Y .

2. Lipf(z)2 = Liprad
x f(z)2 + Lip(f |∂Bx,z(x))(z)

2 for a.e. z ∈ Y .

3. Lip(f |∂Bx,z(x))(z) = lip(f |∂Bx,z(x)\Cx)(z) for a.e. z ∈ Y \ Cx.

Proof. First we shall remark the following:

Claim 3.22. Let f be a Lipschitz function on Rk. Then, we have Lipf(z)2 = (Lip(f |R×{z2,...,zk})(z))
2

+ (Lip(f |{z1}×Rk−1)(z))2 = (lip(f |R×{z2,...,zk})(z))
2 + (lip(f |{z1}×Rk−1)(z))2 = lipf(z)2 for

a.e z = (z1, . . . , zk) ∈ Rk.
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Because, by Rademacher’s theorem about differentiability of Lipschitz functions on

Rk, f is totally differentiable at a.e z ∈ Rk. Therefore we have Claim 3.22.

The next claim is clear:

Claim 3.23. Let {Zi}i=1,2 be metric spaces, δ a positive number with 0 < δ < 1, and

Φ a map from Z1 to Z2 satisfying that Φ(Z1) = Z2 and (1 − δ)x1, x2 ≤ Φ(x1),Φ(x2) ≤
(1 + δ)x1, x2 for every x1, x2 ∈ Z1. Then, for every Lipschitz function f on Z2, we have,

(1 − Ψ(δ))Lipf(Φ(z1)) ≤ Lip(f ◦ Φ)(z1) ≤ (1 + Ψ(δ))Lipf(z1), (1 − Ψ(δ))lipf(Φ(z1)) ≤
lip(f ◦ Φ)(z1) ≤ (1 + Ψ(δ))lipf(Φ(z1)) for every z1 ∈ Z1.

We will give a proof of the following claim in Appendix:

Claim 3.24. For every Lebesgue measurable subset A of Rk, put sl1 − LebA = {a =

(a1, . . . , ak) ∈ A; limr→0H
k−1
(
({a1} ×Br(a2, . . . , ak)) ∩ A

)
/Hk−1

(
{a1} ×Br(a2, . . . , ak)

)
=

1}. Then the following properties hold:

1. sl1 − LebA is a Lebesgue measurable set.

2. Hk−1
(
A ∩ ({t} ×Rk−1 \ sl1 − LebA)

)
= 0 for every t ∈ R.

3. Hk(A \ sl1 − LebA) = 0.

Put L = Lipf . Let {Cx
k,i}1≤k≤n,i∈N be a collection of Borel subsets of Y , and

{xlk,i}2≤k≤n,i∈N,2≤l≤k a collection of points in Y as in Theorem 3.16. Fix a sufficiently

small δ > 0 and Ck,i satisfying that the map Φx
k,i = (rx, rx2

k,i
, . . . , rxk

k,i
) from Cx

k,i to Rk,

is (1 ± δ)-bi-Lipschitz to the image. Put fx
k,i = f ◦ (Φx

k,i)
−1 on Φx

k,i(C
x
k,i). Let F x

k,i be a

Lipschitz function on Rk satisfying that F x
k,i|Φx

k,i(C
x
k,i)

= fx
k,i and LipF x

k,i = Lipfx
k,i.

Claim 3.25. With the notation as above, we have the following:

1. (1 − Ψ(δ;n))LipF x
k,i(w) ≤ Lipf((Φx

k,i)
−1(w)) ≤ (1 + Ψ(δ;n))LipF x

k,i(w) for a.e w ∈
Φx

k,i(C
x
k,i).

2. (1 − Ψ(δ;n))lipF x
k,i(w) ≤ lipf((Φx

k,i)
−1(w)) ≤ (1 + Ψ(δ;n))lipF x

k,i(w) for a.e w ∈
Φx

k,i(C
x
k,i).

3. Lip(F x
k,i|R×{w2,...,wk})(w)−LΨ(δ;n) ≤ Liprad

x f((Φx
k,i)

−1(w)) ≤ Lip(F x
k,i|R×{w2,...,wk})(w)+

LΨ(δ;n) for a.e w = (w1, . . . , wk) ∈ Φx
k,i(C

x
k,i).

4. lip(F x
k,i|R×{w2,...,wk})(w)−LΨ(δ;n) ≤ lipradx f((Φx

k,i)
−1(w)) ≤ lip(F x

k,i|R×{w2,...,wk})(w)+

LΨ(δ;n) for a.e w = (w1, . . . , wk) ∈ Φx
k,i(C

x
k,i).

5. (1−Ψ(δ;n))Lip(F x
k,i|{w1}×Rk−1)(w) ≤ Lip(f |∂B

x,(Φx
k,i

)−1(w)
(x)∩Cx

k,i
)((Φx

k,i)
−1(w)) ≤ (1+

Ψ(δ;n))Lip(F x
k,i|{w1}×Rk−1)(w) for a.e. w = (w1, . . . , wk) ∈ Φx

k,i(C
x
k,i).
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6. (1 − Ψ(δ;n))lip(F x
k,i|{w1}×Rk−1)(w) ≤ lip(f |∂B

x,(Φx
k,i

)−1(w)
(x)∩Cx

k,i
)((Φx

k,i)
−1(w)) ≤ (1 +

Ψ(δ;n))lip(F x
k,i|{w1}×Rk−1)(w) for a.e. w = (w1, . . . , wk) ∈ Φx

k,i(C
x
k,i).

The proof is as follows. First, we shall give a proof of the statement 1. Put Cx
k,i =

Leb(Φx
k,i(C

x
k,i)) ∩ Φx

k,i(LebC
x
k,i). Then, we have Hk(Φx

k,i(C
x
k,i) \Cx

k,i) = 0. By Lemma 3.20

and Claim 3.23, we have (1−Ψ(δ))Lip(F x
k,i|Φk,i(C

x
k,i)

)(w) ≤ Lip(f |Cx
k,i
)((Φx

k,i)
−1(w)) ≤ (1+

Ψ(δ))Lip(F x
k,i|Φx

k,i(C
x
k,i)

)(w), Lip(F x
k,i|Φx

k,i(C
x
k,i)

)(w) = LipF x
k,i(w) and Lip(f |Cx

k,i
)((Φx

k,i)
−1(w)) =

Lipf((Φx
k,i)

−1(w)) for every w ∈ Cx
k,i. Therefore we have the statement 1. Similarly, we

have the statement 2.

Next, we shall give a proof of the statement 3. Put Cx,f
k,i = sl1−LebCx

k,i∩{w ∈ Rk;F x
k,i

is totally differentiable at w.}. Then, by Claim 3.24, we have Hk(Cx
k,i \ Cx,f

k,i ) = 0. Fix

w ∈ Cx,f
k,i and put wϵ = w + (ϵ, 0, . . . , 0) for every ϵ > 0. Since w ∈ sl1 − LebCx

k,i, for

every ϵ > 0, there exist ŵϵ ∈ Cx
k,i and a(ϵ) > 0 such that wϵ, ŵϵ ≤ a(ϵ)ϵ and a(τ) → 0 as

τ → 0. Ｉｔ is clear that (1 − δ)(ϵ − a(ϵ)ϵ) ≤ (1 − δ)w, ŵϵ ≤ (Φx
k,i)

−1(w), (Φx
k,i)

−1(ŵϵ) ≤
(1 + δ)w, ŵϵ ≤ (1 + δ)(ϵ + a(ϵ)ϵ). Let π1 be the projection from Rk to R defined by

π1(w) = w1. Then we have x, (Φx
k,i)

−1(ŵϵ) = π1(ŵϵ) = π1(wϵ) ± a(ϵ)ϵ = π1(w) + ϵ ±
a(ϵ)ϵ = x, (Φx

k,i)
−1(w) + (Φx

k,i)
−1(w), (Φx

k,i)
−1(ŵϵ) ± (δ + a(ϵ))ϵ. By Lemma 3.13, without

loss of generality, we can assume that there exists τ0 > 0 such that Ck,i ⊂ Dτ0
x . Fix an

isometric embedding γ from [0, x, (Φx
k,i)

−1(w)+τ0] to Y with γ(0) = x, γ(x, (Φx
k,i)

−1(w)) =

(Φx
k,i)

−1(w). Then, by rescaling ϵ−1dY and the splitting theorem on limit spaces, we have

(Φx
k,i)

−1(ŵϵ), γ(x, (Φx
k,i)

−1(w) + ϵ) ≤ Ψ(a(ϵ), δ;n)ϵ. Thus we have

|F x
k,i(w)− F x

k,i(wϵ)|
ϵ

≤
|F x

k,i(w)− F x
k,i(ŵϵ)|

ϵ
+ La(ϵ)

≤
|f((Φx

k,i)
−1(w))− f(γ(x, (Φx

k,i)
−1(w) + ϵ))|

ϵ
+ LΨ(a(ϵ), δ;n)

for every ϵ > 0 with ϵ << τ0. By letting ϵ → 0, we have Lip(F x
k,i|R×{w2,···,wk})(w) ≤

Liprad
x f((Φx

k,i)
−1(w))+LΨ(δ;n). Let {ϵi}i be a sequence of real numbers such that ϵj → 0

and

lim
j→∞

|f ◦ (Φx
k,i)

−1(w)− f(γ(x, (Φx
k,i)

−1(w) + ϵj))|
|ϵj|

= Liprad
x f((Φx

k,i)
−1(w)).

Since (Φx
k,i)

−1(w) ∈ LebCx
k,i, there exist sequences {ŵ(j)}j ⊂ Cx

k,i, {τj}j ⊂ R>0 such that

ŵ(j), γ(x, (Φx
k,i)

−1(w) + ϵj) ≤ τjϵj and τj → 0 as j → ∞. Fix j ∈ N. Assume that ϵj > 0.

Then, we have

π1(ŵ(j))− π1(w) = x, ŵ(j)− x, (Φx
k,i)

−1(w)

= x, γ(x, (Φx
k,i)

−1(w) + ϵj)± τjϵj

= ϵj ± τjϵj

= γ(x, (Φx
k,i)

−1(w) + ϵj), (Φx
k,i)

−1(w)± τjϵj ≥ (1− δ)Φx
k,i(ŵ(j)), w − τjϵj.
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On the other hand, since Φx
k,i(ŵ(j)), w ≤ (1+δ)ϵj+τjϵj, we have w + (ϵj, 0, . . . , , 0),Φx

k,i(ŵ(j)) ≤
Ψ(|ϵj|, δ;n)|ϵj|. Similarly, we have w + (ϵj, 0, . . . , , 0),Φx

k,i(ŵ(j)) ≤ Ψ(|ϵj|, δ;n)|ϵj| in the

case ϵj < 0. Put w(j) = w + (ϵj, 0, . . . , 0). Then, we have

|f
(
(Φx

k,i)
−1(w)

)
− f

(
γ(x, (Φx

k,i)
−1(w) + ϵj)

)
|ϵj|

≤
|F x

k,i(w)− F x
k,i

(
Φx

k,i(ŵ(j))
)
|

|ϵj|
+ Lτj

≤
|F x

k,i(w)− F x
k,i(w(j))|

|ϵj|
+ LΨ(|ϵj|, τj, δ;n).

By letting j → ∞, we have the statement 3. Similarly, we have the statement 4.

We shall give a proof of the statement 5. Fix w ∈ Cx,f
k,i . By Claim 3.23, we have

(1−Ψ(δ))Lip(F x
k,i|({w1}×Rk−1)∩Cx

k,i
)(w) ≤ Lip(f |(Φx

k,i)
−1(({w1}×Rk−1)∩Cx

k,i)
)
(
(Φx

k,i)
−1(w)

)
≤ (1 + Ψ(δ))Lip(F x

k,i|({w1}×Rk−1)∩Cx
k,i
)(w).

We remark that (Φx
k,i)

−1
(
({w1} ×Rk−1) ∩Cx

k,i

)
= ∂Bx,(Φx

k,i)
−1(w)(x) ∩ (Φx

k,i)
−1(Cx

k,i). By

Proposition 3.20, we have Lip(F x
k,i|{w1}×Rk−1∩Cx

k,i
)(w) = Lip(F x

k,i|{w1}×Rk−1)(w). Therefore,

by Claim 3.23, we have

(1−Ψ(δ))Lip(F x
k,i|{w1}×Rk−1)(w) ≤ Lip(f |∂B

x,(Φx
k,i

)−1(w)
(x)∩(Φx

k,i)
−1(Cx

k,i)
)
(
(Φx

k,i)
−1(w)

)
≤ Lip(f |∂B

x,(Φx
k,i

)−1(w)
(x)∩Cx

k,i
)
(
(Φx

k,i)
−1(w)

)
≤ (1 + Ψ(δ))Lip(F x

k,i|({w1}×Rk−1)∩Φx
k,i(C

x
k,i)

)(w)

≤ (1 + Ψ(δ))Lip(F x
k,i|{w1}×Rk−1)(w).

Thus we have the statement 5. Similarly, we have the statement 6.

Therefore we have Claim 3.25.

Claim 3.26. With the same notation as in Claim 3.25, we have

lip(f |∂B
x,(Φx

k,i
)−1(w)

(x)∩Cx
k,i
)((Φx

k,i)
−1(w)) ≥ Lip(f |∂B

x,(Φx
k,i

)−1(w)
(x))((Φ

x
k,i)

−1(w))−Ψ(δ;n, L)

for a.e w ∈ Φx
k,i(C

x
k,i).

The proof is as follows. We shall use the same notaion as in the proof of Claim 3.25.

Fix w ∈ Φx
k,i(Leb(Φ

x
k,i)

−1(Cx,f
k,i )) and put z = (Φx

k,i)
−1(w).

First, assume k ≥ 2. Then we shall prove that z is not an isolated point in ∂Bx,z(x)\Cx.

Because, by the definition of sl1 − Leb(Cx
k,i), there exists a sequence of points {β(j)}j

in Cx
k,i such that π1(β(j)) = π1(w), β(j) ̸= w for every j, and β(j) → w. Then, we

have (Φx
k,i)

−1(β(j)) ̸= z, (Φx
k,i)

−1(β(j)) ∈ ∂Bx,z(x) \ Cx and (Φx
k,i)

−1(β(j)) → z. Espe-

cially, z is not an isolated point in ∂Bx,z(x) \ Cx. Let {z(j)}j ⊂ ∂Bx,z(x) \ {z} with
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z(j) → z, |f(z(j)) − f(z)|/z(j), z → Lip(f |∂Bx,z(x))(z). Put ηj = z(j), z > 0. Since

z ∈ Leb(Φx
k,i)

−1(Cx,f
k,i ), there exist sequences {ẑ(j)}j ⊂ (Φx

k,i)
−1(Cx,f

k,i ) and {τ̂j}jR>0 such

that z(j), ẑ(j) ≤ τ̂jηj and τ̂j → 0 as j → ∞. Put α(j) = Φx
k,i(ẑ(j)). Then we have

|π1(α(j)) − π1(w)| ≤ (1 + δ)τ̂jηj. Therefore, there exists α̂(j) ∈ {w1} ×Rk−1 such that

w(j), α̂(j) ≤ Ψ(τ̂j;n)ηj. Then, we have

|f(z(j))− f(z)|
z(j), z

≤ |f(ẑ(j))− f(z)|
ηj

+ Lτ̂j

≤
|F x

k,i(w(j))− F x
k,i(w)|

ηj
+Ψ(τ̂j;n, L) ≤

|F x
k,i(α̂(j))− F x

k,i(w)|
α̂(j), w

α̂(j), w

ηj
+ LΨ(τ̂j;n, L).

By letting j → ∞, we have Claim 3.26 for the case k ≥ 2.

Next, assume k = 1. It suffices to check that z is an isolated point in ∂Bx,z(x). The

proof is done by a contradiction. Assume that z is not an isolated point in ∂Bx,z(x).

Then, there exists a sequence {z(i)}i of points in ∂Bx,z(x) \ {z} such that z(i) → z. On

the other hand, there exist τ0 > 0 and an isometric embedding γ from [0, x, z + τ0] to Y

such that γ(0) = x and γ(x, z) = z. Put ϵ(i) = z, z(i). Then we have z(i), γ(x, z − ϵi) ≥
x, z(i) − x, γ(x, z − ϵi) = ϵi and z(i), γ(x, z + ϵi) ≥ x, γ(x, z + ϵi) − x, z(i) = ϵi. By Gro-

mov’s compactness theorem, without loss of generality, we can assume that (Y, ϵ−1
i dY , z)

converges to a tangent cone (TzY, 0z) at z. By the argument above and the splitting

theorem on limit spaces, there exists a pointed proper geodesic space (W,w) such that

TzY = R ×W and W ̸= {w}. However, since z ∈ C1,i ⊂ R1, this is a contradiction.

Therefore we have the Claim 3.26.

By Claim 3.22, 3.25 and 3.26, for every N ∈ N, we have Lipf(z)2 = Liprad
x f(z)2 +

Lip(f |∂Bx,z(x)
)(z)2 ±N−1 = lipradx f(z)2 + lip(f |∂Bx,z(x)\Cx)(z)

2 ±N−1 = lipf(z)2 ±N−1 for

a.e. z ∈ Y \ Cx. Therefore, we have the assertion.

Remark 3.27. For every Ricci limit space (Y, y, υ) and every Lipschitz function f on

Y , we have lipf(x) = Lipf(x) for a.e. x ∈ Y . See [2, Corollary 6.36]

By an argument similar to the proof of Lemma 3.19, we have the following:

Lemma 3.28. Let (Y, y) be a Ricci limit space with Y ̸= {y}, z a point in Y \ Cy, f

a Lipschitz function on Y , τ a positive number and {γi}i=1,2 isometric embeddings from

[0, y, z + τ ] to Y with γi(0) = y, γi(y, z) = z. Then, we have lim infr→0 |f ◦ γ1(y, z +

r) − f(z)|/|r| = lim infr→0 |f ◦ γ2(y, z + r) − f(z)|/|r|. Moreover, if the limit limr→0(f ◦
γ1(y, z + r)− f(z))/r exists, then, we have limr→0(f ◦ γ2(y, z + r)− f(z))/r = limr→0(f ◦
γ1(y, z + r)− f(z))/r.

With the same notaion as in Lemma 3.28, put Liprad

x
f(z) = lim infr→0 |f ◦ γ1(y, z +

r)− f(z)|/|r|. Let (Y, y) be a Ricci limit space with Y ̸= {y}, and f a Lipschitz function
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on Y . Put

Ay =

{
x ∈ Y \ Cy; The limit lim

r→0

f ◦ γ(x, y + r)− f(x)

r
exists

}
.

Here γ is an isometric embedding from [0, y, x+τ ] (τ > 0) to Y with γ(0) = y, γ(y, x) = x.

Put
df

dry
(x) = lim

r→0

f ◦ γ(x, y + r)− f(x)

r

for every x ∈ Ay.

Lemma 3.29. Let (Y, y, υ) be a Ricci limit space, x a point in Y and f a Lipschitz

function on Y . Then, we have Liprad

x
f(z) = Liprad

x f(z) for a.e. z ∈ Y .

Proof. We will use the same notaion as in the proof of Claim 3.25. Put L = Lipf .

Let δ be a sufficiently small positive number and Cx
k,i a Borel subset of Y satisfying that

the map Φx
k,i = (rx, rx2

k,i
, . . . , rxk

k,i
) from Cx

k,i to Rk, is (1 ± δ)-bi-Lipschitz to the image.

Fix w ∈ Cx,f
k,i and put z = (Φx

k,i)
−1(w). There exist a positive number τ and an isometric

embedding γ from [0, x, z + τ ] to Y such that γ(0) = x and γ(x, z) = z. Let {ϵi}i be a

sequence of real numbers satisfying that ϵi → 0 and limi→∞ |f ◦ γ(x, z + ϵi)− f(z)|/|ϵi| =
Liprad

x
f(z). By an argument similar to the proof of Claim 3.12, there exist sequences

{ŵ(j)}j ⊂ Cx
k,i and {τj}j ⊂ R>0 such that ŵ(j), γ(x, z + ϵj) ≤ τj|ϵj|, τj → 0 as j → ∞,

and

|f(z)− f(γ(x, z + ϵj))|
|ϵj|

=
|F x

k,i(w)− F x
k,i(Φ

x
k,i(ŵ(j)))|

|ϵj|
−2Lτj ≥

|F x
k,i(w)− F x

k,i(wj)|
|ϵj|

−Ψ(τj, δ;n, L).

By letting j → ∞, we have Liprad

x
f(z) ≥ Lip(F x

k,i|R×{w2,...,wk})(w)−Ψ(δ;n, L) ≥ Liprad
x f(z)−

Ψ(δ;n, L). Therefore, we have the assertion.

We shall state the main theorem in this subsection:

Theorem 3.30 (Radial derivatives of Lipschitz functions). Let (Y, y, υ) be a Ricci

limit space with Y ̸= {y}, x a point in Y and f a Lipschitz function on Y . Then, we have

υ(Y \ Ax) = 0 and
df

drx
(z) = ⟨df, drx⟩(z)

for a.e. z ∈ Ax.

Proof. For every w ∈ Y \ Cx, there exist τ > 0 and an isometric embedding γ from

[0, x, z+τ ] to Y such that γ(0) = x and γ(x,w) = w. Then, by Theorem 3.21 and Lemma
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3.29, for a.e. w ∈ Y \ Cx, we have

⟨drx, df⟩(w) =
1

2
(Lip(rx + f)(w)2 − Lipf(w)2 − Liprx(w)

2)

=
1

2
(Liprad

x (rx + f)(w)2 + Lip((rx + f)|∂Bx,z(x)\Cx)(w)
2

− Liprad
x f(w)2 − Lip(f |∂Bx,z\Cx)(w)

2 − 1)

=
1

2
(Liprad

x (rx + f)(w)2 + Lip(f |∂Bx,z(x)\Cx)(w)
2

− Liprad
x f(w)2 − Lip(f |∂Bx,z\Cx)(w)

2 − 1)

=
1

2
(Liprad

x (rx + f)(w)2 − Liprad
x f(w)2 − 1)

=
1

2

(
lim
h→0

|(rx + f) ◦ γ(x,w + h)− (rx + f)(w)|2

|h|2
− lim

h→0

|f ◦ γ(x,w + h)− f(w)|2

|h|2
− 1

)
=

1

2

(
lim
h→0

∣∣∣∣1 + f ◦ γ(x,w + h)− f(w)

h

∣∣∣∣2 − lim
h→0

|f ◦ γ(x,w + h)− f(w)|2

|h|2
− 1

)
(
Here, we have the existence of the limit lim

h→0

f ◦ γ(x,w + h)− f(w)

h
.

)
=

1

2

(
1 + 2 lim

h→0

f ◦ γ(x,w + h)− f(w)

h
+ lim

h→0

|f ◦ γ(x,w + h)− f(w)|2

|h|2

− lim
h→0

|f ◦ γ(x,w + h)− f(w)|2

|h|2
− 1

)

= lim
h→0

f ◦ γ(x,w + h)− f(w)

h
=

df

drx
(w).

3.3 Rectifiability associated with Lipschitz functions

In this section, we will give a generalization of Theorem 3.16. The main result in this

subsection is Theorem 3.49.

Lemma 3.31. Let δ be a positive number, {(Mi,mi)}i a sequence of n-dimensional

complete Riemannian manifolds with RicMi
≥ −δ(n − 1), (Y, y, υ) a (n,−δ)-Ricci limit

space of {(Mi,mi, vol)}i, x, x1, x2 points in Y , x(i), x1(i), x2(i) points in Mi for every

i < ∞, bi
1 a harmonic function on B100(x(i)) for every i < ∞, and b∞

1 a Lipschitz

function on B100(x). Assume that x, x1 ≥ δ−1, x, x2 ≥ δ−1, x, x1 + x, x2 − x1, x2 ≤ δ,

x(i) → x, xj(i) → xj(i) for every j ∈ {1, 2}, supi Lipb
i
1 < ∞, bi

1 → b∞
1 on B100(x),

|bi
1 − rx1(i)|L∞(B100(x(i))) ≤ δ and

1

volB100(x(i))

∫
B100(x(i))

(
|∇bi

1 −∇rx1(i)|2 + |Hessbi
1
|2
)
dvol ≤ δ
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Then, we have
1

υ(B1(x))

∫
B1(x)

|db∞
1 − drx1 |2dυ < Ψ(δ;n).

We remark that Lemma 3.31 does not follow from [2, Lemma 9.10] directly. We shall

give a proof of Lemma 3.31 in the proof of the following Lemma 3.32.

Lemma 3.32. Let δ be a positive number, {(Mi,mi)}i a sequence of n-dimensional

complete Riemannian manifolds with RicMi
≥ −δ(n − 1), (Y, y, υ) a (n,−δ)-Ricci limit

space of {(Mi,mi, vol)}i, x a point in Y , {xj}1≤j≤4 a collection of points in Y , and

{x(i)} ∪ {xj(i)}1≤j≤4 of points in Mi for every i. Assume that x(i) → x, xj(i) → xj for

every j, x, xj ≥ δ−1 for every j, x, x1 + x, x2 − x1, x2 ≤ δ and x, x3 + x, x4 − x3, x4 ≤ δ.

Then, we have

1

υ(B1(x))

∫
B1(x)

∣∣∣∣⟨drx1 , drx3⟩dυ − 1

volB1(x(i))

∫
B1(x(i))

⟨drx1(i), drx3(i)⟩dvol
∣∣∣∣ dυ < Ψ(δ;n)

and

1

volB1(x(i))

∫
B1(x(i))

∣∣∣∣⟨drx1(i), drx3(i)⟩ −
1

υ(B1(x))

∫
B1(x)

⟨drx1 , drx3⟩dυ
∣∣∣∣ dvol < Ψ(δ;n)

for every sufficiently large i.

Proof. First, we remark the following claim:

Claim 3.33. For every sufficiently large i, there exist harmonic functions bi
1,b

i
3 on

B100(x(i)) such that Lipbi
j ≤ C(n), |bi

j − rxj(i)|L∞(B100(x(i))) ≤ Ψ(δ;n) and

1

volB100(x(i))

∫
B100(x(i))

(
|dbi

j − drxj(i)|2 + |Hessbi
j
|2
)
dvol ≤ Ψ(δ;n)

for every j ∈ {1, 3}.

See for instance [2, Lemma 9.8], [2, Lemma 9.10], [2, Lemma 9.13] for a proof of Claim

3.33.

Since C(n)(|Hessbi
1
|2 + |Hessbi

3
|2) is an upper gradient of ⟨dbi

1, db
i
3⟩, by the Poincaré

inequality, we have

1

volB100(x(i))

∫
B100(x(i))

∣∣∣∣⟨dbi
1, db

i
3⟩ −

1

volB100(x(i))

∫
B100(x(i))

⟨dbi
1, db

i
3⟩dvol

∣∣∣∣ dvol
≤ C(n)

√
1

volB100(x(i))

∫
B100(x(i))

(
|Hessbi

1
|2 + |Hessbi

3
|2
)
dvol ≤ Ψ(δ;n).

Therefore, we have

1

volB100(x(i))

∫
B100(x(i))

∣∣∣∣⟨dbi
3, drx1(i)⟩ −

1

volB100(x(i))

∫
B100(x(i))

⟨dbi
3, drx1(i)⟩dvol

∣∣∣∣ dvol ≤ Ψ(δ;n).
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Without loss of generality, we can assume that there exist Lipschitz functions b∞
1 ,b

∞
3 on

B100(x) such that bi
j → b∞

j on B100(x). By Theorem 3.30, there exists a Borel subset A

of B100(x) \ Cx1 such that υ(B100(x) \ A) = 0 and limh→0(f ◦ γ(x1, a + h) − f(a))/h =

⟨drx1 , db
∞
3 ⟩(a) for every a ∈ A and every minimal geodesic γ from x1 to a. By Lusin’s

theorem, there exists a Borel subset A(δ) of A such that υ(A \ A(δ)) < δυ(B1(x)) and

that the function ⟨drx1 , df⟩ is continuous on A(δ). Define a function f δ
η on A(δ) \ B2δ(x)

by

f δ
η (z) = sup

w∈Cz({x1})∩Bη(z)

∣∣∣∣f(z)− f(w)

z, w
− ⟨drx1 , df⟩(z)

∣∣∣∣
for every 0 < η < δ. It is easy to check that f δ

η is an upper semi-continuous function.

Especially, f δ
η is a Borel function. We also have limη→0 f

δ
η (a) = 0 for every a ∈ A.

Thus, by Egoroff’s theorem, there exists a Borel subset X = X(δ) of A(δ) such that

υ(A(δ) \ X(δ)) < δυ(B1(x)) and limη→0(supa∈X f
δ
η (a)) = 0. Let η = η(δ) be a positive

number satisfying that η << δ, and supa∈X f
δ
η0
(a) < δ for every η0 ≤ η. For every i, let

Xi be the set of points w ∈ B1(x(i)) satisfying that∣∣∣∣⟨dbi
3, drx1(i)⟩(w)−

1

volB100(x(i))

∫
B100(x(i))

⟨dbi
3, drx1(i)⟩dvol

∣∣∣∣ ≤ Ψ(δ;n).

Then, we have vol(B1(x(i)) \ Xi)/volB1(x(i)) ≤ Ψ(δ;n) for every sufficiently large i.

Define a Borel function Fi on B100(x(i)) \ Cx1(i) by

Fi(w) =
bi
3

(
γ(x1(i), w − η2)

)
− bi

3(w)

−η2

for every i, where γ is the minimal geodesic from x1(i) to w.

Claim 3.34. We have

1

volB10(x(i))

∫
B10(x(i))\Cx1(i)

|⟨dbi
3, drx1(i)⟩ − Fi(w)|dvol ≤ Ψ(δ;n)

for every sufficiently large i.

The proof is as follows. It is easy to check that

f(t) = f(c) + f ′(t)(t− c)−
∫ t

c

(s− c)f ′′(s)ds

for every a < b, every C2-function f on (a, b), and every c ∈ (a, b). Therefore, we have

bi
3(γ(x1(i), w − η2))− bi

3(w)

−η2
=

dbi
3

drx1(i)

(w)− 1

η2

∫ x1(i),w

x1(i),w−η2

(
s− (x1(i), w − η2)

) d2bi
3

dr2x1(i)

(γ(s))ds.
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Thus, by an argument similar to the proof of [21, Estimate 2.6], we have

1

volB10(x(i))

∫
B10(x(i))\Cx1(i)

∣∣⟨dbi
3, drx1(i)⟩ − Fi(w)

∣∣ dvol
≤ 1

η2
1

volB10(x(i))

∫
B10(x(i))

∫ x1(i),w

x1(i),w−η2
η2|Hessbi

3
|(γ(s))dsdvol

≤ η2C(n)
1

volB100(x(i))

∫
B100(x(i))

|Hessbi
3
|dvol

≤ η2C(n)

√
1

volB100(x(i))

∫
B100(x(i))

|Hessbi
3
|2dvol ≤ η2C(n)Ψ(δ;n).

Therefore, we have Claim 3.34

Claim 3.35. We have

1

υ(B1(x))

∫
B1(x)

∣∣∣∣⟨db∞
3 , drx1⟩ −

1

volB1(x(i))

∫
B1(x(i))

⟨dbi
3, drx1(i)⟩dvol

∣∣∣∣ dυ ≤ Ψ(δ;n)

for sufficiently large i.

The proof is as follows. Let Yi = {w ∈ B1(x(i)) \ Cx1(i); |⟨dbi
3, drx1(i)⟩(w) − Fi(w)| ≤

Ψ(δ;n)}. By Claim 3.34, we have vol (B1(x(i)) \ Yi)/volB1(x(i)) ≤ Ψ(δ;n) for every

sufficiently large i. Put Zi = Xi ∩ Yi. There exists a compact subset Wi of Zi such that

vol(Zi \ Wi)/volB1(x(i)) ≤ Ψ(δ;n). Then, we have vol(B1(x(i)) \ Wi)/volB1(x(i)) ≤
Ψ(δ;n) for every sufficiently large i. Without loss of generality, we can assume that there

exists a compact subset W∞ of B1(x) such that Wj → W∞. By Lemma 2.5, we have

υ(W∞)/υ(B1(x)) ≥ 1 − Ψ(δ;n). Put E = W∞ ∩ X. Then we have υ(B1(x) \ E) ≤
Ψ(δ;n)υ(B1(x)). For every wi ∈ Wi and every w ∈ E, let γwi

be the minimal geodesic

from x1(i) to wi, and γw a minimal geodesic from x1 to w. Then, there exists i0 such that

ϵi << η, ∣∣∣∣∣⟨dbi
3, drx1(i)⟩(w)−

bi
3(γi(x1(i), wi − η2))− bi

3(wi)

−η2

∣∣∣∣∣ ≤ Ψ(δ;n)

and ∣∣∣∣⟨dbi
3, drx1(i)⟩(wi)−

1

volB100(x(i))

∫
B100(x(i))

⟨dbi
3, drx1(i)⟩dvol

∣∣∣∣ ≤ Ψ(δ;n)

for every i ≥ i0, every w ∈ E and every wi ∈ Wi with wi → w. Now, we shall consider

the rescaled metric η−2dY . Since

x1, ϕi(γi(x1(i), wi − η2))
η−2dY

≥ η−1, ϕi(γi(x1(i), wi − η2)), w
η−2dY

≥ η−1

and

x1, ϕi(γi(x1(i), wi − η2))
η−2dY

+ ϕi(γi(x1(i), wi − η2)), w
η−2dY

− x1, w
η−2dY ≤ η,
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by the splitting theorem on limit spaces, we have

ϕi(γi(x1(i), wi − η2)), γ(x1, w − η2)
η−2dY

≤ Ψ(δ;n).

Therefore, we have∣∣∣∣∣bi
3(γi(x1(i), wi − η2))− bi

3(wi)

−η2
− b∞

3 (γ(x1, w − η2))− b∞
3 (w)

−η2

∣∣∣∣∣ ≤ Ψ(δ;n).

Thus, for every i ≥ i0, we have∣∣∣∣⟨db∞
3 , drx1⟩(w)−

1

volB100(x(i))

∫
B100(x(i))

⟨dbi
3, drx1(i)⟩dvol

∣∣∣∣ ≤ Ψ(δ;n).

Let

Ci =
1

volB100(x(i))

∫
B100(x(i))

⟨dbi
3, drx1(i)⟩dvol.

Then

1

υ(B1(x))

∫
B1(x)

|⟨db∞
3 , drx1⟩ − Ci| dυ

=
1

υ(B1(x))

∫
B1(x)\E

|⟨db∞
3 , drx1⟩ − Ci| dυ +

1

υ(B1(x))

∫
E

|⟨db∞
3 , drx1⟩ − Ci| dυ

≤ C(n)υ(B1(x) \ E)
υ(B1(x))

+
υ(E)

υ(B1(x))
Ψ(δ;n) ≤ Ψ(δ;n).

Therefore, we have Claim 3.35.

Claim 3.36. We have

1

υ(B1(x))

∫
B1(x)

|db∞
3 |2dυ ≤ 1 + Ψ(δ;n).

This proof is as follows. Since

1

volB1(x(i))

∫
B1(x(i))

||dbi
3| − 1|dvol ≤ Ψ(δ;n)

for every sufficiently large i, by [1, Lemma 16.2], there exists a compact subset Ki of

B1(x(i)) such that vol(B1(x(i))\Ki)/volB1(x(i)) ≤ Ψ(δ;n) and Lip(bi
3|Ki

) ≤ 1+Ψ(δ;n).

Without loss of generality, we can assume that there exists a compact subset K∞ of B1(x)

such that Ki → K∞. By Lemma 2.5, we have υ(K∞)/υ(B1(x)) ≥ 1−Ψ(δ;n). Then, we
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have Lip(b∞
3 |K∞) ≤ 1 + Ψ(δ;n). Put K̂∞ = LebK∞. Then by Lemma 3.20, we have

1

υ(B1(x))

∫
B1(x)

|db∞
3 |2dυ =

1

υ(B1(x))

∫
K̂∞

|db∞
3 |2dυ +

1

υ(B1(x))

∫
B1(x)\K∞

|db∞
3 |2dυ

≤ 1

υ(B1(x))

∫
K̂∞

(Lipb∞
3 )2dυ + C(n)

υ(B1(x) \K∞)

υ(B1(x))

≤ 1

υ(B1(x))

∫
K̂∞

(Lip(b∞
3 |K∞))2dυ +Ψ(δ;n)

≤ 1

υ(B1(x))

∫
K̂∞

(1 + Ψ(δ;n))dυ +Ψ(δ;n) ≤ 1 + Ψ(δ;n).

Therefore, we have Claim 3.36.

Assume that x1 = x3 and x2 = x4. Then, by Claim 3.33, 3.35 and 3.36, we have

1

υ(B1(x))

∫
B1(x)

|db∞
3 − drx3 |2dυ

=
1

υ(B1(x))

∫
B1(x)

|db∞
3 |2dυ − 2

1

υ(B1(x))

∫
B1(x)

⟨db∞
3 , drx3⟩dυ +

1

υ(B1(x))

∫
B1(x)

|drx3 |2dυ

≤ 1 + Ψ(δ;n)− 2(1−Ψ(δ;n)) + 1 ≤ Ψ(δ;n)

for every sufficiently large i. Therefore, we have Lemma 3.31. On the other hand, Lemma

3.32 follows from Lemma 3.31 and Claim 3.35, directly.

Corollary 3.37. Let {(Mi,mi)}i be a sequence of n-dimensional complete Rieman-

nian manifolds with RicMi
≥ −(n − 1), (Y, y, υ) a Ricci limit space of {(Mi,mi, vol)}i,

τ a positive number, x, x1, x2 points in Y , {x(i)}i, {x1(i)}i, {x2(i)}i sequences of points

x(i), x1(i), x2(i) in Mi. Assume that x ∈
∩

j=1,2(Dτ
xj
\ Bτ (xj)), x(i) → x, and xj(i) → xj

for every j. Then, we have

1

υ(Br(x))

∫
Br(x)

∣∣∣∣⟨drx1 , drx2⟩ −
1

volBr(x(i))

∫
Br(x)

⟨drx1(i), drx2(i)⟩dvol
∣∣∣∣ dυ ≤ Ψ

(
r,
r

τ
;n
)

and

1

volBr(x(i))

∫
Br(x(i))

∣∣∣∣⟨drx1(i), drx2(i)⟩ −
1

υ(Br(x))

∫
Br(x)

⟨drx1 , drx2⟩dυ
∣∣∣∣ dvol ≤ Ψ

(
r,
r

τ
;n
)

for every sufficiently large i.

Proof. By rescaling r−1dY , and Lemma 3.32, it is easy to check the assertion.

Lemma 3.38. Let {(Mi,mi)}i be a sequence of n-dimensional complete Riemannian

manifolds with RicMi
≥ −(n − 1), (Y, y, υ) a Ricci limit space of {(Mi,mi, vol)}i, l a

positive integer, r, ϵ, τ, L positive real numbers, x a point in Y , {x(i)}i a sequence of
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points xi in Mi, {kα}1≤α≤l a collection of positive integers, {xst}1≤s≤l,1≤t≤ks of points in Y ,

{xst(i)}1≤s≤l,1≤t≤ks of points in Mi for every i <∞, and {ast}1≤s≤l,1≤t≤ks of real numbers.

Let fj =
∑kj

m=1 a
j
mrxj

m
and f i

j =
∑kj

m=1 a
j
mrxj

m(i). Assume that l ≤ n, ki ≤ n for every

1 ≤ i ≤ l, x ∈
∩k

1≤i≤l,1≤j≤ki
(Dτ

xi
j
\Bτ (x

i
j)), x(i) → x, xst(i) → xst ,

∑
i,j(a

i
j)

2 ≤ L and

1

υ(Br(x))

∫
Br(x)

⟨dfj, dfi⟩dυ = δij ± ϵ.

Then, for every sufficiently large i, there exists a compact subset Ki
r of Br/10(x(i)) such

that the following properties hold:

1. vol(Br/10(x(i)) \Ki
r)/volBr/10(x(i)) ≤ Ψ(r, r/τ, ϵ;n, L).

2. For every w ∈ Ki
r and every 0 < s < r/106, there exist a compact subset Z of

Bs(w), a point z in Z, and a map ϕ from (Bs(w), w) to (Z, z) such that the map

Φ = (f i
1, f

i
2, . . . , f

i
l , ϕ) from Bs(w) to Bs+Ψ(r,r/τ,ϵ;n,L)s(f

i
1(w), . . . , f

i
l (w), ϕ(w)), is an

Ψ(r, r/τ, ϵ;n, L)s-Gromov-Hausdorff approximation.

3. We have
1

volBs(w)

∫
Bs(w)

|⟨df i
α, df

i
β⟩ − δαβ|dvol < Ψ

(
r,
r

τ
, ϵ;n, L

)
for every w ∈ Ki

r and every 0 < s < r/106.

Proof. By Corollary 3.37, we have

1

volBr(x(i))

∫
Br(x(i))

|⟨df i
j , df

i
l̂
⟩ − δj,l̂|dvol ≤ Ψ

(
r,
r

τ
, ϵ;n, L

)
for every sufficiently large i. We shall consider rescaled distances r−1dY and r−1dMi

below.

For convenience, we shall use the following notations: v̂ol = volr
−1dMi , υ̂ = υ/υ(Br(y)),

r̂z(w) = r−1w, zdY , B̂s(w) = Br−1dY
s (w) = Bsr(w), ĝ = r−1g for a Lipschitz function

g and so on. We remark that (Mi,mi, r
−1dMi

, volr
−1dMi ) → (Y, y, r−1dY , υ̂). We also

denote the differential of a Lipschitz function f on Y as a metric measure space (Y, υ̂) by

d̂f : Y → T ∗Y , and the Riemannian metric of rescaled Ricci limit space (Y, y, r−1dY , υ̂)

by ⟨·, ·⟩r. Thus, we have ⟨·, ·⟩r = r−2⟨·, ·⟩. Then we have

1

v̂ol B̂1(x(i))

∫
B̂1(x(i))

|⟨d̂f̂ i
j , d̂f̂

i
l̂
⟩r − δj,l̂|dv̂ol ≤ Ψ

(
r,
r

τ
, ϵ;n, L

)
for every sufficiently large i. On the other hand, by [2, Lemma 9.8], [2, Lemma 9.10], [2,

Lemma 9.13], for every sufficiently large i, there exists a collection of harmonic functions

{b̂m,i
j }1≤m≤l,1≤j≤km on B̂100(x(i)) such that |b̂m,i

j − r̂xm
j (i)|L∞(B̂100(x(i)))

≤ Ψ(r, r/τ ;n) and

1

v̂ol B̂100(x(i))

∫
B̂100(x(i))

(
|d̂b̂m,i

j − d̂r̂xm
j (i)|2r + |Hessb̂m,i

j
|2r
)
dv̂ol ≤ Ψ

(
r,
r

τ
;n
)
.
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Let b̂i
j =

∑kj
m=1 a

j
mb̂

m,i
j .

F̂i =
l∑

j=1

|d̂b̂i
j − d̂f̂ i

j |2r +
l∑

j=1

||d̂b̂i
j|2r − 1|+

∑
j<l̂

|⟨d̂bi
j, d̂b

i
l̂
⟩r|+

l∑
j=1

|Hessb̂i
j
|2r.

The next claim follows from Lemma 3.1, directly:

Claim 3.39. For every sufficiently large i, there exists a compact subset Ki
r of B̂1/10(x(i))

such that v̂ol(B̂ 1
10
(x(i)) \Ki

r)/v̂ol B̂ 1
10
(x(i)) ≤ Ψ(r, r/τ, ϵ;n, L) and

1

v̂ol B̂5s(w)

∫
B̂5s(w)

F̂idv̂ol ≤ Ψ
(
r,
r

τ
, ϵ;n, L

)
for every w ∈ Ki

r and every 0 < s < 1/10.

Fix w ∈ Ki
r and 0 < s ≤ 1/10. By an argument same to the proof of [6, Theorem 3.3],

we have the following:

Claim 3.40. There exist a compact subset Z of B̂s(w), a point z in Z and a map ϕ

from B̂s/105(w) to Z such that the map Φ(α) = (b̂i
1(α), . . . , b̂

i
l(α), ϕ(α)) from B̂s/105(w) to

Bs/105+Ψs(b̂
i
1(w), . . . , b̂

i
l(w), ϕ(w)) ⊂ Rk×Z, is an Ψs-Gromov-Hausdorff approximation.

Here, Ψ = Ψ(r, r/τ, ϵ;n, L).

Since
1

v̂ol B̂5s(w)

∫
B̂5s(w)

|d̂b̂i
j − d̂f̂ i

j |2rdv̂ol ≤ Ψ
(
r,
r

τ
, ϵ;n, L

)
,

by the segment inequality on manifolds [6, Theorem 2.15], for every z1 ∈ B̂s(w), there

exist ẑ1 ∈ B̂5s(w), ŵ ∈ B̂5s(w) and a minimal geodesic γ from ẑ1 to ŵ such that z1, ẑ1 ≤
Ψ(r, r/τ, ϵ;n, L), w, ŵ ≤ Ψ(r, r/τ, ϵ;n, L) and∫ ẑ1,ŵ

0

L̂ip(b̂i
j − f̂ i

j)(γ(t))dt ≤ Ψ
(
r,
r

τ
, ϵ;n, L

)
s.

Therefore, we have

|b̂i
j(ẑ1)− f̂ i

j(ẑ1)− (b̂i
j(ŵ)− f̂ i

j(ŵ))| ≤
∫ ẑ1,ŵ

0

L̂ip(b̂i
j − f̂ i

j)(γ(t))dt ≤ Ψ
(
r,
r

τ
, ϵ;n, L

)
s.

By Cheng-Yau’s gradient estimate, we have L̂ip(b̂i
j|B̂2s(w)) ≤ C(n, L). Thus, we have

|b̂i
j(z1)− f̂ i

j(z1)− (b̂i
j(w)− f̂ i

j(w))| ≤ Ψ(r, r/τ, ϵ;n, L)s. Let C = b̂i
j(w)− f̂ i

j(w). Then we

have that b̂i
j = f̂ i

j + C ±Ψ(r, r/τ, ϵ;n, L) s on B̂s(w).

Thus, the map Φ̂(α) = (f̂ i
1(α), . . . , f̂

i
l (α), ϕ(α)) from B̂s/105(w) toBs/105+Ψs(f̂

i
1(w), . . . , f̂

i
l (w), ϕ(w)),

is an Ψs-Gromov-Hausdorff approximation. Therefore we have the assertion.
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Lemma 3.41. Let (Y, y, υ) be a Ricci limit space, τ, ϵ, δ, L positive numbers, l,m pos-

itive integers, x a point in Y , {ks}1≤s≤l a collection of positive integers, {ast}1≤s≤l,1≤t≤ks

of real numbers, and {xst}1≤s≤l,1≤t≤ks of points in Y . Let fj =
∑kj

p=1 a
j
prxj

p
. Assume that

x ∈ Leb
(∩

1≤i≤l,1≤j≤ki
(Dτ

xi
j
\ {xij}) ∩ (Rm)δ,τ

)
,
∑

i,j(a
i
j)

2 ≤ L and

lim sup
r→0

1

υ(Br(x))

∫
Br(x)

|⟨dfj, dfi⟩ − δij|dυ ≤ ϵ.

Then, for every sufficiently small s > 0, there exists a compact subset Ks of Bs(x) such

that the following properties hold:

1. υ(Ks)/υ(Bs(x)) ≥ 1−Ψ(ϵ, δ;n, L).

2. For every α ∈ Ks and every sufficiently small t > 0, there exist a collection of points

{wt
j(α)}1≤j≤m−l in Y , and a compact subset Ut of Bt(α) such that υ(Ut)/υ(Bt(α)) ≥

1 − Ψ(ϵ, δ;n, L) and that the map Φt = (f1, . . . , fl, rwt
1(α)

, . . . , rwt
m−l(α)

) from Ut to

Rm, is (1±Ψ(ϵ, δ;n, L))-bi-Lipschitz to the image.

Proof. Let (Mi,mi, x
s
t(i), vol) → (Y, y, xst , υ) and f i

j =
∑kj

p=1 a
j
prxj

p(i)
. There exists

s1 > 0 such that s1 << τ and

1

υ(B1010s(x))

∫
B1010s(x)

|⟨dfj, dfi⟩−δij|dυ+
υ
(
B1010s(x) ∩

∩
1≤i≤l,1≤j≤ki

(Dτ
xi
j
∩ (Rm)δ,r)

)
υ(B1010s(x))

≤ 3ϵ

for every 0 < s < s1. By Proposition 2.5 and Lemma 3.38, for every 0 < s < s1, there

exists a compact subset Ks of B109s(x) such that the following properties hold:

1. υ(Ks)/υ(B109s(x)) ≥ 1−Ψ(ϵ;n, L).

2. For every w ∈ Ks and every 0 < t < 104s, there exist a compact subset Zw
t of Bt(w)

and a map ϕw
t from Bt(w) to Z

w
t such that the map Φw

t = (f1, . . . , fl, ϕ
w
t ) from Bt(w)

to B109(t+Ψt)(f1(w), . . . , fl(w), ϕ
w
t (w)), is an Ψt-Gromov-Hausdorff approximation.

Here Ψ = Ψ(ϵ;n, L).

3. We have
1

υ(Bt(w))

∫
Bt(w)

|⟨dfj, dfi⟩ − δij|dυ ≤ Ψ(ϵ;n, L)

for every w ∈ Ks and every 0 < t < 104s.

Here, with the same notation as in Lemma 3.38, we applied Proposition 4.12 to get

lim
k→∞

1

volBt(w(k))

∫
Bt(w(k))

|⟨dfk
j , df

k
i ⟩ − δij|dvol =

1

υ(Bt(w))

∫
Bt(w)

|⟨dfj, dfi⟩ − δij|dυ
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for every sequence w(k) → w. Fix 0 < s < s1, w ∈ Ks ∩ Leb(
∩

1≤i≤l,1≤j≤ki
(Dτ

xi
j
\

{xij}) ∩ (Rm)δ,r), 0 < t < 104s, Zw
t , ϕ

w
t , and Φw

t as above. We remark that υ(Ks ∩
Leb(

∩
1≤i≤l,1≤j≤ki

(Dτ
xi
j
\ {xij}) ∩ (Rm)δ,r))/υ(B109s(x)) ≥ 1 − Ψ(ϵ;n, L). Assume that t

is sufficiently small and

υ
(
Bt̂(w) ∩

∩
1≤i≤l,1≤j≤ki

(Dτ
xi
j
\ {xij}) ∩ (Rm)δ,r

)
υ(Bt̂(w))

≥ 1− ϵ

for every 0 < t̂ ≤ t, below. Then, for every 1 ≤ j ≤ l, there exist points y+j , y
−
j ∈ Bt(w)

such that Φw
t (y

+
j ), (0, . . . , 0, t︸ ︷︷ ︸

j

, 0, . . . , 0, ϕw
t (w)) ≤ Ψt and Φw

t (y
−
j ), (0, . . . , 0,−t︸ ︷︷ ︸

j

, 0, . . . , 0, ϕw
t (w)) ≤

Ψt. Let Φ̂w
t be an Ψt-Gromov-Hausdorff approximation fromB109(t+Ψt)(f1(w), . . . , fl(w), ϕ

w
t (w))

toBt(w) satisfying that Φw
t ◦ Φ̂w

t (α), α ≤ Ψt for every α ∈ B109(t+Ψt)(f1(w), . . . , fl(w), ϕ
w
t (w)),

and that Φ̂w
t ◦ Φw

t (β), β ≤ Ψt for every β ∈ Bt(w). On the other hand, there ex-

ist δt-Gromov-Hausdorff approximations ψw
t from (Bt(w), w) to (Bt(0m), 0m), and ψ̂w

t

from (Bt(0m), 0m) to (Bt(w), w) such that ψw
t ◦ ψ̂w

t (α), α ≤ 5δt for every α ∈ Bt(0m),

and that ψ̂w
t ◦ ψw

t (β), β ≤ 5δt for every β ∈ Bt(w). Especially, there exists an Ψt-

Gromov-Hausdorff approximation ĥwt from (Bt(0m−l), 0m−l) to (Zw
t , ϕ

w
t (w)) such that

(0, . . . , 0, α), ψw
t ◦ Φ̂w

t (f1(w), . . . , fl(w), ĥ
w
t (α)) ≤ Ψt for every α ∈ Zw

t , where Ψ = Ψ(ϵ, δ;n, L).

Without loss of generality, we can assume that ψw
t (y

+
i ), (0, . . . , 0, t︸ ︷︷ ︸

i

, 0, . . . , 0) ≤ Ψt. Then,

for every i ∈ {l+1, . . . ,m}, there exist points z+i , z−i ∈ Bt(w) such that ψw
t (z

+
i ), (0, . . . , 0, t︸ ︷︷ ︸

i

, 0, . . . , 0) ≤

Ψt and ψw
t (z

−
i ), (0, . . . , 0,−t︸ ︷︷ ︸

i

, 0, . . . , 0) ≤ Ψt. Let Fi = fi − fi(w) and Gi = Fi ◦ ψw
t

on (Bt(0m), 0m). Since πRm−l(ψw
t ◦ Φ̂w

t (f1(w), . . . , fl(w), ĥ
w
t (α))), α ≤ Ψt for every α ∈

Bt(0m−l), we have that the map G = (G1, . . . , Gl, πl+1, . . . , πm) from (Bt(0m), 0m) to

(Bt+Ψt(0m), 0m), satisfies G((0, . . . , 0,±t︸ ︷︷ ︸
i

, 0, . . . , 0), (0, . . . , 0,±t︸ ︷︷ ︸
i

, 0, . . . , 0) ≤ Ψt for every

i, and that it is an Ψt-Gromov-Hausdorff approximation, where πRm−l is the canonical

projection Rm = Rl ×Rm−l to Rm−l, πi is the i-th projection from Rm to R. Thus, we

have α,G(α) ≤ Ψt for every α ∈ Bt(0m). Especially, we have the following claim:

Claim 3.42. We have |Gi − πi| ≤ Ψ(ϵ, δ;n, L)t on Bt(0m).

Fix 0 < t̂ < t. By rescaling t̂−1dY , t̂
−1dRm , Claim 3.42 and the definition of Busemann

function, we have the following:

Claim 3.43. We have

|Fi(α)− (ry−i (α)− ry−i (w))| ≤ Ψ

(
ϵ, δ,

t̂

t
,
Ψ(ϵ, δ;n, L)t

t̂
;n, L

)
t̂
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for every α ∈ B t̂(w).

Let y−j (k), z
−
j (k), w(k) be points in Mk satisfying that y−j (k) → y−j , z

−
j (k) → z−j and

w(k) → w. Put r =
√
Ψt for Ψ = Ψ(ϵ, δ;n, L) as in Claim 3.43. For convenience, for

rescaled distances r−1dY and r−1dMi
, we shall use the same notation as in the proof of

Lemma 3.38: f̂k
i , d̂f, v̂ol, and so on.

Claim 3.44. We have

1

v̂ol B̂100(w(k))

∫
B̂100(w(k))

|d̂f̂k
i − d̂r̂y−i (k)|

2
rdv̂ol ≤ Ψ(ϵ, δ;n, L)

for every sufficiently large k.

The proof is as follows. By the assumption and Proposition 4.12, we have

1

v̂ol B̂1000(x(k))

∫
B̂1000(x(k))

||d̂f̂k
i |2r − 1|dv̂ol ≤ Ψ(ϵ, δ;n, L)

for every sufficiently large k. By an argument similar to the proof of Lemma 3.38, for

every sufficiently large k, there exists a harmonic function b̂k
i on B̂100(w(k)) such that

Lip b̂k
i ≤ C(n), |b̂k

i − f̂k
i |L∞(B̂100(w(k))) ≤ Ψ(r, r/τ ;n, L) and

1

v̂ol B̂1000(w(k))

∫
B̂1000(w(k))

(
|d̂b̂k

i − d̂f̂k
i |2r + |Hessb̂k

i
|2r
)
dv̂ol ≤ Ψ(r, r/τ ;n, L).

For every α ∈ B̂1000(w(k)) \ Cy−i (k), let γ
α
i be the minimal geodesic from y−i (k) to α on

(Mi, r
−1dMi

). Fix 0 < h < 1. By Claim 3.43, there exists k0 such that

b̂k
i (α)− b̂k

i

(
γαi

(
y−i (k), α

r−1dMk − h

))
h

=

f̂k
i (α)− f̂k

i

(
γαi

(
y−i (k), α

r−1dMk − h

))
h

± Ψ(ϵ, δ;n, L)

h

=

f̂i(ϕk(α))− f̂i

(
ϕk

(
γαi

(
y−i (k), α

r−1dMk − h

)))
h

± Ψ(ϵ, δ;n, L)

h

=

y−i , ϕk(α)
r−1dY − y−i , ϕk

(
γαi

(
y−i (k), α

r−1dMk − h

))r−1dY

h
± Ψ(ϵ, δ;n, L)

h

=

y−i (k), α
r−1dMk − y−i (k), γ

α
i

(
y−i (k), α

r−1dMk − h

)r−1dMk

h
± Ψ(ϵ, δ;n, L)

h

= 1± Ψ(ϵ, δ;n, L)

h
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for every k ≥ k0 and every α ∈ B̂1000(w(k)) \Cy−i (k). On the other hand, by an argument

similar to the proof of Claim 3.34, we have∣∣∣∣∣∣ 1

v̂ol B̂100(w(k))

∫
B̂100(w(k))

1

h

∫ y−i (k),α
r−1dMk

y−i (k),α
r−1dMk−h

(
s− (y−i (k), α

r−1dMk − h)

)
d2b̂k

i ◦ γαi
ds2

dsdv̂ol

∣∣∣∣∣∣
≤ C(n)

h

v̂ol B̂1000(w(k))

∫
B̂1000(w(k))

|Hessb̂k
i
|rdv̂ol ≤ Ψ(ϵ, δ;n, L).

Since

b̂k
i (α) = b̂k

i (γ
α
i (y

−
i (k), α

r−1dMk − h)) +
d̂b̂k

i

d̂r̂y−i (k)

(α)h

−
∫ y−i (k),α

r−1dMk

y−i (k),α
r−1dMk−h

(
s− (y−i (k), α

r−1dMk − h)

)
d2b̂k

i ◦ γαi
ds2

ds

for every α ∈ B̂100(w(k)) \ Cy−i (k), we have

1

v̂ol B̂100(w(k))

∫
B̂100(w(k))

⟨d̂b̂k
i , d̂r̂y−i (k)⟩rdv̂ol = 1± Ψ(ϵ, δ;n, L)

h
.

Therefore, we have

1

v̂ol B̂100(w(k))

∫
B̂100(x(k))

|d̂f̂k
i − d̂r̂y−i (k)|

2
rdv̂ol

=
1

v̂ol B̂100(w(k))

∫
B̂100(w(k))

|d̂f̂k
i |2rdv̂ol−

2

v̂ol B̂100(w(k))

∫
B̂100(w(k))

⟨d̂f̂k
i , d̂r̂y−i (k)⟩rdv̂ol + 1

= 1− 2
1

v̂ol B̂100(w(k))

∫
B̂100(w(k))

⟨d̂b̂k
i , d̂r̂y−i (k)⟩rdv̂ol + 1±Ψ(ϵ, δ;n, L)

= 2− 2

(
1± Ψ(ϵ, δ;n, L)

h

)
±Ψ(ϵ, δ;n, L) =

Ψ(ϵ, δ;n, L)

h
.

Therefore, we have Claim 3.44.

Next claim follows from Claim 3.44 and [2, Theorem 9.29] directly:

Claim 3.45. For every sufficiently large k, we have

1

v̂ol B̂100(w(k))

∫
B̂1(w(k))

|⟨d̂f̂k
i , d̂r̂z−j (k)⟩r|dv̂ol ≤ Ψ(ϵ, δ;n, L)

for every 1 ≤ i ≤ l and every l + 1 ≤ j ≤ m. Moreover we have

1

v̂ol B̂100(w(k))

∫
B̂1(w(k))

|⟨d̂f̂k
i , d̂f̂

k
î
⟩r|dv̂ol ≤ Ψ(ϵ, δ;n, L)

for every 1 ≤ i < î ≤ l.
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For every i with l+ 1 ≤ i ≤ m, and every sufficiently large k, there exists a harmonic

function b̂k
i on B̂1000(w(k)) such that |r̂z−i − b̂k

i |L∞(B̂1000(w(k))) ≤ Ψ(ϵ, δ;n, L) and

1

v̂ol B̂1000(w(k))

∫
B̂1000(w(k))

(
|d̂b̂k

i − d̂r̂z−i (k)|
2
r + |Hessb̂k

i
|2r
)
dv̂ol ≤ Ψ(ϵ, δ;n, L).

Let

F̂k =
∑

1≤i,j≤m

|⟨d̂b̂k
i , d̂b̂

k
j ⟩r − δi,j|+

∑
1≤i≤m

|Hessb̂k
i
|2r +

l∑
i=1

|d̂b̂k
i − d̂f̂k

i |2r +
m∑

i=l+1

|d̂b̂k
i − d̂r̂z−i |

2
r.

Then, by Lemma 3.1, for every sufficiently large k, there exists a compact subset Z(k) of

B̂1(w(k)) such that v̂ol(B̂1(w(k)) \ Z(k))/v̂ol B̂1(w(k)) ≤ Ψ(ϵ, δ;n, L) and

1

v̂ol B̂ŝ(α)

∫
B̂ŝ(α)

F̂kdv̂ol ≤ Ψ(ϵ, δ;n, L)

for every α ∈ Z(k) and every 0 < ŝ < 10. Thus, by an argument similar to the proof

of [6, Theorem 3.3], for every α ∈ Z(k) and every 0 < ŝ < 1, there exist a compact

subset Pα
s of B̂ ŝ(α), a point pαŝ ∈ Pα

ŝ , and a map qαŝ from (B̂ ŝ(α), α) to (B ŝ(p
α
ŝ ), p

α
ŝ )

such that the map Qα
ŝ = (b̂k

1, . . . , b̂
k
m, q

α
ŝ ) from B̂ ŝ(α) to B̂ ŝ+Ψŝ(b̂

k
1(α), . . . , b̂

k
m(α), p

α
ŝ ), is

an Ψŝ-Gromov-Hausdorff approximation. By an argument similar to the proof of Claim

3.40, for every α ∈ Z(k) and every 0 < ŝ < 1, we have that b̂k
i = f̂k

i + constant ± Ψŝ

on B̂ŝ(α) for every 1 ≤ i ≤ l, and b̂k
i = r̂z−i (k) + constant ± Ψŝ on B̂ŝ(α) for every

l + 1 ≤ i ≤ m. Therefore, the map Q̂α
ŝ = (f̂k

1 , . . . , f̂
k
l , r̂z−l+1(k)

, . . . , r̂z−m(k), q
α
ŝ ) from B̂ ŝ(α)

to B̂ ŝ+Ψŝ(f̂
k
1 (α), . . . , f̂

k
l (α), r̂z−l+1(k)

(α), . . . , r̂z−m(k)(α), p
α
ŝ ), is an Ψŝ-Gromov-Hausdorff ap-

proximation. Without loss of generality, we can assume that there exists a compact subset

Z(∞) of B̂1(w) such that Z(k) → Z(∞). Let U = Z(∞) ∩
∩

1≤i≤l,1≤j≤ki
(Dτ

xi
j
\ {xij}) ∩

(Rm)δ,r. By Proposition 2.5, we have υ̂(B̂1(w)∩U)/υ̂(B̂1(w)) ≥ 1−Ψ. Since α ∈ (Rm)τ,δ,

we have that the map Tα
ŝ = (f̂1, . . . , f̂l, r̂z−l+1

, . . . , r̂z−m) from B̂ ŝ(α) to B ŝ(T
α
ŝ (α)), is an Ψŝ-

Gromov-Hausdorff approximation for every α ∈ U and every 0 < ŝ < 1. Let α, β be

points in U ∩ B̂1/2(w) with α ̸= β. Put ŝ = α, β
r−1dY

< 1. Then we have

(f̂1(α), . . . , f̂l(α), r̂z−l+1
(α), . . . , r̂z−m(α)), (f̂1(β), . . . , f̂l(β), r̂z−l+1

(β), . . . , r̂z−m(β))

= α, β
r−1dY ±Ψŝ = (1±Ψ)α, β

r−1dY
.

Therefore we have the assertion.

Lemma 3.46. Let (Y, y, υ) be a Ricci limit space, l, k,m positive integers with 1 ≤ l ≤
m ≤ n, x a point in Y , {hi}1≤i≤l a collection of Lipschitz functions on Y , {xi}1≤i≤k of

points in Y , and {aji}1≤i≤k,1≤j≤l of real numbers Let fj =
∑k

i=1 a
j
irxi

. Assume that the

following properties hold:
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1. We have

lim
r→0

1

υ(Br(x))

∫
Br(x)

|dfj − dhj|dυ = 0

for every j.

2. We have

x ∈
∪
τ>0

(∩
δ>0

(∪
r>0

Leb

(∩
i

(Dτ
xi
\ {xi}) ∩ (Rm)δ,r

)))
.

3. The limit

lim
r→0

1

υ(Br(x))

∫
Br(x)

⟨dhi, dhj⟩dυ ∈ R

exists for every i, j.

4. We have

det

(
lim
r→0

1

υ(Br(x))

∫
Br(x)

⟨dhi, dhj⟩dυ
)

i,j

̸= 0.

Then, for every 0 < δ < 1, there exists r0 > 0 such that for every 0 < s < r0, there exists

compact subset Ks of Bs(x) such that the following properties hold:

1. υ(Ks)/υ(Bs(x)) ≥ 1− δ.

2. For every α ∈ Ks and every sufficiently small t > 0, there exist a collection

{wt
j(α)}1≤j≤m−l of points in Y , and a compact subset Ut of Bt(α) such that υ(Ut)/υ(Bt(α)) ≥

1 − δ and that the map Φt = ((h1, . . . , hl)A, rwt
1(α)

, . . . , rwt
m−l(α)

) from Ut to Rm, is

an (1± δ)-bi-Lipschitz to the image, where

A =

√(
lim
r→0

1

υ(Br(x))

∫
Br(x)

⟨dhi, dhj⟩dυ
)

i,j

−1

.

Proof. Define a collection {gi}1≤i≤l of Lipschitz functions gi on Y by (g1, . . . , gl) =

(h1, . . . , hl)A. By the definition, we have

lim
r→0

1

υ(Br(x))

∫
Br(x)

⟨gi, gj⟩dυ = δi,j.

By the assumption and Corollary 3.37, we have

lim
r→0

1

υ(Br(x))

∫
Br(x)

|⟨gi, gj⟩ − δi,j|dυ = 0.

Put (F1, . . . , Fl) =
(∑k

i=1 b
1
i rxi

, . . . ,
∑k

i=1 b
l
irxi

)
=
(∑k

i=1 a
1
i rxi

, . . . ,
∑k

i=1 a
l
irxi

)
A. Let

L ≥ 1 satisfying |A| +
∑

i,j(b
j
i )

2 ≤ L. Fix 0 < δ < 1. By Lemma 3.41, we have the

following claim:
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Claim 3.47. There exists r1 > 0 such that for every 0 < s ≤ r1, there exist a compact

subset Ks of Bs(x) such that the following properties hold:

1. υ(Ks)/υ(Bs(x)) ≥ 1− δ.

2. For every α ∈ Ks and every sufficiently small t > 0, there exist a collection of points

{wt
j(α)}1≤j≤m−l in Y , and a compact subset Et of Bt(α) such that υ(Et)/υ(Bt(α)) ≥

1 − δ and that the map Φα
t = (F1, . . . , Fl, rwt

1(α)
, . . . , rwt

m−l(α)
) from Et to Rm, is

(1± δ)-bi-Lipschitz to the image.

On the other hand, there exists r0 > 0 such that

1

υ(Bs(x))

∫
Bs(x)

∑
j

|dFj − dgj|dυ ≤ δ

for every 0 < s < r0. Thus, by Lemma 3.1, for every 0 < s < r0/100, there exists a

compact subset Xs of Bs(x) such that υ(Xs)/υ(Bs(x)) ≥ 1−Ψ(δ;n) and

1

υ(B5ŝ(α))

∫
B5ŝ(α)

∑
j

|dFj − dgj|dυ ≤ Ψ(δ;n)

for every α ∈ Xs and every 0 < ŝ ≤ s. Put Vs = Ks ∩ Xs for every 0 < s <

min{r0, r1}/1000. Then we have υ(Vs)/υ(Bs(x)) ≥ 1−Ψ(δ;n). Fix 0 < s < min{r0, r1}/1000
and α ∈ Vs. By an argument similar to the proof of Claim 3.40, for every sufficiently

small t > 0, we have Fj = fj + constant ± Ψ(δ;n)t on Bt(α). Fix such t > 0 and put

Ut = Bt/2(α) ∩ Et. Then we have υ(Ut)/υ(Bt/2(α)) ≥ 1−Ψ(δ;n). Let p1, p2 be points in

Ut with p1 ̸= p2. Put t̂ = p1, p2 > 0. Then we have

(f1(p1), . . . , fl(p1), rwt
1(α)

, . . . , rwt
m−l(α)

(p1)), (f1(p2), . . . , fl(p2), rwt
1(α)

(p2), . . . , rwt
m−l(α)

(p2))

= (F1(p1), . . . , Fl(p1), rwt
1(α)

(p1), . . . , rwt
m−l(α)

(p1)), (F1(p2), . . . , Fl(p2), rwt
1(α)

(p2), . . . , rwt
m−l(α)

(p2))±Ψt̂

= (1± δ)p1, p2 ±Ψt̂ = (1±Ψ)p1, p2.

Therefore we have the assertion.

Lemma 3.48. Let (Y, y, υ) be a Ricci limit space, l a positive integer, {fi}1≤i≤l a

collection of Lipschitz functions on Y , f a Lipschitz function on Y , and A a Borel subset

of Y . Assume that span{df1(x), . . . , dfl(x)} = T ∗
xY for a.e. x ∈ A. Then, for a.e. x ∈ A,

there exists a collection of real numbers {bi(x)}1≤i≤l such that

lim
r→0

1

υ(Br(x))

∫
Br(x)

∣∣∣∣∣df −
l∑

i=1

bi(x)dfi

∣∣∣∣∣
2

dυ = 0.
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Proof. Without loss of generality, we can assume that {dfi(x)}i is a basis of T ∗
xY for

every x ∈ A. Put

(b1(x), . . . , bl(x)) = (⟨df, df1⟩(x), . . . , ⟨df, dfl⟩(x))
√

(⟨dfi, dfj⟩(x))i,j
−1

for every x ∈ A. Then, by Lebesgue’s differentiation theorem, for a.e. x ∈ A, we have

lim
r→0

1

υ(Br(x))

∫
Br(x)

|df |2dυ = |df |2(x), lim
r→0

1

υ(Br(x))

∫
Br(x)

⟨df, dfi⟩dυ = ⟨df, dfi⟩(x)

and

lim
r→0

1

υ(Br(x))

∫
Br(x)

⟨dfi, dfj⟩dυ = ⟨dfi, dfj⟩(x)

for every i, j. Then, since it is easy to check that

lim
r→0

1

υ(Br(x))

∫
Br(x)

|df |2dυ = lim
r→0

1

υ(Br(x))

∫
Br(x)

⟨
df,

l∑
i=1

bi(x)dfi

⟩
dυ

= lim
r→0

1

υ(Br(x))

∫
Br(x)

∣∣∣∣∣
l∑

i=1

bi(a)dfi

∣∣∣∣∣
2

dυ

=

∣∣∣∣∣
l∑

i=1

bi(x)dfi(x)

∣∣∣∣∣
2

for a.e. x ∈ A, we have

lim
r→0

1

υ(Br(x))

∫
Br(x)

∣∣∣∣∣df −
l∑

i=1

bi(x)dfi

∣∣∣∣∣
2

dυ

= lim
r→0

1

υ(Br(x))

∫
Br(x)

|df |2dυ − 2 lim
r→0

1

υ(Br(x))

∫
Br(x)

⟨
df,

l∑
i=1

bi(x)dfi

⟩
dυ

+ lim
r→0

1

υ(Br(x))

∫
Br(x)

∣∣∣∣∣
l∑

i=1

bi(a)dfi

∣∣∣∣∣
2

dυ = 0

for a.e. x ∈ A.

Theorem 3.49 (Rectifiability associated with Lipschitz functions). Let (Y, y, υ) be a

Ricci limit space, l a positive integer, {fi}1≤i≤l a collection of Lipschitz functions on Y , A

a Borel subset of Y . Assume that {dfi(x)}1≤i≤l are linearly independent in T ∗
xY for a.e.

x ∈ A. Then, there exist 0 < α(n) < 1, collections of compact subsets {Ck,i}l≤k≤n,i∈N

of A, of points {xk,i}k,i in A, and of points {xsk,i}k,i,1≤s≤k−l in Y such that the following

properties hold:

1. Ck,i ⊂ Rk,α(n) ∩
∩k−l

j=1(A \ (Cxj
k,i

∪ {xjk,i})) and υ
(
A \

∪
l≤k≤n,i∈NCk,i

)
= 0 for evrey

k.
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2. For every l ≤ k ≤ n, every x ∈
∪

i∈NCk,i and every 0 < δ < 1, there exists Ck,i such

that x ∈ Ck,i and that the map ϕk,i = ((f1, . . . , fl)
√
(⟨dfi, dfj⟩(xk,i))i,j

−1
, rx1

k,i
, . . . , rxk−l

k,i
)

from Ck,i to Rk, is (1± δ)-bi-Lipschitz to the image.

3. The limit measure υ and the k-dimensional Hausdorff measure Hk are mutually

absolutely continuous on Ck,i. Moreover, υ is Ahlfors k-regular at every x ∈ Ck,i.

Proof. Let {Cy
k,i}k,i be a collection of Borel subset of Y , and {xl̂k,i}k,i of points in

Y as in Theorem 3.16, where x1k,i = y. By Lemma 3.13, without loss of generality, we

can assume that Ck,i is bounded for every i, k. By the construction of T ∗Y , we have

span{drx1
k,i
(x), . . . , drxk

k,i
(x)} = T ∗

xY for a.e. x ∈ Cy
k,i. Therefore, we have υ(A∩Cy

k,i) = 0

for every k < l. Since

υ

(
Rk \

∪
τ>0

(∩
δ>0

(∪
r>0

Leb

(∩
i,j

(Dτ
xj
i

\ {xji}) ∩ (Rk)δ,r

))))
= 0,

the following claim follows from Lemma 3.46 and Lemma 3.48, directly:

Claim 3.50. For every k ≥ l and every i ∈ N, there exists a Borel subset Ak,i of

A ∩ Ck,i such that the following properties hold:

1. υ(A ∩ Ck,i \ Ak,i) = 0.

2. For every x ∈ Ak,i and every 0 < δ < 1, there exists rδx > 0 such that for every

0 < s < rδx, there exists a compact subset K(x, δ, s) of Bs(x) such that the following

properties hold:

(a) υ(K(x, δ, s))/υ(Bs(x)) ≥ 1− δ.

(b) For every α ∈ K(x, δ, s) and every sufficiently small t > 0, there exist a collec-

tion of points {w(i, x, δ, s, α, t)}1≤i≤k−l in Y , and a compact subset U(x, δ, s, α, t)

of Bt(α) such that the map Φx,δ,s,α,t =
(
(f1, . . . , fl)A(x), rw(1,x,δ,s,α,t), . . . , rw(k−l,x,δ,s,α,t)

)
from U(x, δ, s, α, t) to Rk, is (1± δ)-bi-Lipschitz to the image, where

A(x) =

√(
lim
r→0

1

υ(Br(x))

∫
Br(x)

⟨dfs, dft⟩dυ
)

s,t

−1

=
√
(⟨dfs, dft⟩(x))s,t

−1

.

Put Âk,i = Leb(Ak,i). For every N ∈ N and every x ∈ Âk,i, let s
N
x be a positive

number satisfying that 0 < sNx < min{r1/Nx , N−1} and υ(BsNx
(x) ∩ Ak,i)/υ(BsNx

(x)) ≥
1−N−1. Let K(x,N−1, sNx ) be a compact subset as in Claim 3.50. Put K̂(x,N−1, sNx ) =

K(x,N−1, sNx )∩Âk,i. Then, we have υ
(
BsNx

(x) ∩ K̂(x,N−1, sNx )
)
/υ(BsNx

(x)) ≥ 1−100N−1.

For every α ∈ K̂(x,N−1, sNx ), there exists 0 < t = t(α) < N−1 such that υ(Bt̂(α) ∩
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Ak,i)/υ(Bt̂(α)) ≥ 1−N−1 for every 0 < t̂ < t. Take w(i, x,N−1, sNx , α, t̂) and U(x,N
−1, sNx , α, t̂)

as in Claim 3.50. Put Û(x,N−1, sNx , α, t̂) = U(x,N−1, sNx , α, t̂) ∩ Âk,i. Then we have

υ
(
Bt̂(α) ∩ Û(x,N−1, sNx , α, t̂)

)
/υ(Bt̂(α)) ≥ 1 − 1000N−1. By Lemma 2.4, it is not diffi-

cult to check that the following claim:

Claim 3.51. There exist xNj ∈ Âk,i, α
N
j ∈ K̂(xNj , N

−1, sN
xN
j
) and 0 < tNj < t(αN

j ) such

that

υ

(
Ak,i \

∪
j∈N

Û(xNj , N
−1, sNxN

j
, αN

j , t
N
j )

)
≤ Ψ(N−1;n)υ(B10(Ak,i)).

Put Û(j,N) = Û(xNj , N
−1, sN

xN
j
, αN

j , t(α
N
j )), w(i, j, N) = w(i, xNj , N

−1, sN
xN
j
, αN

j , t(α
N
j )),

U(j) =
∩

N0∈N

(∪
N1≥N0

Û(j,N1)
)
and U(j,N) = Û(j,N)∩U(j). Then we have υ

(
Ak,i \

∪
j∈N U(j)

)
=

0 and
∪

N∈N U(j,N) = U(j). Fix j, w ∈
∪

N∈N U(j,N) and 0 < δ < 1. There exists N0

such that w ∈ U(j,N0). Let N1 ∈ N with N−1
1 << δ. Since w ∈

∪
N2≥N1

Û(j,N2), there

exists N2 ≥ N1 such that w ∈ Û(j,N2). Especially we have w ∈ U(j,N2). Thus the map

Gj,N2 = ((f1, . . . , fl)A(x
N2
j ), rw(1,j,N2), . . . , rw(k−l,j,N2)) from U(j,N2) to Rk, is (1 ± N−1

2 )-

bi-Lipschitz to the image. Especially, Gj,N2 is (1±δ)-bi-Lipschitz to the image. Therefore,

we have the assertion.

Remark 3.52. The radial rectifiability theorem, Theorem 3.16, corresponds to The-

orem 3.49 for the case: l = 1, f1 = rx, A = Y .

We will end this subsection by giving two corollaries of Theorem 3.49. For a metric

spaceX, define a distance onR≥0×X/({0}×X) by (t1, x1), (t2, x2) =
√
t21 + t22 − 2t1t2 cosmin{x1, x2, π}.

Denote this metric space by C(X), and put p = [(0, x)] ∈ C(X). The next corollary is

used in [24], essentially.

Corollary 3.53. Let X be a compact geodesic space and l a nonnegative integer.

Assume that l ≤ n, dimHX = n− l−1 and that (Rl×C(X), (0l, p)) is a Ricci limit space.

Then, X is Hn−l−1-rectifiable.

Proof. Define a collection of 1-Lipschitz functions {g}∪{πj}1≤j≤l on Rk ×C(X) by

πj(t1, . . . , tl, w) = tj and g(t1, . . . , tl, w) = p, w. By Theorem 3.30 and [4, Theorem 5.9],

we have ⟨dπi, dπj⟩(α) = δi,j, ⟨dπi, dg⟩(α) = 0, |dg|(α) = 1 for a.e. α ∈ Rl × C(X) with

respect to the n-dimensional Hausdorff measure Hn. Therefore, by applying Theorem

3.49 for a collection of Lipschitz functions {πj}1≤j≤l ∪ {g} and A = Rl × C(X), there

exists a collection of Borel subsets {Ck,i}i,l+1≤k≤n as in Theorem 3.49. Since the product

measure H l × Hn−l on Rl × C(X) is equal to Hn (see appendix in [24]), by Fubini’s

theorem, we have

0 = Hn

((
Rl × C(X)

)
\
∪
k,i

Ck,i

)
=

∫
Rl

Hn−l

(
({t1, . . . , tl} × C(X)) \

∪
k,i

Ck,i

)
dH l.
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Especially, there exists (t1, . . . , tl) ∈ Rl such thatHn−l
(
({t1, . . . , tl} × C(X)) \

∪
k,iCk,i

)
=

0. Put Ĉk,i = ({t1, . . . , tl} × C(X)) ∩ Ck,i and regard it as a subset of C(X), canonically.

Now, we remark that ∫
C(X)

fdHn−l =

∫ ∞

0

∫
∂Bt(p)

fdHn−l−1dt

holds for every f ∈ L1(C(X)) (this is the co-area formula for the distance function

from the pole in C(X). See for instance appendix in [24]). Thus, especially, we have

Hn−l−1
(
∂Bt(p) ∩ C(X) \

∪
k,i Ĉk,i

)
= 0 for a.e. t > 0. Then it is not difficult to check

the assertion.

Remark 3.54. With the same notation as in Corollary 3.53, we have 0 < Hn−l−1(Br(x)) <

∞ for every x ∈ X and every r > 0. It follows from [4, Theorem 5.9], [6, Theorem 4.6] and

the above co-area formula for the distance function from the pole on C(X). We skipped

the proof because it is not difficult to check it.

Similarly, we have the following:

Corollary 3.55. Let (X, x) be a pointed proper geodesic space, l a nonnegative inte-

ger. Assume that l ≤ n, dimHX = n− l and that (Rl ×X, (0l, x)) is a Ricci limit space.

Then, X is Hn−l-rectifiable.

4 Convergence of L∞-functions and of Lipschitz func-

tions

In this section, we will give two-notions of convergence of a sequence of L∞-functions

with respect to the measured Gromov-Hausdorff topology. By using these notions, we

will give the definition of a convergence of the differentials of Lipschitz functions (see

Definition 4.15). Moreover, by combining with several results given in section 3, we will

discuss convergence of harmonic functions. In [27], we can also find related important,

interesting results to this section. Throughout the following subsections 4.1 and 4.2, we

shall fix the following:

1. Let {(Zi, zi)}1≤i≤∞ be a sequence of pointed proper geodesic spaces, xi ∈ Zi.

2. Let υi be a Radon measure on Zi for every 1 ≤ i ≤ ∞.

3. υi(B1(zi)) = 1 holds for every i.

4. For every R ≥ 1, there exists κ = κ(R) ≥ 1 such that υi(B2s(z)) ≤ 2κυi(Bs(z)) for

every 1 ≤ i ≤ ∞, every z ∈ Zi and every 0 < s ≤ R.
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5. (Zi, xi, zi, υi)
(ϕi,Ri,ϵi)→ (Z∞, x∞, z∞, υ∞).

4.1 Pointwise strong convergence of L∞-functions

Our aims in this subsection are to give the following notion and several fundamental

properties of it:

Definition 4.1 (Pointwise strong convergence of L∞-functions). Let R be a positive

number, w∞ a point in BR(x∞), and {fi}1≤i≤∞ a sequence of L∞-functions fi on BR(xi)

with supi |fi|L∞(BR(xi)) < ∞. We say that fi converges strongly to f∞ at w∞ if for every

ϵ > 0, there exists r > 0 such that

lim sup
i→∞

1

υi(Bt(wi))

∫
Bt(wi)

∣∣∣∣fi − 1

υ∞(Bt(w∞))

∫
Bt(w∞)

f∞dυ∞

∣∣∣∣ dυi ≤ ϵ

and

lim sup
i→∞

1

υ∞(Bt(w∞))

∫
Bt(w∞)

∣∣∣∣f∞ − 1

υi(Bt(wi))

∫
Bt(wi)

fidυi

∣∣∣∣ dυ∞ ≤ ϵ

for every 0 < t < r and every wi → w∞.

Example 4.2. Fix f ∈ C0(BR(x∞)) and put fi = f ◦ ϕi. Then, it is easy to check

that fi converges strongly to f∞ at every w ∈ BR(x∞).

We shall give a fundamental result about this convergence without the proof because

it is not difficult to check it:

Proposition 4.3. Let k be a positive integer, R a positive number, {f l
i}1≤l≤k a col-

lection of L∞-functions on BR(xi) for every 1 ≤ i ≤ ∞ with supi,l |f l
i |L∞(BR(xi)) < ∞,

w∞ a point in BR(x∞) and {Fi}1≤i≤∞ a sequence of continuous functions on Rk. As-

sume that f l
i converges strongly to f l

∞ at w∞ for every l, and that Fi converges to F∞

with respect to the compact uniformly topology. Then, Fi(f
1
i , . . . , f

k
i ) converges strongly

to F∞(f 1
∞, . . . , f

k
∞) at w∞.

Remark 4.4. Let k be a positive integer, {f l
i}1≤l≤k a collection of L∞-functions f l

i on

BR(xi) for every 1 ≤ i ≤ ∞, w∞ a point in BR(x∞), and {Fi}1≤i≤∞ a sequence of locally

L∞-functions on Rk. Assume that the following properties hold:

1. supi,l |f l
i |L∞(BR(xi)) <∞.

2. f l
i converges strongly to f l

∞ at w∞ for every l.

3. The limits

al = lim
r→0

1

υ∞(Br(w∞))

∫
Br(w∞)

f l
∞dυ∞ ∈ R

exist for every l.
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4. There exists an open neighborhood U at (a1, . . . , ak) ∈ Rk such that Fi is continuous

on U for every 1 ≤ i ≤ ∞, and that Fi converges to F∞ on U uniformly.

Then, we also have that Fi(f
1
i , . . . , f

k
i ) converges strongly to F∞(f 1

∞, . . . , f
k
∞) at w∞.

The following proposition is the main result in this subsection:

Proposition 4.5. Let {(Mi,mi)}i be a sequence of pointed n-dimensional complete

Riemannian manifolds with RicMi
≥ −(n−1), (Y, y, υ) a Ricci limit space of {(Mi,mi, vol)}i,

R a positive number, x∞, z∞ points in Y , xi, zi points in Mi for every i < ∞, fi a C
2-

function on BR(xi) for every i < ∞, and f∞ a Lipschitz function on BR(x∞). Assume

that supi Lipfi <∞, (Mi,mi, xi, zi, fi, vol)
(ϕi,Ri,ϵi)→ (Y, y, x∞, z∞, f∞, υ) and

sup
i

∫
BR(xi)

|Hessfi|dvol <∞.

Then, ⟨drzi , dfi⟩ converges strongly to ⟨drz∞ , df∞⟩ at a.e. w∞ ∈ BR(x∞).

Proof. Fix ϵ > 0 and let L ≥ 1 with

sup
i

(
1

volBR(xi)

∫
BR(xi)

|Hessfi|dvol + Lipfi

)
≤ L.

By Theorem 3.30, there exist 0 < η << ϵ and a Borel subset X(ϵ) of BR(x∞)∩Dη
z \Bη(z∞)

such that υ(BR(x∞) \X(ϵ))/υ(BR(x∞)) ≤ ϵ and∣∣∣∣f∞ ◦ γ(z, α + h)− f∞(α)

h
− ⟨drz∞ , df∞⟩(α)

∣∣∣∣ ≤ ϵ

for every α ∈ X(ϵ), every real number h with 0 < |h| < η, and every isometric embedding

γ from [0, z∞, α + η] to Y with γ(0) = z∞, γ(z∞, α) = α. On the other hand, by

Lebesgue’s differentiation theorem, there exists a Borel subset X̂(ϵ) of X(ϵ) such that

υ(X(ϵ) \ X̂(ϵ)) = 0 and that for every α ∈ X̂(ϵ), there exists r(α) > 0 such that

1

υ(Bt(α))

∫
Bt(α)

|⟨drz∞ , df∞⟩ − ⟨drz∞ , df∞⟩(α)|dυ < ϵ

for every 0 < t < r(α). Put l = η−1/4. By an argument similar to the proof of Proposition

3.1, for every 1 ≤ i <∞, there exists a compact subset Ki of BR−ϵ(xi) such that

vol(BR−ϵ(xi) \Ki)

volBR−ϵ(xi)
≤ Ψ(l−1;n,R, L) and

1

volBt(w)

∫
Bt(w)

|Hessfi|dvol ≤ l

for every w ∈ Ki and every 0 < t < ϵ/100. Without loss of generality, we can assume that

there exists a compact subsetK∞ of BR(x∞) such thatKi → K∞. PutW (ϵ) = K∞∩X(ϵ).

By Proposition 2.5, we have υ(W (ϵ))/υ(BR(x∞)) ≥ 1 − Ψ(ϵ;n,R, L). Fix α ∈ W (ϵ),
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0 < t << min{η, r(α)} and an isometric embedding γ from [0, z∞, α + η] to Y wtih

γ(0) = z∞, γ(z∞, α) = α. Let {αi}i be a sequence of points αi in Ki with αi → α. Define

a Borel function Fi on Bt(αi) \ (Czi ∪ {zi}) by Fi(β) = (fi ◦ γβ(zi, β − η2)− fi(β))/(−η2),
where γβ is the minimal geodesic from zi to β. By an argument similar to the proof of

Claim 3.34, we have

1

volBt(αi)

∫
Bt(αi)

|⟨dfi, drzi⟩−Fi|dvol ≤ η2
C(n)

volB10t(αi)

∫
B10t(αi)

|Hessfi|dvol ≤ η2C(n)l ≤ Ψ(ϵ;n)

for every i. Fix i0 with ϵi << t for every i ≥ i0. We remark that ϕi(βi), α ≤ t + ϵi ≤ η3

for every i ≥ i0 and every βi ∈ Bt(αi). Then, since

z, ϕi(γβi
(zi, βi − η2))

η−2dY
+ ϕi(γβi

(zi, βi − η2)), ϕi(βi)
η−2dY

− z, ϕi(βi)
η−2dY

< 3ϵi,

we have

z, ϕi(γβi
(zi, βi − η2))

η−2dY
+ ϕi(γβi

(zi, βi − η2)), α
η−2dY

− z, αη−2dY < 5η.

Similarly, we have

z, ϕi(γβi
(zi, βi − η2))

η−2dY
+ϕi(γβi

(zi, βi − η2)), γ(z, α + η)
η−2dY

−z, γ(z, α + η)
η−2dY

< 5η,

ϕi(γβi
(zi, βi − η2)), γ(z, α + η)

η−2dY
≥ η−1 − η, ϕi(γβi

(zi, βi − η2)), z
η−2dY

≥ η−1 − η

and

ϕi(γβi
(zi, βi − η2)), α

η−2dY
= 1± 5η.

Therefore, by the splitting theorem on limit spaces, we have

ϕi(γβi
(zi, βi − η2)), γ(z, α− η2)

η−2dY
≤ Ψ(η;n).

Thus we have

fi(γβi
(zi, βi − η2))− fi(βi)

−η2
=
f∞(ϕi(γβi

(zi, βi − η2)))− f∞(ϕi(βi))

−η2
± ϵi
η2

=
f∞(γ(z, α− η2)))− f∞(α)

−η2
±Ψ(η;n, L)

= ⟨drz, df∞⟩(α)±Ψ(η;n, L).

Especially, we have

1

volBt(αi)

∫
Bt(αi)

|Fi − ⟨drz, df∞⟩(α)|dvol ≤ Ψ(η;n, L)

for every i ≥ i0. Put W =
∩

N1∈N
(∪

N2≥N1
W (N−1

2 )
)
. Then we have υ(BR(x∞) \W ) = 0.

Moreover, by the argument above, ⟨drzi , dfi⟩ converges strongly to ⟨drw, df∞⟩ at every

w∞ ∈ W .
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Remark 4.6. We shall introduce the following important method to get a uniformly

L2-Hessian estimates by using cut-off functions with good properties constructed by

Cheeger-Colding: Let (M,m) be a pointed n-dimensional complete Riemannian mani-

fold with RicM ≥ −(n− 1), R a positive number and f a C2-function on BR(m). Assume

that there exists L ≥ 1 such that

|∇f |L∞(BR(m)) +

∫
BR(m)

|∆f |2dvol ≤ L.

Then, we have ∫
Br(m)

|Hessf |2dvol < C(n, r, R, L)

for every 0 < r < R. The proof is as follows. By the standard smoothing argument,

without loss of generality, we can assume that f is a smooth function. By [2, Theorem

8.16], there exists a smooth function ϕ on M such that 0 ≤ ϕ ≤ 1, ϕ|Br(m) = 1, suppϕ ⊂
BR(m), |∇ϕ| ≤ C(n, r, R) and |∆ϕ| ≤ C(n, r, R). By Bochner’s formula, we have

−1

2
∆|∇(ϕf)|2 ≥ |Hessϕf |2 − ⟨∇∆(ϕf),∇(ϕf)⟩ − (n− 1)|∇(ϕf)|2.

Thus, we have∫
Br(m)

|Hessf |2dvol ≤
∫
BR(m)

|Hessϕf |2dvol

≤
∫
BR(m)

(∆(ϕf))2 dvol + C(n,R, L)

≤
∫
BR(m)

(
(f∆ϕ)2 + (ϕ∆f)2 + |⟨∇f,∇ϕ⟩|2

)
dvol + C(n,R, L)

≤ C(n, r, R, L).

This observation performs a crucial role to study limit functions of harmonic functions in

subsection 4.4.

The following proposition follows from Corollary 3.37 directly.

Proposition 4.7. Let {(Mi,mi)}i be a sequence of pointed n-dimensional complete

Riemannian manifolds with RicMi
≥ −(n−1), (Y, y, υ) a Ricci limit space of {(Mi,mi, vol)}i,

w1
∞, w

2
∞ points in Y , and w1

i , w
2
i points in Mi for every i, satisfying that wj

i → wj
∞ for

every j. Then ⟨drw1
i
, drw2

i
⟩ converges strongly to ⟨drw1

∞ , drw2
∞⟩ at every z ∈ Y \ (Cw1

∞ ∪
Cw2

∞ ∪ {w1
∞, w

2
∞}).
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4.2 Pointwise weak convergence of L∞-functions

Our aims in this subsection are to give the following notion and its fundamental properties.

Definition 4.8 (Pointwise weak convergence of L∞-functions). Let R be a positive

number, w∞ a point in BR(x∞) and {fi}1≤i≤∞ a sequence of L∞-functions fi on BR(xi)

with supi |fi|L∞(BR(xi)) < ∞. We say that fi converges weakly to f∞ at w∞ if for every

ϵ > 0, there exists r > 0 such that

lim sup
i→∞

∣∣∣∣ 1

υi(Bt(wi))

∫
Bt(wi)

fidυi −
1

υ∞(Bt(w∞))

∫
Bt(w∞)

f∞dυ∞

∣∣∣∣ ≤ ϵ

for every 0 < t < r and every wi → w∞.

It is clear that if fi converges strongly to f∞ at w∞, then fi converges weakly to f∞

at w∞. We skip the proof of the next proposition because it is not difficult to check it.

Proposition 4.9 (Linearlity of weak convergence). Let R be a positive number, w∞

a point in BR(x∞) and ai, bi, ci, di L
∞-functions on BR(xi) for every 1 ≤ i ≤ ∞ with

supi(|ai|+ |bi|+ |ci|+ |di|)L∞(BR(xi)) <∞. Assume that ai, bi converge strongly to a∞, b∞

at w∞, respectively, and that ci, di converge weakly to c∞, d∞ at w∞, respectively. Then

aici + bidi converges weakly to a∞c∞ + b∞d∞ at w∞.

Proposition 4.10. Let {Ai}1≤i≤∞ be a sequnece of Borel subsets Ai of BR(xi) and w∞

a point in LebA∞. Assume that 1Ai
converges weakly to 1A∞ at w∞. Then 1Ai

converges

strongly to 1A∞ at w∞.

Proof. Fix ϵ > 0. Let {wi}i be a sequence of points wi in Zi satisfying wi → w∞.

There exists r > 0 such that υ∞(Bt(w∞) ∩ A∞)/υ∞(Bt(w∞)) ≥ 1− ϵ and

lim sup
i→∞

∣∣∣∣ 1

υi(Bt(wi))

∫
Bt(wi)

1Ai
dυi −

1

υ∞(Bt(w∞))

∫
Bt(w∞)

1A∞dυ∞

∣∣∣∣ < ϵ

for every 0 < t < r. Fix 0 < t < r. Then we have

1

υi(Bt(wi))

∫
Bt(wi)

∣∣∣∣1Ai
− 1

υ∞(Bt(w∞))

∫
Bt(w∞)

1A∞dυ∞

∣∣∣∣ dυi
≤ 1

υi(Bt(wi))

∫
Bt(wi)

∣∣∣∣1Ai
− 1

υi(Bt(wi))

∫
Bt(wi)

1Ai
dυi

∣∣∣∣ dυi + ϵ

=
1

υi(Bt(wi))

∫
Ai

υi(Bt(wi) \ Ai)

υi(Bt(wi))
dυi +

1

υi(Bt(wi))

∫
Bt(wi)\Ai

υi(Ai)

υi(Bt(wi))
dυi + ϵ

≤ 2
υi(Bt(wi) \ Ai)

υi(Bt(wi))
+ ϵ < 2

υ∞(Bt(w∞) \ A∞)

υ∞(Bt(w∞))
+ 2ϵ < 5ϵ.
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for every sufficiently large i. Similarly, we have

1

υ∞(Bt(w∞))

∫
Bt(w∞)

∣∣∣∣1A∞ − 1

υi(Bt(wi))

∫
Bt(wi)

1Ai
dυi

∣∣∣∣ dυ∞ < 5ϵ

for every sufficiently large i. Thus, we have the assertion.

The next proposition follows from an argument similar to the proof of Proposition 2.5:

Proposition 4.11. Let R be a positive number, {Ki}1≤i≤∞ a sequence of Borel sub-

sets Ki of BR(xi), and {fi}1≤i≤∞ of nonnegative valued L∞-functions fi on BR(xi) with

supi |fi|L∞(BR(xi)) < ∞. Assume that K∞ is compact, lim supGH
i→∞Ki ⊂ K∞ and that fi

converges weakly to f∞ at a.e. w ∈ K∞. Then we have

lim sup
i→∞

∫
Ki

fidυi ≤
∫
K∞

f∞dυ∞.

We shall give a fundamental result about this weak convergence:

Proposition 4.12. Let R be a positive number, {Ai}1≤i≤∞ a sequence of Borel subsets

Ai of BR(xi), and {fi}1≤i≤∞ of L∞-functions fi on BR(xi) with supi |fi|L∞(BR(xi)) < ∞.

Assume that 1Ai
converges weakly to 1A∞ at a.e. w ∈ BR(x∞) and that fi converges

weakly to f∞ at a.e. w ∈ A∞. Then, we have

lim
i→∞

∫
Ai

fidυi =

∫
A∞

f∞dυ∞.

Proof. It follows from (the proof of ) Proposition 4.9 and 4.10 that fi1Ai
converges

weakly to f∞1A∞ at a.e. w∞ ∈ BR(x∞). Thus, without loss of generality, we can assume

that Ai = BR(xi) for every 1 ≤ i ≤ ∞. Fix ϵ > 0. Let L ≥ 1 with supi |fi|L∞(BR(xi)) +

υ∞(BR(x∞)) < L. There exists a Borel subset K̂∞ of BR(x∞) such that υ(BR(x∞)\K̂∞) =

0 and that for every w∞ ∈ K̂∞, there exists tw∞ > 0 such that B10tw∞ (w∞) ⊂ BR(x) and

lim sup
i→∞

∣∣∣∣ 1

υi(Bs(wi))

∫
Bs(wi)

fidυi −
1

υ∞(Bs(w∞))

∫
Bs(w∞)

f∞dυ∞

∣∣∣∣ < ϵ

for every 0 < s < tw∞ and every wi → w∞. By Lemma 2.4, there exists a pairwise

disjoint collection {Bri(xi)}i such that xi ∈ K̂∞, ri << txi
, and K̂∞ \

∪N
i=1Bri(xi) ⊂∪∞

i=N+1B5ri(xi) for every N . Fix N satisfying
∑∞

i=N+1 υ∞(Bri(xi)) < ϵ. Then, we have∑∞
i=N+1 υ∞(B5ri(xi)) < 25κ(1)ϵ. For every i, j, let xi(j) be a point in Zj satisfying xi(j) →
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xi. Then we have∫
BR(x∞)

f∞dυ∞ =
N∑
i=1

∫
Bri (xi)

f∞dυ∞ ±Ψ(ϵ;κ(1), L)

=
N∑
i=1

∫
Bri (xi(j))

fjdυj ±Ψ(ϵ;κ(1), L)

=

∫
BR(xj)

fjdυj ±

(∫
BR(xj)\

∪N
i=1 Bri (xi(j))

|fj|dυj +Ψ(ϵ;κ(1), L)

)
.

for every sufficiently large j. On the other hand, by Proposition 2.3 and Proposition 2.5,

we have

lim sup
j→∞

∫
BR(xj)\

∪N
i=1 Bri (xi(j))

|fj|dυj ≤ L lim sup
j→∞

υj

(
BR(xj) \

N∪
i=1

Bri(xi(j))

)

≤ Lυ∞

(
K̂∞ \

N∪
i=1

Bri(xi)

)
≤ Ψ(ϵ;κ(1), L).

Therefore, we have the assertion.

Next corollary follows from Proposition 4.12 directly.

Corollary 4.13. Let R be a positive number, N a positive integer, {rj}1≤j≤N a

collection of positive numbers, {zj}1≤j≤N of points in Y , and {fi}1≤i≤∞ a sequence of

L∞-functions fi on BR(xi) with supi |fi|L∞(BR(xi)) <∞. Assume that fi converges weakly

to f∞ at a.e. w ∈ BR(x∞) \
∪N

i=1Bri(zi). Then, we have

lim
j→∞

∫
BR(xj)\

∪N
i=1 Bri (zi(j))

fjdυj =

∫
BR(x∞)\

∪N
i=1 Bri (zi)

f∞dυ∞

for every zi(j) → zi.

4.3 Convergence of the differentials of Lipschitz functions

A purpose of this subsection is to give the definition of a convergence: dfi → df∞. See

Definition 1.1 or Definition 4.15. Throughout this subsection, we fix the following situa-

tion:

1. Let {(Mi,mi)}1≤i<∞ be a sequence of pointed n-dimensional complete Riemannian

manifolds with RicMi
≥ −(n− 1).

2. Let (Y, y, υ) be a Ricci limit space of {(Mi,mi, vol)}i.
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3. Let R be a positive number, {xi}1≤i<∞ a sequence of points xi in Mi, and x∞ a

point in Y satisfying xi → x∞.

4. Let {fi}1≤i≤∞ be a sequence of Lipschitz functions fi on BR(xi) with supi(Lipfi +

|fi|L∞(BR(xi))) <∞.

In this setting, we recall that fi converges to f∞ at w∞ ∈ BR(x∞) if fi(wi) → f∞(w∞)

holds for every wi → w∞. See section 1.2. We denote it by fi → f∞ at w∞. We remark

that it is easy to check that the following conditions are equivalent:

1. fi converges strongly to f∞ at w∞.

2. fi → f∞ at w∞.

3. fi converges weakly to f∞ at w∞.

We shall consider a convergence of the L2-energy of Lipschitz functions.

Definition 4.14 (Pointwise upper semicontinuity of L2-energy). We say that L2-

energy of {fi}i are upper semicontinuous at w∞ ∈ BR(x∞) if for every ϵ > 0, there exists

r > 0 such that

lim sup
i→∞

1

volBt(wi)

∫
Bt(wi)

(Lipfi)
2dvol ≤ 1

υ(Bt(w∞))

∫
Bt(w∞)

(Lipf∞)2dυ + ϵ

for every 0 < t < r and every wi → w∞.

By the definition, if (Lipfi)
2 converges weakly to (Lipf∞)2 at w∞, then L2-energy of

{fi}i are upper semicontinuous at w∞. We shall give the definition of a convergence of

the differentials of Lipschitz functions:

Definition 4.15 (Convergence of the differentials of Lipschitz functions). We say

that dfi converges to df∞ at w∞ ∈ BR(x∞) if the following properties hold:

1. ⟨drzi , dfi⟩ converges weakly to ⟨drz∞ , df∞⟩ at w∞ for every zi → z∞

2. L2-energy of {fi}i are upper semicontinuous at w∞.

Then we denote it by dfi → df∞ at w∞. Moreover, for a subset A of BR(x∞), if fi → f∞

and dfi → df∞ at every a ∈ A, then we denote it by (fi, dfi) → (f∞, df∞) on A.

Proposition 4.16. Let wi be a point in Mi for every i < ∞, and w∞ a point in Y

with wi → w∞. Then we have (rwi
, drwi

) → (rw∞ , drw∞) on Y .

Proof. It follows from Proposition 4.7 and Proposition 4.12 directly.
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The following theorem is the main result in this subsection:

Theorem 4.17. Let {gi}1≤i≤∞ be a sequence of Lipschitz functions gi on BR(xi), and

A a Borel subset of BR(x∞). Assume that supi(Lipgi + |gi|L∞(BR(xi))) < ∞, dfi → df∞

and dgi → dg∞ on A. Then, ⟨dfi, dgi⟩ converges strongly to ⟨df∞, dg∞⟩ at a.e. w∞ ∈ A.

Proof. By Theorem 3.16 and Lemma 3.48, there exist collections of Borel subset

{Aj}j of A, of positive integers {kj}j with 1 ≤ kj ≤ n, and of points {xjl }j,1≤l≤kj in Y

such that the following properties hold:

1. υ
(
A \

∪∞
j=1Aj

)
= 0 and Aj ⊂ Y \

∪kj
l=1(Cxj

l
∪ {xjl }) for every j.

2. For every w ∈ Aj, there exists aj1, . . . , a
j
kj
, bj1, . . . , b

j
kj

∈ R such that

lim
r→0

1

υ(Br(w∞))

∫
Br(w∞)

∣∣∣∣∣∣df∞ − d

 kj∑
l=1

ajl rxj
l

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣dg∞ − d

 kj∑
l=1

bjl rxj
l

∣∣∣∣∣∣
2

dυ = 0.

Fix j and w∞ ∈ Aj. Let a
j
1, . . . , a

j
kj
, bj1, . . . , b

j
kj

∈ R as above, and L ≥ 1 with supi(Lipfi+

Lipgi)+
∑kj

l=1((a
j
l )

2+(bjl )
2) ≤ L. Take τ > 0 with w ∈

∪kj
l=1(D

τ
xj
l

\Bτ (x
j
l )). Let x

j
l (i) → xjl

and wi → w∞. Fix ϵ > 0. Then, there exists r > 0 such that

1

υ(Bt(w∞))

∫
Bt(w∞)

∣∣∣∣∣∣df∞ − d

 kj∑
l=1

ajl rxj
l

∣∣∣∣∣∣
2

+

∣∣∣∣∣∣dg∞ − d

 kj∑
l=1

bjl rxj
l

∣∣∣∣∣∣
2

dυ ≤ ϵ,

lim sup
i→∞

1

volBt(wi)

∫
Bt(wi)

(Lipfi)
2dvol ≤ 1

υ(Bt(w∞))

∫
Bt(w∞)

(Lipf∞)2dυ + ϵ,

lim sup
i→∞

1

volBt(wi)

∫
Bt(wi)

(Lipgi)
2dvol ≤ 1

υ(Bt(w∞))

∫
Bt(w∞)

(Lipg∞)2dυ + ϵ,

lim sup
i→∞

∣∣∣∣ 1

volBt(wi)

∫
Bt(wi)

⟨dfi, drxj
l (i)

⟩dvol− 1

υ(Bt(w∞))

∫
Bt(w∞)

⟨df∞, drxj
l
⟩dυ
∣∣∣∣ < ϵ

and

lim sup
i→∞

∣∣∣∣ 1

volBt(wi)

∫
Bt(wi)

⟨dgi, drxj
l (i)

⟩dvol− 1

υ(Bt(w∞))

∫
Bt(w∞)

⟨dg∞, drxj
l
⟩dυ
∣∣∣∣ < ϵ

for every l and every 0 < t < r. Fix 0 < t << min{r, ϵ, τ}. Then, by Corollary 3.37, we

have

1

υ(Bt(w∞))

∫
Bt(w∞)

∣∣∣∣∣∣⟨df∞, dg∞⟩ − 1

υ(Bt(w∞))

∫
Bt(w∞)

⟨
d

 kj∑
l=1

ajl rxj
l

 , d

 kj∑
l=1

bjl rxj
l

⟩ dυ
∣∣∣∣∣∣ dυ

≤ Ψ(ϵ;n, L)
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and

1

υ(Bt(w∞))

∫
Bt(w∞)

∣∣∣∣⟨df∞, dg∞⟩ − 1

υ(Bt(w))

∫
Bt(w)

⟨df∞, dg∞⟩dυ
∣∣∣∣ dυ

=
1

υ(Bt(w∞))

∫
Bt(w∞)

∣∣∣∣
⟨
d

 kj∑
l=1

ajl rxj
l

 , d

 kj∑
l=1

bjl rxj
l

⟩

− 1

υ(Bt(w∞))

∫
Bt(w∞)

⟨
d

 kj∑
l=1

ajl rxj
l

 , d

 kj∑
l=1

bjl rxj
l

⟩ dυ∣∣∣∣dυ ±Ψ(ϵ;n, L)

= Ψ(ϵ;n, L).

On the other hand, we have

1

volBt(wi)

∫
Bt(wi)

∣∣∣∣∣∣dfi − d

 kj∑
l=1

ajl rxj
l (i)

∣∣∣∣∣∣
2

dvol

=
1

volBt(wi)

∫
Bt(wi)

|dfi|2dvol−
kj∑
l=1

ajl
volBt(wi)

∫
Bt(wi)

⟨dfi, drxj
l (i)

⟩dvol

+
∑
l,l̂

ajl a
j

l̂

volBt(wi)

∫
Bt(wi)

⟨drxj
l (i)
, drxj

l̂
(i)⟩dvol

≤ 1

υ(Bt(w∞))

∫
Bt(w∞)

|df∞|2dυ −
k∑

l=1

ajl
υ(Bt(w∞))

∫
Bt(w∞)

⟨df∞, drxj
l
⟩dυ

+
∑
l,l̂

ajl a
j

l̂

υ(Bt(w∞))

∫
Bt(w∞)

⟨drxj
l
, drxj

l̂

⟩dυ +Ψ(ϵ;n, L)

=
1

υ(Bt(w∞))

∫
Bt(w∞)

∣∣∣∣∣∣df∞ − d

 kj∑
l=1

ajl rxj
l

∣∣∣∣∣∣
2

dυ +Ψ(ϵ;n, L) ≤ Ψ(ϵ;n, L).

for every sufficiently large i. Similarly, we have

1

volBt(wi)

∫
Bt(wi)

∣∣∣∣∣∣dgi − d

 kj∑
l=1

bjl rxj
l (i)

∣∣∣∣∣∣
2

dvol ≤ Ψ(ϵ;n, L)

for every sufficiently large i. Especially, we have

1

volBt(wi)

∫
Bt(wi)

∣∣∣∣∣∣⟨dfi, dgi⟩ − 1

volBt(wi)

∫
Bt(wi)

⟨
d

 kj∑
l=1

ajl rxj
l (i)

 , d

 kj∑
l=1

bjl rxj
l (i)

⟩ dvol
∣∣∣∣∣∣ dvol

≤ Ψ(ϵ;n, L).

Therefore, by Corollary 3.37, we have the assertion.
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Corollary 4.18. Let Ω be a non-empty open subset of BR(x∞). Assume that dfi →
df∞ at a.e. w ∈ Ω. Then dfi → df∞ on Ω.

Proof. The assertion follows from Proposition 4.12 and Theorem 4.17.

Corollary 4.19. Let {gi}1≤i≤∞ be a sequence of Lipschitz functions gi on BR(xi)

with supi(Lipgi + |gi|L∞(BR(xi))) < ∞, and A a Borel subset of BR(x∞). Assume that

(fi, dfi) → (f∞, df∞) and (gi, dgi) → (g∞, dg∞) on A. Then, (fi + gi, d(fi + gi)) →
(f∞ + g∞, d(f∞ + g∞)) at a.e. w∞ ∈ A, and (figi, d(figi)) → (f∞g∞, d(f∞g∞)) at a.e.

w∞ ∈ A.

Proof. By Theorem 4.17, there exists a Borel subset Â of A such that υ(A \ Â) = 0

and that |dfi|2, ⟨dfi, dgi⟩ and |dgi|2 converge strongly to |df∞|2, ⟨df∞, dg∞⟩ and |dg∞|2 on

Â, respectively. Since |d(figi)|2 = f 2
i |dgi|2 + 2figi⟨dfi, dgi⟩ + gi|dfi|2, by Proposition 4.3,

|d(figi)|2 converges strongly to f 2
∞|dg∞|2+2f∞g∞⟨df∞, dg∞⟩+ g2∞|df∞|2 = |d(f∞g∞)|2 on

Â. On the other hand, since d(figi) = gidfi + fidgi, by Proposition 4.9, ⟨drzi , d(figi)⟩
converges weakly to g∞⟨drz∞ , df∞⟩ + f∞⟨drz∞ , dg∞⟩ = ⟨drz∞ , d(f∞g∞)⟩ on Â for every

zi → z∞. Therefore we have (figi, d(figi)) → (f∞g∞, d(f∞g∞)) on Â. Similarly, we have

(fi + gi, d(fi + gi)) → (f∞ + g∞, d(f∞ + g∞)) on Â.

Corollary 4.20. Let k be a positive integer, {Ai}1≤i≤∞ a sequence of Borel subsets

Ai of BR(xi), {f l
i , g

l
i}1≤i≤∞,1≤l≤k a collection of Lipschitz functions f l

i , g
l
i on BR(xi) with

supi(Lip f
l
i + Lip gli) < ∞, and {Fi}1≤i≤∞ a sequence of continuous functions on Rk.

Assume that the following properties hold:

1. Fi converges to F∞ with respect to the compact uniformly topology.

2. 1Ai
converges weakly to 1A∞ at a.e. w∞ ∈ BR(x∞).

3. df l
i → df l

∞ and dgli → dgl∞ at a.e. w∞ ∈ A∞ for every 1 ≤ l ≤ k.

Then we have

lim
i→∞

∫
Ai

Fi(⟨df1
i , dg

1
i ⟩, . . . , ⟨dfk

i , dg
k
i ⟩)dvol =

∫
A∞

F∞(⟨df 1
∞, dg

1
∞⟩, . . . , ⟨dfk

∞, dg
k
∞⟩)dυ.

Proof. The assertion follows from Proposition 4.3, Proposition 4.10 and Theorem

4.17.

We shall end this subsection by giving several remarks:

Remark 4.21. By several arguments in section 3, and the proof of Theorem 4.17, we

can also show the following: Assume that the following properties hold:

1. L2-energy of {fi}i are upper semicontinuous at every α ∈ BR(x∞),
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2. There exist a dense subset A of BR(x∞) and a Borel subset Â of BR(x∞) such that

υ(BR(x∞) \ Â) = 0 and that ⟨drwi
, dfi⟩ converges weakly to ⟨drw∞ , df∞⟩ at every

α ∈ Â for every w∞ ∈ A and every wi → w∞.

Then, dfi → df∞ on BR(x∞).

Remark 4.22. Let {(Yi, yi, υi)}1≤i≤∞ be a sequence of Ricci limit spaces and {fi}1≤i≤∞

a sequence of Lipschitz functions fi on BR(yi). Then, similarly, we can also define a notion

of convergence: dfi → df∞ and give several properties as above.

Remark 4.23. Let (Y, y, υ) be a Ricci limit space and {fi}1≤i≤∞ a sequence of Lips-

chitz functions on BR(y) with supi Lipfi < ∞. Then, dfi → df∞ on BR(y) (in the sense

of Definition 4.15 with respect to the convergence (Y, y, υ)
(idY ,Ri,ϵi)→ (Y, y, υ)) if and only if

|Lip(fi−f∞)|L2(BR(y)) → 0. We shall check it below. By Corollary 4.20, it suffices to check

‘if’ part. Assume that |Lip(fi−f∞)|L2(BR(y)) → 0. Then, it is clear that L2-energy of {fi}i
are upper semicontinuous at every w ∈ BR(y). On the other hand, by Proposition 4.16,

we have limi→∞ |Lip(rxi
−rx∞)|L2(BR(y)) = 0 for every xi → x∞ ∈ Y . Especially, ⟨drxi

, dfi⟩
converges weakly to ⟨drx∞ , df∞⟩ at every w ∈ BR(y). Thus, dfi → df∞ on BR(y).

4.4 An approximation theorem

Throughout this subsection, we shall use the following notation (same to one used in pre-

vious subsection): Let {(Mi,mi)}i be a sequence of pointed n-dimensional complete Rie-

mannian manifolds with RicMi
≥ −(n−1), (Y, y, υ) a Ricci limit space of {(Mi,mi, vol)}i,

xi a point in Mi for every i < ∞, x∞ a point in Y satisfying (Mi,mi, xi, vol)
(ϕi,Ri,ϵi)→

(Y, y, x∞, υ). A purpose in this subsection is to give the following approximation theo-

rem. Roughly speaking, it means that for a given Lipschitz function f∞ on BR(x∞), there

exists a sequence of Lipschitz functions fi on BR(xi) approximating the given function

with respect to the topology: “(fi, dfi) → (f∞, df∞)”.

Theorem 4.24 (Approximation theorem). Let L,R be positive numbers, f∞ an L-

Lipschitz function on BR(x∞), A∞ a compact subset of BR(x∞), {Ai}1≤i<∞ a sequence of

Borel subsets Ai of BR(xi), and {fi}1≤i<∞ a sequence of L-Lipschitz functions fi on Ai.

Assume that lim supGH
i→∞Ai ⊂ A∞ and that f∞|A∞ is an extension of {fi}i asymptotically.

Then, for every ϵ > 0, there exist an open subset Ωϵ of BR(x∞) \ A∞, and a sequence

{f ϵ
i }1≤i≤∞ of C(n, L)-Lipschitz functions f ϵ

i on BR(xi) such that (f ϵ
i , df

ϵ
i ) → (f ϵ

∞, df
ϵ
∞) on

Ωϵ, f
ϵ
i |Ai

= fi|Ai
for every 1 ≤ i ≤ ∞, and

υ(BR(x∞) \ (Ωϵ ∪ A∞))

υ(BR(x∞))
+ |f∞ − f ϵ

∞|L∞(BR(x∞)) + |Lip(f ϵ
∞ − f∞)|L2(BR(x∞)) < ϵ.
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Proof. Fix sufficiently small ϵ > 0 and ξ > 0 (we will decide ξ later). By Lemma 3.13

and (the proof of) Theorem 3.16, there exist collections of pairwise disjoint Borel subsets

{Ej}j of BR(x∞), of positive numbers {τj}j, of positive integers {kj}j with 1 ≤ kj ≤ n,

and of points {xjl }j,1≤l≤kj in Y such that the following properties hold:

1. υ∞

(
BR(x∞) \

∪
j Ej

)
= 0 and Ej ⊂

∩kj
l=1

(
Dτj

xj
l

\Bτj(x
j
l )
)
for every j.

2. For every w ∈ Ej, we have

⟨drxj
l
, drxj

l̂

⟩(w) = lim
r→0

1

υ(Br(w))

∫
Br(w)

⟨drxj
l
, drxj

l̂

⟩dυ = δl,l̂ ± ϵ.

3. For every w ∈ Ej, there exists rw > 0 such that rw << τj, B10rw(w) ⊂ BR(x∞) and

1

υ(Bt(w))

∫
Bt(w)

∣∣∣∣∣∣df∞ − d

 kj∑
l=1

ajl (w)rxj
l

∣∣∣∣∣∣
2

dυ < ϵ

for every 0 < t < rw.

Put X =
∪∞

j=1(Ej \B5ξ(A∞)). By Proposition 2.4, there exists a pairwise disjoint collec-

tion {Bri(zi)}i ⊂ BR(x∞) such that zi ∈ X, ri << min{rzi , ϵ, ξ} and X \
∪N

i=1Bri(zi) ⊂∪∞
i=N+1B5ri(zi) for every N . For every i, let l(i) with zi ∈ El(i). Without loss of general-

ity, we can assume that l(i) = i. Fix N satisfying
∑∞

i=N+1 υ(Bri(zi)) < ϵ. Let zi(j) → zi

and xlm(j) → xlm. Define functions F j
i on Bri(zi(j)), and Fi on Bri(zi) by

F j
i =

ki∑
m=1

aimrxi
m(j) + Ci, Fi =

ki∑
m=1

aimrxi
m
+ Ci,

where Ci is the constant defined by satisfying Fi(zi) = f∞(zi), and a
i
m = aim(zi).

Claim 4.25. We have LipF j
i + LipFi ≤ C(n, L) for every i, j.

The proof is as follows. Since

|df∞(zi)|2 =
∑
s,t

aisa
i
t⟨drxi

s
, drxi

t
⟩(zi)

=
∑
s,t

aisa
i
t(δs,t ± ϵ)

= (1± ϵ)

ki∑
s=1

(ais)
2 ±Ψ(ϵ;n)

ki∑
s=1

(ais)
2 = (1±Ψ(ϵ;n))

ki∑
s=1

(ais)
2

and |df∞|(zi) ≤ L, we have
∑ki

m=1(a
i
m)

2 ≤ L2+Ψ(ϵ;n, L). Therefore we have Claim 4.25.

We remark that {Bri(zi(j))}1≤i≤N is a pairwise disjoint collection for every sufficiently

large j. Define functions Fj on
∪N

m=1B(1−ξ)ri(zi(j)), and F∞ on
∪N

m=1B(1−ξ)ri(zi) by

Fj|B(1−ξ)ri
(zi(j)) = F i

j |B(1−ξ)ri
(zi(j)), F∞|B(1−ξ)ri

(zi) = Fj|B(1−ξ)ri
(zi) for every sufficiently large

j.
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Claim 4.26. We have LipFj +LipF∞ ≤ C(n, L)+ ξ−1Ψ(ϵ;n, L) for every sufficiently

large j.

The proof is as follows. By Claim 4.25, we have Lip(Fj|B(1−ξ)ri
(zi(j))

)+Lip(F∞|B(1−ξ)ri
(zi)

) ≤
C(n, L) for every i, j. Let j0 satisfying that ϵj << min{ξr1, . . . , ξrN} for every j ≥ j0.

Fix j ≥ j0, 1 ≤ l < m ≤ N , wl(j) ∈ B(1−ξ)rl(zl(j)) and wm(j) ∈ B(1−ξ)rm(zm(j)).

Since Brl(zl(j)) ∩ Brm(zm(j)) = ∅, there exists α(j) ∈ ∂Brl(zl) such that wl(j), α(j) +

α(j), wm(j) = wl(j), wm(j). Thus we have wl(j), wm(j) ≥ wl(j), α(j) ≥ ξrl. Similarly, we

have wl(j), wm(j) ≥ ξrm. Thus, we have wl(j), wm(j) ≥ ξ(rl+ rm)/2. On the other hand,

since

1

υ(B10rl(zl))

∫
B10rl

(zl)

∣∣∣∣∣Lip
(
f∞ −

kl∑
s=1

alsrxl
s

)∣∣∣∣∣
2

dυ < ϵ,

by the segment inequality on limit spaces [6, Theorem 2.6], there exist points ẑl, ˆϕj(wl(j))

inBrl(zl) and a minimal geodesic γ from ẑl to ˆϕj(wl(j)) such that zl, ẑl+ϕj(wl(j)), ˆϕj(wl(j)) <

Ψ(ϵ;n)rl and ∫ ẑl, ˆϕj(wl(j))

0

Lip

(
f∞ −

kl∑
s=1

alsrxl
s

)
(γ(t))dt < Ψ(ϵ;n)rl.

Therefore we have∣∣∣∣∣f∞(ẑl)−
kl∑
s=1

alsrxl
s
(ẑl)−

(
f∞( ˆϕj(zl(j)))−

kl∑
s=1

alsrxl
s
( ˆϕj(zl(j)))

)∣∣∣∣∣
≤
∫ ẑl, ˆϕj(wl(j))

0

Lip

(
f∞ −

kl∑
s=1

alsrxl
s

)
(γ(t))dt < Ψ(ϵ;n)rl.

Thus we have∣∣∣∣∣f∞(zl)−
kl∑
s=1

alsrxl
s
(zl)−

(
f∞(ϕj(zl(j)))−

kl∑
s=1

alsrxl
s
(ϕj(zl(j)))

)∣∣∣∣∣ ≤ Ψ(ϵ;n, L)rl.

Especially, we have |Fj(wl(j))−f∞◦ϕj(wl(j))| ≤ Ψ(ϵ;n, L)rl. Similarly, we have |Fj(wm(j))−
f∞ ◦ ϕj(wm(j))| ≤ Ψ(ϵ;n, L)rm and |F∞ − f∞| ≤ Ψ(ϵ;n, L)rl on B(1−ξ)rl(zl). Therefore

we have

|Fj(wl(j))− Fj(wm(j))| ≤ |f∞ ◦ ϕj(wl(j))− f∞ ◦ ϕj(wl(j))|+Ψ(ϵ;n, L)(rl + rm)

≤ Lϕj(wl(j)), ϕj(wm(j)) + Ψ(ϵ;n, L)(rl + rm)

≤ L(wl(j), wm(j) + ϵj) + Ψ(ϵ;n, L)(rl + rm)

≤ Lwl(j), wm(j) + Ψ(ϵ;n, L)(rl + rm) ≤ (L+ ξ−1Ψ(ϵ;n, L))wl(j), wm(j).

Thus, by Claim 4.25, we have LipFj ≤ C(n, L) + ξ−1Ψ(ϵ;n, L). Similarly, we have

LipF∞ ≤ C(n, L) + ξ−1Ψ(ϵ;n, L). Therefore we have Claim 4.26.
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Claim 4.27. We have
∪N

i=1B(1−ξ)ri(zi(j)) ⊂ Mi \ B2ξ(Ai) and
∪N

i=1B(1−ξ)ri(zi) ⊂
Y \B2ξ(A∞) for every sufficiently large j.

The proof is as follows. It is easy to check that
∪N

i=1Bri(zi) ⊂ Y \ B2ξ(A∞). On the

other hand, by the assumption, there exists i0 such that ϕi(Ai) ⊂ Bξ(A∞) and ϵi <<

min1≤j≤N{ξrj} for every i ≥ i0. Thus, since ϕi

(∪N
i=1B(1−ξ)ri(zi(j))

)
⊂
∪N

i=1Bri(zi) ⊂
Y \B4ξ(A∞) for every i ≥ i0, we have Claim 4.27.

Claim 4.28. We have

lim
i→∞

sup
Ai

|fi − f∞ ◦ ϕi| = 0.

The proof is done by a contradiction. Assume that the assertion is false. Then, there

exist τ > 0, a subsequence {n(i)}i of N, and αn(i) ∈ An(i) such that |fn(i)(αn(i)) − f∞ ◦
ϕn(i)(αn(i))| > τ . Without loss of generality, we can assume that there exists α∞ ∈ Y such

that ϕn(i)(αn(i)) → α∞. Thus, lim infi→∞ |fn(i)(αn(i))− f∞(α∞)| ≥ τ . On the other hand,

we have α∞ ∈ A∞ = A∞. Since f∞|A∞ is an extension of {fi}i asymptotically, this is a

cotradiction. Therefore we have Claim 4.28.

Put Wj =
∪N

m=1B(1−ξ)ri(zi(j)) and W∞ =
∪N

m=1B(1−ξ)ri(zi). By Claim 4.27, we can

define Lipschitz functions Gj on Wj ∪ Aj, and G∞ on W∞ ∪ A∞ by Gj|Wj
= Fj|Wj

,

Gj|Aj
= fj, G∞|W∞ = F∞|W∞ and G∞|A∞ = f∞|A∞ for every sufficiently large j.

Claim 4.29. We have LipGj+LipG∞ ≤ C(n, L)+ξ−1Ψ(ϵ;n, L) for every sufficiently

large j.

The proof is as follows. Put ξj = supAj
|fj − f∞ ◦ ϕj|. Then by the proof of Claim

4.26, there exists j0 such that

|Gj(αj)−Gj(βj)| = |Fj(αj)− fj(βj)|
≤ |F∞ ◦ ϕj(αj)− f∞ ◦ ϕj(βj)|+Ψ(ϵ;n, L)ri + ξj

≤ |f∞ ◦ ϕj(αj)− f∞ ◦ ϕj(βj)|+Ψ(ϵ;n, L)ri + ξj

≤ Lϕj(αj), ϕj(βj) + Ψ(ϵ;n, L)ri

≤ L(αj, βj + ϵj) + Ψ(ϵ;n, L)ξ ≤ (L+Ψ(ϵ;n, L))αj, βj.

for every j ≥ j0, every αj ∈ B(1−ξ)ri(zi(j)) and every βj ∈ Aj. Therefore, by Claim 4.26,

we have LipGj ≤ C(n, L)+ ξ−1Ψ(ϵ;n, L) for every sufficiently large j. Similarly, we have

LipG∞ ≤ C(n, L) + ξ−1Ψ(ϵ;n, L). Thus, we have Claim 4.29.

For Ψ = Ψ(ϵ;n, L) as in Claim 4.29, put ξ =
√
Ψ. Let f ϵ

j be a Lipschitz function on

Mj and f ϵ
∞ a Lipschitz function on Y satisfying that Lipf ϵ

j = LipGj, Lipf
ϵ
∞ = LipG∞,

f ϵ
j |Wj∪Aj

= Fj|Wj∪Aj
and f ϵ

∞|W∞∪A∞ = F∞|W∞∪A∞ . Put Ωϵ = W∞. Then, by Proposition

4.16 and Corollary 4.19, we have (f ϵ
i , df

ϵ
i ) → (f ϵ

∞, df
ϵ
∞) on Ωϵ. On the other hand, we
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have υ(BR(x∞) \ (Ωϵ ∪ A∞)) ≤ υ(X \ Ωϵ) + υ(B5ξ(A∞) \ A∞) ≤
∑∞

i=N+1 υ(B5ri(zi)) +

υ(B5ξ(A∞) \ A∞) + Ψ(ϵ;n, L) ≤ C(n)ϵ+ υ(B5ξ(A∞) \ A∞) + Ψ(ϵ;n, L) and∫
BR(x∞)

|df∞ − df ϵ
∞|2dυ ≤

∫
X

|df∞ − df ϵ
∞|2dυ +

∫
B5ξ(A∞)

|df∞ − df ϵ
∞|2dυ

≤
N∑
i=1

∫
B(1−ξ)ri

(zi)

|df∞ − df ϵ
∞|2dυ

+ 5L2υ(B5ξ(A∞) \ A∞) +

∫
A∞

|df ϵ
∞ − df∞|2dυ +Ψ(ϵ;n, L)

≤
N∑
i=1

ϵυ(B(1−ξ)ri(zi)) + 5L2υ(B5ξ(A∞) \ A∞) + Ψ(ϵ;n, L)

≤ ϵυ(BR(x∞)) + 5L2υ(B5ξ(A∞) \ A∞) + Ψ(ϵ;n, L).

We remark that since A∞ is compact, we have limr→0 υ(Br(A∞) \ A∞) = 0. Put τ(r) =

υ(Br(A∞) \ A∞). On the other hand, by the proof of Claim 4.26, we have |f ϵ
∞ − f∞| <

Ψ(ϵ;n, L) on Ωϵ∪A∞. For every w ∈ BR(x∞), there exists ŵ ∈ Ωϵ∪A∞ such that w, ŵ <

Ψ(ϵ, τ(5ξ);n, L, υ(BR(x∞))). Therefore, we have |f ϵ
∞(w)− f∞(w)| ≤ |f ϵ

∞(ŵ)− f∞(ŵ)| +
Ψ(ϵ, τ(5ξ);n, L, υ(BR(x∞))) ≤ Ψ(ϵ, τ(5ξ);n, L, υ(BR(x∞))). Thus, we have |f ϵ

∞ − f∞| <
Ψ(ϵ, τ(5ξ);n, L, υ(BR(x∞))) on BR(x∞). Since it is not difficult to check that |Lip(f ϵ

∞ −
f∞)|L2(BR(x∞)) ≤ Ψ(ϵ;n, L,R, υ(BR(x∞))), we have the assertion.

By using Theorem 4.24, we shall give a sufficient condition to satisfy pointwise upper

semicontinuity of L2-energy:

Proposition 4.30. Let R be a positive number, fi a C
2-function on BR(xi) for every

i <∞, and f∞ a Lipschitz function on BR(x∞). Assume that

sup
i

(
Lipfi +

∫
BR(xi)

|∆fi|dvol
)
<∞

and fi → f∞ on BR(x∞). Then, we have

lim sup
i→∞

∫
BR(xi)

(Lipfi)
2dvol ≤

∫
BR(x∞)

(Lipf∞)2dυ.

Especially, L2-energy of {fi}i are upper semicontinuous at every w ∈ BR(x∞).

Proof. Let gi = ∆fi. First, we shall remark the following:

Claim 4.31. We have∫
BR(xi)

|d(fi + k)|2dvol− 2

∫
BR(xi)

gi(fi + k)dvol ≥
∫
BR(xi)

|dfi|2dvol− 2

∫
BR(xi)

gifidvol

for every Lipschitz function k on BR(xi), which has compact support.
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Claim 4.31 follows from the equality:∫
BR(xi)

|d(fi + k)|2dvol− 2

∫
BR(xi)

gi(fi + k)dvol =

∫
BR(xi)

|dfi|2dvol− 2

∫
BR(xi)

gifidvol

+

∫
BR(xi)

|dk|2dvol.

Fx ϵ > 0. Let L ≥ 1 with

sup
i

(
Lipfi + |fi|L∞(BR(xi)) +

∫
BR(xi)

|gi|dvol
)
< L.

Since lim supGH
i→∞AR−ϵ,R(xi) ⊂ AR−ϵ,R(x∞), by Theorem 4.24, there exist a sequence

{f ϵ
i }1≤i≤∞ of C(n, L)-Lipschitz functions f ϵ

i on BR(xi), and an open set Ωϵ ⊂ BR(x∞) \
AR−ϵ,R(x∞) such that f ϵ

i |AR−ϵ,R(xi) = fi|AR−ϵ,R(xi) for every 1 ≤ i ≤ ∞, (f ϵ
i , df

ϵ
i ) →

(f ϵ
∞, df

ϵ
∞) on Ωϵ, and

υ (BR(x∞) \ (Ωϵ ∪ AR−ϵ,R(x∞)))

υ(BR(x∞))
+ |f∞ − f ϵ

∞|L∞(BR(x∞)) + |Lip(f ϵ
∞ − f∞)|L2(BR(x∞)) < ϵ.

By Claim 4.31, we have∫
BR(xi)

|df ϵ
i |2dvol− 2

∫
BR(xi)

gif
ϵ
i dvol ≥

∫
BR(xi)

|dfi|2dvol− 2

∫
BR(xi)

gifidvol.

By Proposition 2.4, without loss of generality, we can assume that there exists a pairwise

disjoint finite collection {Bri(zi)}1≤i≤N such that Ωϵ =
∪N

i=1Bri(zi). Let zi(j) → zi.

Put Ωϵ(j) =
∪N

i=1Bri(zi(j)). Since vol(Ωϵ(j) ∪ AR−ϵ,R(xj))/volBR(xj) ≥ 1 − ϵ for every

sufficiently large j, by Proposition 4.12, we have∣∣∣∣∣
∫
BR(xj)

|df ϵ
j |2dvol−

∫
BR(x∞)

|df∞|2dυ

∣∣∣∣∣ < Ψ(ϵ;n, L,R).

On the other hand, since supBR(xj)
|f ϵ

j−fj| ≤ C(n,R, L) supΩϵ(j) |f ϵ
j−fj| and lim supj→∞ supΩϵ(j) |f ϵ

j−
fj| ≤ supΩϵ

|f ϵ
∞ − f∞|, we have∣∣∣∣∣

∫
BR(xj)

gjf
ϵ
jdvol−

∫
BR(xj)

gjfjdvol

∣∣∣∣∣ ≤ sup
BR(xj)

|f ϵ
j − fj|

∫
BR(xj)

|gj|dvol ≤ Ψ(ϵ;n,R, L)

for every sufficiently large j. Therefore, we have

lim sup
i→∞

∫
BR(xi)

|dfi|2dvol ≤
∫
BR(x∞)

|df∞|2dυ +Ψ(ϵ;n, L,R).

By letting ϵ→ 0, we have the assertion.

Next corollary follows from Remark 4.6 and Proposition 4.30 directly.
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Corollary 4.32. Let R be a positive number, fi a C
2-function on BR(xi) for every

i <∞, and f∞ a Lipschitz function on BR(x∞). Assume that

sup
i

(
Lipfi +

∫
BR(xi)

|∆fi|2dvol
)
<∞

and fi → f∞ on BR(x∞). Then, we have (fi, dfi) → (f∞, df∞) on BR(x∞).

Next we shall consider a convergence of the equations ∆fi = gi with respect to the

measured Gromov-Hausdorff convergence:

Corollary 4.33. Let R be a positive number, fi a C
2-function on BR(xi) for every

i < ∞, and f∞ a Lipschitz function on BR(x∞) with supi(Lipfi + |∆fi|L∞(BR(xi))) < ∞.

Assume that fi → f∞ on BR(x∞) and that there exists a L∞-function g∞ on BR(x∞)

such that ∆fi converges weakly to g∞ at a.e. w ∈ BR(x∞). Then, we have∫
BR(x∞)

⟨df∞, dk∞⟩dυ =

∫
BR(x∞)

k∞g∞dυ

for every Lipschitz function k∞ on BR(x∞), which has compact support.

Proof. By Corollary 4.32, we have (fi, dfi) → (f∞, df∞) on BR(x∞). Let L ≥ 1

with supi(Lipfi + |fi|L∞(BR(xi)) + |∆fi|L∞(BR(xi))) < L. Put r = supw∈supp k∞ x∞, w and

gi = ∆fi. Then, we have r < R. Fix ϵ > 0 with ϵ < R − r. By Theorem 4.24,

there exist a sequence {kϵi}1≤i≤∞ of C(n, L)-Lipschitz functions kϵi on BR(xi), and an

open set Ωϵ ⊂ BR(x∞) \ AR−ϵ,R(x∞) such that kϵi |AR−ϵ,R(xi) = 0 for every 1 ≤ i ≤ ∞,

(kϵi , dk
ϵ
i ) → (kϵ∞, dk

ϵ
∞) on Ωϵ and

υ (BR(x∞) \ (Ωϵ ∪ AR−ϵ,R(x∞)))

υ(BR(x∞))
+ |k∞ − kϵ∞|L∞(BR(x∞)) + |Lip(kϵ∞ − k∞)|L2(BR(x∞)) < ϵ.

By Proposition 4.9, kϵigi converges weakly to kϵ∞g∞ at a.e. w ∈ Ωϵ. By an argument

similar to the proof of Proposition 4.30, and Proposition 4.12, we have∣∣∣∣∫
BR(xi)

⟨dfi, dkϵi ⟩dvol−
∫
BR(x∞)

⟨df∞, dkϵ∞⟩dυ
∣∣∣∣+ ∣∣∣∣∫

BR(xi)

gik
ϵ
idvol−

∫
BR(x∞)

g∞k
ϵ
∞dυ

∣∣∣∣ < Ψ(ϵ;n, L,R)

for every sufficiently large i. Since∫
BR(xi)

⟨dfi, dkϵi ⟩dvol =
∫
BR(xi)

gik
ϵ
idvol,

we have ∫
BR(x∞)

⟨df∞, dk∞⟩dυ =

∫
BR(x∞)

g∞k∞dυ ±Ψ(ϵ;n, L,R).

By letting ϵ→ 0, we have the assertion.
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We shall recall the notion of (2-) harmonic for Lipschitz functions on Ricci limit spaces.

For a Lipschitz function f on BR(x∞), we say that f is harmonic on BR(x∞) if∫
BR(x∞)

|df |2dυ ≤
∫
BR(x∞)

|d(f + k)|2dυ

for every Lipschitz function k on on BR(x∞) which has compact support. We remark

that the notion of harmonic function for H1.2-functions is well-defined. See section 7 in

[2]. The following corollary follows from Corollary 4.32 and 4.33 directly. See also [11].

Corollary 4.34. Let R be a positive number, fi a harmonic function on BR(xi) for

every i <∞, and f∞ a Lipschitz function on BR(x∞) with supi Lipfi <∞. Assume that

fi → f∞ on BR(x∞). Then, we have (fi, dfi) → (f∞, df∞) on BR(x∞). Moreover, we

have ∫
BR(x∞)

⟨df∞, dk∞⟩dυ = 0

for every Lipschitz function k∞ on BR(x∞), which has compact support. Especially f∞ is

harmonic on BR(x∞).

5 Appendix: A proof of Claim 3.24

In this appendix, we shall give a proof of Claim 3.24. Define functions π1, f
A
r on Rk by

π1((x1, . . . , xk)) = x1, f
A
r (x) = Hk−1

(
Br(x) ∩ A ∩ π−1

1 (π1(x))
)
1A(x). We remark that by

the definition of sl1 − LebA,

sl1 − LebA =

{
a = (a1, . . . , ak) ∈ A; lim inf

r→0

Hk−1(Br(a) ∩ A ∩ π−1
1 (π1(a)))

ωk−1rk−1
= 1

}
.

First, assume that A is compact.

Claim 5.1. The function fA
r is an upper semi-continuous function on Rk. Especially,

fA
r is a Hk-measurable function.

Proof. Let {xi}1≤i≤∞ be a sequence of points inRk with xi → x∞. It suffices to check

that lim supi→∞ fA
r (xi) ≤ fA

r (x∞) under the assumption: xj ∈ A for every j. Fix δ > 0.

Let {n(i)}i∈N be a subsequence ofN satisfying limj→∞Hk−1
(
Br(xn(j)) ∩ A ∩ π−1

1 (π1(xn(j)))
)
=

lim supi→∞Hk−1
(
Br(xi) ∩ A ∩ π−1

1 (π1(xi))
)
. On the other hand, since {Br(xn(j)) ∩ A ∩

π−1
1 (π1(xn(j)))}j is precompact with respect to the Hausdroff distance on Rk, without

loss of generality, we can assume that there exists a compact subset K∞ of Rk such that

Br(xn(j))∩A∩ π−1
1 (π1(xn(j))) converges to K∞ with respect to the Hausdorff distance on

Rk. Then, it is easy to check K∞ ⊂ Br(x∞) ∩ A ∩ π−1
1 (π1(x∞)). There exists a finite

collection {Bri(yi)}1≤i≤N such that ri << δ, Br(x∞)∩A∩π−1
1 (π1(x∞)) ⊂

∪N
i=1Bri(yi) and
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∣∣∣Hk−1(Br(x∞) ∩ A ∩ π−1
1 (π1(x∞)))−

∑N
i=1 ωk−1r

k−1
i

∣∣∣ < δ. Since Br(x∞)∩A∩π−1
1 (π1(x∞))

is compact, there exists τ0 > 0 such that Bτ0(Br(x∞) ∩A ∩ π−1
1 (π1(x∞))) ⊂

∪N
i=1Bri(yi).

Since Br(xn(j)) ∩ A ∩ π−1
1 (π1(xn(j))) ⊂ Bτ0(K∞) for every sufficiently large j, we have

Br(xn(j))∩A∩π−1
1 (π1(xn(j))) ⊂

∪N
i=1Bri(yi). Thus, we haveH

k−1
(
Br(xn(j)) ∩ A ∩ π−1

1 (π1(xn(j)))
)
≤∑N

i=1H
k−1
(
Br(yi) ∩ π−1

1 (π1(xn(j)))
)
≤
∑N

i=1 ωk−1r
k−1 ≤ Hk−1(Br(x∞)∩A∩π−1

1 (π1(x∞)))+

δ for every sufficiently large j. Therefore, we have Claim 5.1.

By Claim 5.1, we have the statement 1 in Claim 3.24. The statement 2 follows from

Lebesgue differentiation theorem on Euclidean spaces. Finally, by Fubini’s theorem, we

have

Hk(A \ sl1 − LebA) =

∫
R

Hk−1
(
A ∩ ({t} ×Rk−1) \ sl1 − LebA

)
dt = 0.

Thus, we have the statement 3. Therefore, we have Claim 3.24 if A is compact.

We shall give a proof of Claim 3.24 in general case. Fix R > 0. There exists a sequence

of compact subsets {Ki}i of BR(0k)∩A such that Hk(BR(0k)∩A\Ki) → 0. Then, we have

sl1−LebKi ⊂ sl1−Leb(BR(0k)∩A). Thus, we have Hk(BR(0k)∩A \ sl1−Leb(BR(0k)∩
A)) ≤ Hk(BR(0k)∩A \ sl1 − LebKi) ≤ Hk(BR(0k)∩A \Ki) +Hk(Ki \ sl1 − LebKi)

i→∞→
0 as an outer measure. Thus, sl1 − Leb(BR(0) ∩ A) is a Hk-measurable set. Since

sl1 − LebA =
∪

N∈N (sl1 − Leb(A ∩BN(0))), we have the statement 1 in Claim 3.24. By

Lebesgue differentiation theorem and Fubini’s theorem, we have the statements 2 and 3.

Thus, we have Claim 3.24.
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