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ABSTRACT 

 

In cranial skeletal development, the establishment of the ectomesenchymal 

lineage within the cranial neural crest is of great significance.  Fgfs are polypeptide 

growth factors with diverse functions in development and metabolism.  Fgf20b 

knockdown zebrafish embryos showed dysplastic neurocranial and pharyngeal 

cartilages.    Ectomesenchymal cells from cranial neural crest cells were 

significantly decreased in Fgf20b knockdown embryos, but cranial neural crest cells 

with a non-ectomesnchymal fate were increased.  However, the proliferation and 

apoptosis of cranial neural crest cells were essentially unchanged.  Fgfr1 

knockdown embryos also showed dysplastic neurocranial and pharyngeal cartilages.  

The present findings indicate that Fgf20b is required for ectomesenchymal fate 

establishment via the activation of Fgfr1 in zebrafish.                   

 

Key words: Fgf; Fgf20b; cranial neural crest; pharyngeal arch; ectomesenchyme; 
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1. Introduction 

                                                    

In vertebrate embryonic development, the formation of a head skeleton 

comprising the cranium and mandible is essential for the establishment of a proper 

physical frame.  Most of the bones and cartilage in the head skeleton are derived 

from cranial neural crest cells [1].  After developing at the neural plate and 

epidermis, neural crest cells emigrate from the dorsal neural tube to their final 

destination during embryonic development.  Cranial neural crest cells differentiate 

into ectomesenchyme and non-ectomesenchyme.  In cranial skeletal development, 

the ectomesenchyme terminally differentiates into bones, cartilages, and associated 

connective tissues and generates much of the craniofacial skeleton.  The 

establishment of the ectomesenchymal lineage within the cranial neural crest is of 

great significance [2]. 

Fgfs are polypeptide growth factors with diverse functions in development and 

metabolism.   The Fgf family comprises 22 and 28 members in humans/mice and 

zebrafish, respectively [3, 4].  We originally identified Fgf20 as a neurotrophic 

factor that acts via the activation of Fgf receptor 1 (Fgfr1) in a paracrine manner [5, 

6].  Fgf20 is expressed in mouse embryonic calvaria and developing limbs [7].  In 

addition, Fgf20 is potentially required for sensory cell specification in mouse 

cochlear development [8].  Fgf20 also regulates the development of embryonic and 

neural stem cells into tyrosine hydroxylase-positive neurons in cultured cells [9, 10].  

However, the physiological roles of Fgf20 remain unclear.     

Zebrafish Fgf20 is an ortholog of human/mouse Fgf20.  Zebrafish Fgf20a and 

Fgf20b are paralogs [3, 11].  Fgf20a is required for fin regeneration, the restriction 

of neurogenesis, and the segment center progenitor population [11, 12].  However, 

the roles of Fgf20b remain unclear.  In this paper, we report that Fgf20b is required 

for the ectomesenchymal fate establishment of cranial neural crest cells in zebrafish. 
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2. Materials and methods 

                                                      

2.1. Fish maintenance 

 

Zebrafish (Danio rerio) were maintained and the developmental stages of 

embryos were determined as described [13]. 

  

2.2. Whole mount in situ hybridization and staining 

 

Whole mount in situ hybridization was performed as described [13].  The 

Fgf20b probe was synthesized using a full-length cDNA-containing plasmid.  Other 

probes used were zebrafish foxd3 [14], sox10 [15], dlx2 [16], col2a1a [17] , and 

Fgfr1 [13].    Cartilage was stained with Alcian blue as described [18]. 

  

2.3. Morpholino injection   

 

Antisense MOs were synthesized by Gene-Tools, LLC (Corvallis, OR).  The 

sequences were as follows: splice-site-targeted Fgf20b MO1, 

5’-AAGACAAGTCTGCTTACTGACCAT-3’; splice-site-targeted Fgf20b MO2, 

5’-TTCCAAAATACCTGGAGAAGAATAA-3’.  A splice-site-targeted Fgfr1 MO 

was used as described [13].   The Fgf20b MO1 (20 or 30 ng), Fgf20b MO2 (4 or 6 

ng), and Fgfr1 MO (12 ng) were injected into one- to two-cell embryos.  To 

examine each MO’s efficacy, RNA was isolated from wild-type, Fgf20b 

MO1-injected or Fgf20b MO2-injected embryos.  cDNA was amplified from the 

RNA by RT-PCR.   
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2.4. Rescue experiments   

 

Capped zebrafish Fgf20b sense mRNA was prepared with the mMESSAGE 

mMACHINE kit (Ambion) according to the manufacturer’s directions from 

linearized pCS2+ plasmids containing zebrafish Fgf20b cDNA.  To perform rescue 

experiments, 0.05 pg of Fgf20b sense mRNA was injected separately, immediately 

after the injection of Fgf20b MO1 (20 ng) into two-cell embryos.   

 

2.5. Detection of proliferating and apoptotic cells   

 

Proliferating cells were detected by immunohistochemistry using an 

anti-phosphorylated H3 (H3P) antibody (Upstate Biotechnology). Apoptotic cells 

were examined by TUNEL assay using the DeadEnd colorimetric detection kit 

(Promega) as described. 

 

3. Results and discussion 

 

3.1. Spatiotemporal expression pattern of Fgf20b 

 

We examined the spatiotemporal expression pattern of Fgf20b in zebrafish 

embryos by RT-PCR (Fig. 1A) and whole mount in situ hybridization (Fig. 1B-G).  

Fgf20b expression was barely detectable at 12 hpf.  However, the expression 

increased gradually until at least 120 hpf.  This expression pattern is similar to that 

of Fgf20a.  At 14 hpf, Fgf20b was expressed in the region where migrating cranial 

neural crest cell subpopulations possibly exist.  Fgf20b was expressed in the 

pharyngeal arch at 20 hpf and further in the mandibular arch (the first pharyngeal 

arch), hyoid arch (the second pharyngeal arch), gill arches, and the otic vesicle at 36 
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hpf.  The pattern for Fgf20b is quite distinct from that for Fgf20a, which is mainly 

expressed in the hindbrain at 16 hpf and a cluster of cells in each rhombomere after 

18 hpf [12].  Cranial neural crest cells arise from dorsal and lateral regions of the 

neural ectoderm, and then migrate to the pharyngeal arches, where they form neural 

and skeletal tissues [18].  The expression of Fgf20b suggests potential roles in the 

development of cranial neural crest cells.  

 

3.2. Inhibition of Fgf20b functions results in mandibular hypoplasia  

 

To inhibit Fgf20b functions in zebrafish embryos, we used splice-site-targeted 

Fgf20b MOs (Fgf20b MO1 and MO2) (Fig. S1A).  RNA was isolated from 

wild-type, Fgf20b MO1-injected, or Fgf20b MO2-injected embryos at 48 hpf.  

Fgf20b cDNA was amplified from the RNA by RT-PCR using the P1 and P2 primers 

(Fig. S1B).  Mature Fgf20b mRNA levels decreased significantly in the Fgf20b 

MO1 and Fgf20b MO2-injected embryos in a dose-dependent manner.  In addition, 

mis-spliced Fgf20b mRNA forms were significantly detected.  These results 

indicate that Fgf20b MO1 and MO2 significantly impaired the maturation of Fgf20b 

mRNA.  We analyzed Fgf20b knockdown embryos at 5 days post fertilization (dpf) 

(Fig. 2A-H).  The Fgf20b MO1-injected embryos showed impaired head regions 

(75.6%, n=45 by 20 ng; 83.3%, n=24 by 30 ng).  In particular, mandibular 

hypoplasia, a significant reduction in the size of the lower jaw, was observed.  The 

Fgf20b MO2-injected embryos showed similar phenotypes to the Fgf20b 

MO1-injected embryos (86.1%, n=36 by 4ng; 98.7%, n=44 by 6 ng).  However, the 

mandibular hypoplasia in Fgf20b MO1(20 ng)-injected embryos was significantly 

rescued by the injection of capped Fgf20b mRNA (69.2%, n=26 by 0.025 pg mRNA; 

83.3 %, n=24 by 0.05 pg mRNA).  These results suggest that Fgf20b is required for 

the proper formation of the lower jaw.   
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3.3. Fgf20b is required for neurocranial and pharyngeal cartilage to form 

 

We examined Fgf20b knockdown embryos at 5 dpf by histological analysis with 

Alcian blue, which stained sulfated glycosaminoglycan-rich tissues such as cartilage 

(Fig. 2I-N). The size of the anterior neurocranial cartilage, which includes the 

ethmoid plate and trabeculae, and pharyngeal cartilage was significantly reduced in 

Fgf20b knockdown embryos (75.6%, n=45 by 20 ng MO1; MO2: 86.1%, n=36 by 4 

ng MO2).  In particular, the first and second pharyngeal cartilages such as Meckel’s 

cartilage, palatoquadrates, basihyal and ceratohyals were dysplastic.  These results 

indicate that Fgf20b is required for the proper formation of neurocranial and 

pharyngeal cartilages. 

 

3.4. Fgf20b is required for the ectomesenchymmal fate establishment of cranial 

neural crest cells 

 

Cranial neural crest cells have the potential to generate mesenchymal derivatives, 

which can be classified into two mesenchymes, ectomesenchyme and 

non-ectomesenchyme [19].  In zebrafish, these cells are spatially segregated in the 

premigratory neural crest cells [15].  After migrating to pharyngeal arches, 

ectomesenchymal cells form cartilage and connective tissues [2]. The drosophila 

distal-less homeobox gene dlx2 is a marker for ectomesenchymal cells [2].  dlx2 

expression was significantly decreased in Fgf20b knockdown embryos (20 ng MO1) 

(78.8%, n=33) (Fig. 3A, B).  The forkhead box-containing transcription factor gene 

foxd3 is expressed in premigratory and early migratory neural crest cells [20].  The 

HMG box-containing transcription factor gene sox10 is expressed in the migratory 

neural crest cells [2].  foxd3 and sox10 are markers for neural crest cells with a 
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non-ectomesenchymal fate [2].  foxd3 and sox10 expression was significantly 

increased in Fgf20b knockdown embryos (20 ng MO1) at 24 hpf (67.7%, n=31 and 

77.4%, n=32, respectively) (Fig. 3C-F).  These results indicate that the neural crest 

cells did not properly differentiate into ectomesenchymal cells in Fgf20b knockdown 

embryos  

 

3.5. Fgf20b is not required for the endoderm to form in neurocaranial and 

pharyngeal cartilages 

 

We examined the roles of Fgf20b after the migration of cranial neural crest cells 

to the pharyngeal arches.  The type II collagen gene col2a1a is a marker for 

differentiating chondrocytes [17].  col2a1a expression was also decreased in the 

pharyngeal arches of Fgf20b knockdown embryos (90.6 %, n=32) (Fig. 3G, H).  

These results indicate that a decrease in ectomesenchymal cells resulted in 

diminished chondrogenesis. 

The pharyngeal endoderm interacts with the neural crest during the formation of 

neurocranial and pharyngeal cartilages [21].  The NK2 transcription factor gene 

nkx2.3 is a marker for the pharyngeal endoderm [22].  nkx2.3 expression in the 

pharyngeal endoderm was essentially unchanged in Fgf20b knockdown embryos (20 

ng MO1) at 36 hpf (87.5 %, n=32) (Fig. 3I, J).  The bHLH transcription factor gene 

hand2, which is expressed in the ventral endoderm during the pharyngeal arch’s 

development, is required for the formation of the ventral pharyngeal cartilage 

including the lower jaw [23].  hand2 expression was also essentially unchanged in 

the Fgf20b knockdown embryos (20 ng MO1) at 24 hpf (77.4 %, n=31) (Fig. 3K, L).   

These results suggest that Fgf20b is not essential to the formation of the endoderm in 

the pharyngeal cartilage.  
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3.6. Fgf20b is not critically involved in the proliferation and survival of cranial 

neural crest cells 

 

In Fgf20b knockdown embryos, the number of cranial neural crest cells with a 

non-ectomesenchymal fate was increased, whereas the number of ectomesenchymal 

cells was decreased.  Therefore, we examined the proliferation and survival of 

cranial neural crest cells in Fgf20b knockdown embryos.  Proliferating cell levels 

examined by immunohistochemistry with phosphohistone-H3 antibody were 

essentially unchanged in Fgf20b knockdown embryos (20 ng MO1) at 14 and 24 hpf 

(Fig. 4A-H, Q), indicating that the proliferation of cranial neural crest cells was 

essentially unchanged in Fgf20b knockdown embryos.  Apoptotic cell levels 

examined by the TUNEL assay were only slightly increased in Fgf20b knockdown 

embryos (Fig. 4I-P, R), indicating that the survival of cranial neural crest cells was 

not critically affected in Fgf20b knockdown embryos. 

 

3.7. Fgfr1 is required for neurocranial and pharyngeal cartilage to form 

  

Fgf20 functions via the activation of Fgfr1 in a paracrine manner [6].  Fgf20b is 

also expected to function via the activation of Fgfrs in a paracrine manner. The 

zebrafish Fgfr gene family comprises four members, Fgfr1-Fgfr4 [13].  We 

generated Fgfr1-Fgfr4 knockdown embryos injected with splice-site targeted 

Fgfr1-Fgfr4 MOs as described previously [13].  The knockdown embryos at 5 dpf 

were examined by histological analysis with Alcian blue staining.  Aberrant 

neurocranial and pharyngeal cartilages were observed only in Fgfr1 knockdown 

embryos (70 %, n=10 by 12 ng) (Fig. S2A-D).  Fgfr1 was expressed in the region 

where migrating cranial neural crest cell subpopulations possibly exist at 14 hpf (Fig. 

S2E).  Later, Fgfr1 was expressed in the pharyngeal arches at 24 hpf (Fig. S2F).  



 10 

This expression pattern is essentially consistent with that reported [24].  In addition, 

Fgf20 potentially binds to and activates Fgfr1 [6].  These results indicate that 

Fgf20b possibly functions via the activation of Fgfr1  

 

Zebrafish Fgf20a functions in fin regeneration, the restriction of neurogenesis, 

and the segment center progenitor population [11, 12].  The present results indicate 

that Fgf20b has roles distinct from those of Fgf20a.  In conclusion, Fgf20b 

contributes to head skeletal development by establishing the ectomesenchymal fate 

of cranial neural crest cells in zebrafish. 
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Figure legends 

   

Fig. 1. Spatiotemporal expression pattern of Fgf20a and Fgf20b. (A) The expression 

of Fgf20a, Fgf20b, and ef1 as a control in embryos was examined by RT-PCR.  

(B-G) The expression of Fgf20b in embryos was examined by whole mount in situ 

hybridization.  Arrows at 14 and 20 hpf indicate possible regions of migrating 

cranial neural crest cell subpopulations and the pharyngeal arch, respectively.  pa1, 

the first pharyngeal arch (the mandibular arch); pa2, the second pharyngeal arch (the 

hyoid arch); ga, gill arches; ov, the otic vesicle.  Lateral views (B, D, F), dorsal 

views (C, E, G).  
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Fig. 2. The effect of Fgf20b knockdown on morphogenesis.  (A-F) Two-cell 

embryos injected with Fgf20b MO1 and Fgf20b MO2 at 5 dpf.    In contrast to 

wild-type embryos, there was a significant reduction in the size of the lower jaw in 

Fgf20b MO1- or MO2-injected embryos.  Arrows indicate the aberrant lower jaw.  

(G, H) The reduction in the size of the lower jaw in Fgf20b MO1 embryos was 

clearly prevented by the injection of Fgf20b mRNA.  Lateral views of the embryos 

are shown.  The head region in A, C, E and G is shown at a higher magnification in 

B, D, F and H, respectively.  (I-N) The effect of Fgf20b knockdown on neurocranial 

and pharyngeal cartilages.  Alcian blue stained cartilage elements at 5 dpf in 

wild-type embryos, Fgf20b MO1-injected, and Fgf20b MO2-injected embryos.  In 

Fgf20b knockdown embryos, the size of ethmoid plate, trabeculae and pharyngeal 

cartilage were significantly reduced in size.  Arrows indicate the anterior 

neurocranial cartilage including ethmoid plate, trabeculae and pharyngeal cartilage.  

bh, basihyal; ch, ceratohyal; e, ethmoid plate; m, Meckel’s cartilage; pq, 

palatoquadrate; t, trabeculae.  Lateral views (I, K, M); ventral views (J, L, N). 

 

Fig. 3.  The effect of Fgf20b knockdown on the commitment of cranial neural crest 

cells (A-F).  (A, B) The expression of dlx2 in embryos at 24 hpf.  Arrows indicate 

the expression of dlx2 in ectomesencymal cells.  The expression of dlx2 was 

significantly decreased in Fgf20b knockdown embryos.  (C-F) The expression of 

foxd3 and sox10 in embryos at 24 hpf.  Arrows indicate the expression of foxd3 and 

sox10 in cranial neural crest cells with a non-ectomesenchymal fate.  The 

expression of both foxd3 and sox10 was significantly increased in Fgf20b 

knockdown embryos.sox10 was also expressed in the otic vesicle (ov).    Dorsal 

views of embryos are shown.  Chondrogenesis and endoderm formation 

neurocranial and pharyngeal arches in Fgf20b knockdown embryos (G-L).  (G, H) 

The expression of col2a1a, which is required for chondrogenesis, in embryos.  
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Arrows indicate the expression of col2a1a in the pharyngeal arches.  The expression 

of col2a1a was significantly decreased in Fgf20b knockdown embryos.  (I-L) The 

expression of nkx2.3 and hand2, markers for the pharyngeal endoderm, in embryos.  

The expression of nkx2.3 and hand2 was essentially unchanged in Fgf20b 

knockdown embryos.   Lateral views (G, H, K, L); dorsal views (I, J). 

 

Fig. 4.  Proliferation and survival of cranial neural crest cells in Fgf20b knockdown 

embryos.  (A-H) Proliferating cells, phospho-histone H3-positive cells, were 

examined.  The regions between arrowheads indicate areas of migratory cranial 

neural crest cells (A, B) and pharyngeal arches (C, D).  Arrows indicate 

phospho-histone H3-positive cells in the sections (E-H).  (Q) The H3P-positive cells 

in the regions were examined quantitatively.    (I-P) Apoptotic cell levels were 

examined by TUNEL assay.  The regions between arrowheads indicate areas of 

migratory cranial neural crest cells (I, J) and pharyngeal arches (K, L).  Arrows 

indicate apoptotic cells.  (R) The apoptotic cells in the regions were examined 

quantitatively.  Lateral views (A-D, I-L); sections of embryos (E-H, M-P).  Error 

bars correspond to the standard deviation of the mean.  Asterisk; P<0.01 by 

Student’s t test. The results are the mean ± S.D. for 3 independent sections from 5 

embryos 
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