<table>
<thead>
<tr>
<th>Title</th>
<th>Effects of amines and aminoalcohols on bovine intestine alkaline phosphatase activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Author(s)</td>
<td>Sekiguchi, Satoshi; Hashida, Yasuhiko; Yasukawa, Kiyoshi; Inouye, Kuniyo</td>
</tr>
<tr>
<td>Citation</td>
<td>Enzyme and Microbial Technology (2011), 49(2): 171-176</td>
</tr>
<tr>
<td>Issue Date</td>
<td>2011-07</td>
</tr>
<tr>
<td>URL</td>
<td>http://hdl.handle.net/2433/143675</td>
</tr>
<tr>
<td>Rights</td>
<td>© 2011 Elsevier Inc.; This is not the published version. Please cite only the published version. この論文は出版社版ではありません。引用の際には出版社版をご確認ご利用ください。</td>
</tr>
<tr>
<td>Type</td>
<td>Journal Article</td>
</tr>
<tr>
<td>Textversion</td>
<td>author</td>
</tr>
</tbody>
</table>

Kyoto University
Effects of amines and aminoalcohols on bovine intestine alkaline phosphatase activity

Satoshi Sekiguchi, Yasuhiko Hashida, Kiyoshi Yasukawa, Kuniyo Inouye*

Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan

Keywords: Alkaline phosphatase, Amine, Aminoalcohol, Bovine intestine alkaline phosphatase, Enzyme immunoassay

Abbreviations: ALP, alkaline phosphatase; BIALP, bovine intestine alkaline phosphatase; EIA, enzyme immunoassay; pNPP, p-nitrophenyl phosphate

*Corresponding author. Tel: +81-75-753-6266; Fax: +81-75-753-6265;
E-mail address: inouye@kais.kyoto-u.ac.jp
Abstract

Bovine intestine alkaline phosphatase (BIALP) is widely used as a signaling enzyme in sensitive assays such as enzyme immunoassay (EIA). In this study, we evaluated the effects of various aminoalcohols and amines on the activity of BIALP in the hydrolysis of p-nitrophenyl phosphate (pNPP) at pH 9.8, at 20°C. The k_{cat} values at 0.05 M diethanolamine, 0.1 M triethanolamine, and 0.2 M N-methylethanolamine were 190 ± 10, 840 ± 30, and 500 ± 10 s$^{-1}$, respectively. The k_{cat} values increased with increasing concentrations of diethanolamine, triethanolamine, and N-methylethanolamine and reached 1240 ± 60, 1450 ± 30, and 2250 ± 80 s$^{-1}$, respectively, at 1 M. On the other hand, the k_{cat} values at 0.05-1.0 M ethanolamine, ethylamine, methylamine, and dimethylamine were in the range of 100-600 s$^{-1}$. These results indicate that diethanolamine, triethanolamine, and N-methylethanolamine highly activate BIALP and might be suitable as a dilution buffer of BIALP in EIA. Interestingly, the K_m values increased with increasing concentrations of diethanolamine and N-methylethanolamine, but not triethanolamine: the K_m value at 1.0 M diethanolamine (0.83 ± 0.15 mM) was 12-fold higher than that at 0.05 M (0.07 ± 0.01 mM), and that at 1.0 M N-methylethanolamine (2.53 ± 0.20 mM) was 14-fold higher than that at 0.2 M (0.18 ± 0.02 mM), while that at 1.0 M triethanolamine (0.31 ± 0.01 mM) was similar as that at 0.2 M (0.25 ± 0.01 mM), suggesting that the mechanisms of BIALP activation are different between the aminoalcohols.
1. Introduction

Phosphatases (EC 3.1.3.1) catalyze the hydrolysis of phosphomonoesters. They are classified into two groups as alkaline phosphatase (ALP) and acid phosphatase (ACP) depending on their optimal pH in alkaline and acidic pH regions, respectively. ALPs are widely distributed in many bacteria and mammals, and play an essential role in biochemical processes [1-4]. Their structural and functional properties are considered to be commonly conserved in all ALPs. ALP is a homodimeric metalloenzyme. The subunit has a molecular mass of about 50 kDa and contains two Zn$^{2+}$ and one Mg$^{2+}$ ions [5,6]. The catalytic triad composed of the two Zn$^{2+}$ and one Mg$^{2+}$ ions is conserved in all ALPs from *Escherichia coli* to mammals [7]. Mammalian ALP is present in the liver, intestine, placenta, kidney, and other tissues. The molecular activity, k_{cat}, of mammalian ALP is 10-60 times higher than that of *E. coli* ALP [8].

Bovine intestine ALP (BIALP) has the highest specific activity among mammalian ALPs. Therefore, it has been applied as a signaling enzyme in sensitive assays such as enzyme immunoassay (EIA), Western blotting analysis, nucleic acid hybridization assay, and polymerase chain reaction and has been used in diagnosis, immunology, and molecular biology [9-11]. We developed a fully automated random-accessible type EIA diagnosis system, AIA, with BIALP (Tosoh, Tokyo, Japan). In this system, 180 assays could be done in 1 h with the sensitivity of an attomole level using 0.1 ml sample solution. Generally, in EIA, the concentration of the analyte is translated to the activity of the signaling enzyme. The concentration of the enzyme-reaction product is measured using signals such as absorbance, fluorescence, and luminescence. Various enzymes such as ALP, β-galactosidase, glucoamylase, and peroxidase have been used for this purpose [12]. Presently, BIALP and
horseradish peroxidase (HRP) are the most extensively used due to high activity. According to the Michaelis-Menten equation, the reaction velocity is proportional to the concentration and k_{cat} of the signaling enzyme. Therefore, the sensitivity and rapidness of EIA increase if k_{cat} of the signaling enzyme increases. This means that activation of the signaling enzyme makes the EIA system more sensitive and rapid. Regarding this, we developed several technologies, and demonstrated that they were effective [13-16]. First, to reduce non-specific binding of the BIALP-labeled antibodies (Abs) to the immobilized Abs, we produced F(ab’)$_2$ fragments and used them as Abs to be immobilized, instead of intact IgG or IgM Abs, [13,14]. Secondly, considering that chemical labeling of BIALP to Ab sometimes makes BIALP and Ab inactivated, we produced bi-specific Abs that bind with antigen and BIALP simultaneously and used them as the Abs for detection, instead of covalently BIALP-labeled Abs [15,16]. Thirdly, to increase the reaction velocity, we produced dimerized and trimerized BIALPs by chemical conjugation with glutaraldehyde and labeled them to the Abs for detection, instead of monomeric BIALP [15].

Enzyme activity depends on buffer species as well as pH. Bannister and Foster reported that tris, imidazole, phosphate ion, and bicarbonate ion increased BIALP activity [17]. Stinson reported that 2-(ethylamino)ethanol increased BIALP probably by acting as a phosphoacceptor [18]. Today, diethanolamine is commonly used as a dilution buffer of BIALP [19,20]. However, the activation mechanism of these substances has not been well elucidated. In this study, to address this issue, we examined the effects of various amines and aminoalcohols (Fig. 1) on BIALP activity. We also discuss the importance of BIALP activation from a viewpoint of its diagnostic use.

2. Materials and methods
2.1. Materials

BIALP (lot 92958657) was purchased from Roche Diagnostics (Basel, Switzerland). The preparation was used without further purification. p-Nitrophenyl phosphate (pNPP) (lot M4R4749) was from Nacalai Tesque (Kyoto, Japan). Its concentration was determined spectrophotometrically using the molar absorption coefficient, ε_{310}, of 10,380 M$^{-1}$ cm$^{-1}$, which we determined in this study. All other chemicals were of reagent grade and purchased from Nacalai Tesque and Wako Pure Chemical (Osaka, Japan).

2.2. Hydrolysis of pNPP

The BIALP-catalyzed hydrolysis of pNPP was initiated by mixing 2,990 µl of the substrate solution pre-incubated at 20°C and 10 µl of the BIALP solution (12 nM). The substrate solutions were 0.05-3.0 M diethanolamine-HCl, 0.2-1.0 M ethylamine-HCl, 0.05-0.5 M ethanol containing 0.05 M diethanolamine-HCl, 0.05-1.0 M methylamine-HCl containing 0.05 diethanolamine, 0.05-1.0 M ethanolamine-HCl, 0.1-1.0 M triethanolamine-HCl, 0.2-1.0 M N-methylethanolamine-HCl, and 0.05-0.5 M borate-NaOH, each containing 1.0 mM MgCl$_2$ and 20 µM ZnCl$_2$, at pH 9.8. The initial enzyme and substrate concentrations were 40-400 pM and 0.01-15 mM, respectively. The reaction was carried out at 20°C and measured by following the increase in absorbance at 405 nm, A_{405}, with a JASCO V-550 spectrophotometer (Tokyo). The product, p-nitrophenol, was estimated using the molar absorption difference due to the hydrolysis, $\Delta\varepsilon_{405} = 17,500$ M$^{-1}$ cm$^{-1}$, at 20°C, which we
determined in this study. The kinetic parameters, the molecular activity (k_{cat}) and Michaelis constant (K_{m}), were calculated from Hanes-Woolf equation (Eq. 1) by least-squares-regression.

$$\frac{1}{v_o} = \frac{K_{\text{m}}}{V_{\text{max}} [S]_o} + \frac{1}{V_{\text{max}}}$$

(1)

In this equation, v_o, V_{max}, and $[S]_o$ are the initial reaction rate, the maximal initial reaction rate, and the initial substrate concentration, respectively. The value of k_{cat} was calculated from V_{max} obtained using a monomer molecular mass of 50 kDa.

3. Results

3.1. Effects of diethanolamine on the BIALP-catalyzed hydrolysis of pNPP

Diethanolamine is commonly used as a dilution buffer of BIALP [19,20]. We first made kinetic analysis of BIALP in the hydrolysis of pNPP with various concentrations of diethanolamine. The dependences of v_o at pH 9.8, at 20ºC on the substrate concentration are shown in Fig. 2. All plots showed saturated profiles, and the k_{cat} and K_{m} values of BIALP were determined separately (Table 1). The k_{cat} and K_{m} values markedly increased with increasing concentrations of diethanolamine. The k_{cat} value at 3.0 M diethanolamine was 2330 ± 30 s$^{-1}$, which was 12-fold higher than that at 0.05 M (190 ± 10 s$^{-1}$), and the K_{m} value at 3.0 M diethanolamine was 1.75 ± 0.05 mM, which was 25-fold higher than that at 0.05 M (0.07 ± 0.01 mM). Consequently, the $k_{\text{cat}}/K_{\text{m}}$ values were relatively constant in the range 0.05-3.0 M.
3.2. Effects of amines on the BIALP-catalyzed hydrolysis of pNPP

Diethanolamine has amino and hydroxyl groups. Based on the assumption that the hydroxyl group of diethanolamine is involved in the activation of BIALP, we made kinetic analysis of BIALP in the hydrolysis of pNPP with varying concentrations (0.05-1.0 M) of ethylamine, ethanol, methylamine, and dimethylamine. To maintain pH of the solution at 9.8, 0.05 M diethanolamine was contained in the solutions with methylamine, dimethylamine, and ethanol. The dependences of $v_o/[E]_o$ on the substrate concentration in the presence of 1.0 M diethanolamine, ethylamine, methylamine, or dimethylamine or 0.5 M ethanol are shown in Fig. 3. The $v_o/[E]_o$ values with ethylamine, methylamine, dimethylamine, and ethanol were considerably lower than those with diethanolamine at all substrate concentrations examined. Because all plots showed saturated profiles, the k_{cat} and K_m values were determined separately (Table 2). The k_{cat} values were stable with increasing concentrations of ethylamine: the value at 1.0 M ethylamine was 400 ± 30 s$^{-1}$, which was 90% of that at 0.2 M (450 ± 10 s$^{-1}$). The k_{cat} values decreased with increasing concentrations of ethanol: the value at 0.5 M ethanol was 100 ± 10 s$^{-1}$, which was 50% of that at 0.05 M (200 ± 20 s$^{-1}$). The k_{cat} values increased with increasing concentrations of methylamine and dimethylamine: the value at 1.0 M methylamine was 330 ± 30 s$^{-1}$, which was 240% of that at 0.05 M (140 ± 20 s$^{-1}$), and that at 1.0 M dimethylamine was 370 ± 10 s$^{-1}$, which was 250% of that at 0.2 M (150 ± 10 s$^{-1}$). These results indicate that ethylamine and ethanol do not activate and methylamine and dimethylamine activate BIALP. However, the magnitudes of the activation by methylamine and dimethylamine were not remarkable compared to that by diethanolamine.
3.3. Effects of aminoalcohols on the BIALP-catalyzed hydrolysis of pNPP

To see whether aminoalcohols other than diethanolamine activate BIALP, we made kinetic analysis of BIALP in the hydrolysis of pNPP with varying concentrations (0.05-1.0 M) of ethanolamine, triethanolamine, and N-methylethanolamine. Borate was also used as a negative control. The dependences of $v_o/[E]_o$ on the substrate concentration at 1.0 M diethanolamine, ethanolamine, triethanolamine, and N-methylethanolamine and 0.5 M borate are shown in Fig. 4. The $v_o/[E]_o$ values with N-methylethanolamine were the highest for 0.4-1.0 mM pNPP and that with triethanolamine was the highest for 0.2 mM pNPP. Because all plots showed saturated profiles, the k_{cat} and K_m values were determined separately (Table 3). The k_{cat} values increased with increasing concentrations of triethanolamine and N-methylethanolamine: the value at 1.0 M triethanolamine was 1450 ± 30 s$^{-1}$, which was 180% of that at 0.1 M (840 ± 30 s$^{-1}$), and the value at 1.0 M N-methylethanolamine was 2250 ± 80 s$^{-1}$, which was 450% of that at 0.2 M (500 ± 10 s$^{-1}$). The k_{cat} values decreased with increasing concentrations of ethanolamine: the value at 1.0 M ethanolamine was 300 ± 10 s$^{-1}$, which was 50% of that at 0.05 M (610 ± 200 s$^{-1}$). The k_{cat} values were stable with increasing concentrations of borate: the value at 0.5 M borate was 120 ± 10 s$^{-1}$, which was 90% of that at 0.05 M (130 ± 10 s$^{-1}$). These results indicate that ethanolamine does not activate and triethanolamine and N-methylethanolamine activate BIALP.

The K_m values were stable with increasing concentrations of ethanolamine: the value at 1.0 M ethanolamine was 0.30 ± 0.01 mM, which was identical to that at 0.05 M (0.30 ± 0.02 mM). The K_m values slightly increased with increasing concentrations of triethanolamine:
the value at 1.0 M triethanolamine was 0.31 ± 0.01 mM, which was 130% of that at 0.1 M (0.24 ± 0.03 mM). The K_m values markedly increased with increasing concentrations of N-methyl ethanolamine and borate: the value at 1.0 M N-methyl ethanolamine was 2.53 ± 0.20 mM, which was 1400% of that at 0.2 M (0.18 ± 0.02 mM), and the value at 0.5 M borate was 10.30 ± 0.41 mM, which was 2100% of that at 0.05 M (0.49 ± 0.02 mM). Consequently, the k_{cat}/K_m values increased with increasing concentrations of triethanolamine, and decreased with increasing concentrations of ethanolamine, N-methyl ethanolamine, and borate.

4. Discussion

4.1. Effects of amines on BIALP activity

In this study, we determined the k_{cat} and K_m values of BIALP in the hydrolysis of pNPP with varying concentrations of three amines, methylamine, dimethylamine, and ethylamine, one alcohol, ethanol, and four aminoalcohols, ethanolamine, diethanolamine, triethanolamine, and N-methyl ethanolamine (Fig. 1). We demonstrate that diethanolamine, triethanolamine, and N-methyl ethanolamine activate BIALP. The k_{cat} values increased with increasing concentrations of methylamine and dimethylamine, and were stable with increasing concentrations of ethylamine (Table 2). The magnitudes of the activation by methylamine and dimethylamine are not remarkable compared to that by diethanolamine (Table 1). This suggests that methyl group has activating effects on BIALP although the precise mechanism is not known. Recently, Yang et al. reported the effects of high concentrations (about 1 M) of neutral salts on calf intestine
ALP activity [21]. They showed that the activating and stabilizing effects of neutral salts correlated with the Hofmeister series. The effects of neutral salts on BIALP are the next subject. In regard to this, we reported that neutral salts remarkably activated thermolysin, a thermostable neutral metalloproteinase produced in the culture broth of *Bacillus thermoproteolyticus* [22]. Importantly, the orders of ions for the efficiency in the activation and the increase in the solubility of thermolysin were Na\(^+\) > K\(^+\) > Li\(^+\), which was different from Hofmeister’s series corresponding to the degree of hydration of ions: Li\(^+\) > Na\(^+\) > K\(^+\) [22-24].

4.2. Effects of aminoalcohols on BIALP activity

The *k*\(_{cat}\) values of BIALP in the hydrolysis of pNPP increased with increasing concentrations of diethanolamine, triethanolamine, and *N*-methylethanolamine, indicating that they activate BIALP and might be suitable as a dilution buffer of BIALP in EIA. In contrast, the *K*\(_m\) values increased with increasing concentrations of diethanolamine and *N*-methylethanolamine, but not triethanolamine, suggesting that the mechanisms of BIALP activation are different between the aminoalcohols.

The active site of ALP has two Zn\(^{2+}\) ions and one Mg\(^{2+}\) ion. According to X-ray structural study of *E. coli* ALP [5,6,25], the catalytic mechanism of ALP has been thought as follows: in free enzyme, the hydroxyl group of active-site Ser residue coordinates one Zn\(^{2+}\) ion (Zn2). The Michaelis complex is formed when the ester oxygen atom of the substrate coordinates another Zn\(^{2+}\) ion (Zn1) and the non-bridging oxygen atom of the substrate coordinates Zn1. Zn2 polarizes the hydroxyl group of the Ser. Ionized Mg-bound water molecule accepts a proton from the Ser. The covalent enzyme-phosphate intermediate
is formed when the ionized hydroxyl group of the Ser attacks the phosphorus atom. Then, the first product is released. Ionized Zn1-bound water molecule attacks the phosphorus atom. The Mg-bound water molecule now gives a proton to the Ser. Finally, the phosphate group is released.

There are two possible mechanisms for the activation of BIALP by aminoalcohols [17-20]. One is that aminoalcohols are located at the active site of BIALP and receive the leaving phosphate group more efficiently than water molecule. The aminoalcohols-phosphate complex is hydrolyzed when the complex releases from the enzyme. Another possibility is that aminoalcohols bind BIALP out of the active site and activate it. In both cases, the initial reaction rate could be saturated as the aminoalcohol concentration increases. To address this issue, v_0 of BIALP in the hydrolysis of pNPP was plotted against aminoalcohol concentrations for each pNPP concentration (Fig. 5). The reaction with diethanolamine exhibited Michaelis-Menten profiles (Fig. 5A). The $K_{m,\text{diethanolamine}}$ values at the pNPP concentrations of 0.2, 0.4, 0.6, 0.8, 1.0, 2.0, 3.0, 4.0, and 5.0 mM were 64 ± 23, 160 ± 60, 260 ± 50, 360 ± 80, 400 ± 100, 820 ± 170, 1000 ± 200, 1300 ± 300, and 1300 ± 300 mM, respectively, indicating the value increased with increasing concentrations of pNPP. On the other hand, the reaction with triethanolamine and N-methylethanolamine exhibited the saturation curve, but did not exhibit Michaelis-Menten profiles (Figs. 5B and C). Our results suggest that the mechanisms of BIALP activation are different between the aminoalcohols although the difference cannot be precisely explained at this stage.

4.3. Application of ALP to EIA
In the application of ALP to EIA, some substrates are used depending on the principle of the product-detection system. Namely, with the pNPP substrate, the product p-nitrophenol (pNP) gives a strong yellow color at neutral and alkaline pH regions and could be detected with absorbance at 405 nm; with the 4-methyllumbelliferyl phosphate (4MUP) substrate, the product 4-methylumbelliferone gives a large fluorescent emission intensity at 450 nm with excitation at 325 nm [26]. BIALP is applied to chemiluminescence immunoassay, too. It dephosphorylates the substrate, adamantyl 1, 2-dioxetanephenyl phosphate (AMPPD), to produce a phenoxide intermediate, which decomposes to produce light emission at 470 nm [27,28]. The detection limit for the enzyme is 1×10^{21} mol and the light emission is a long-lived glow (> 1 h). The results presented in this study that diethanolamine, triethanolamine, and N-methylethanolamine activated BIALP with pNPP suggest that they also activate it with 4MUP or AMPPD although the degree of activation might vary depending on substrate species.

The properties of ALP are described such as pH-activity profile [29-31], temperature-activity profile [31], thermal stability [31], and metal activation [32] by many investigations. Substitution of Zn$^{2+}$ to divalent metals (Co$^{2+}$, Mn$^{2+}$, Ni$^{2+}$, and Cu$^{2+}$) at catalytic site [33], and addition of these metals to reaction buffer [31] were mainstream investigations in the study of ALP activation. While a buffer constitution in the study of ALP activation was not enough to know the optimum condition for ALP reaction [17,34,35], it has suggested that ALP activity depended on reaction medium from kinetic studies of ALP [19,20,36,37]. Based on these lines of evidence, diethanolamine-HCl buffer is generally used for measurement of ALP activity [19,20,36].

In conclusion, diethanolamine, triethanolamine, and N-methylethanolamine highly activate BIALP and might be suitable as a dilution buffer of BIALP in EIA. Our results also
suggest that certain additives might increase ALP activity and stability. The effects of sugars and polyalcohols on BIALP activity and stability are currently underway.

References

R. Han, J.E. Colman, Dependence of the phosphorylation of alkaline phosphatase by phosphate monoesters on the pK_a of the leaving group, Biochemistry 34 (1995) 4238-4245.
Figure legends

Fig. 1. Molecular structures of the aminoalcohols and amines examined.

Fig. 2. Dependence of the initial reaction rate \((v_o) \) on the pNPP concentration in the BIALP-catalyzed hydrolysis of pNPP in the presence of diethanolamine. The reaction was carried out in 0.05 (◯), 0.25 (△), 1.0 (□), and 3.0 (◇) M diethanolamine-HCl buffer containing 1.0 mM MgCl₂, 20 μM ZnCl₂, at pH 9.8, at 20°C. The initial enzyme concentration, \([E]_0\), is 40 pM. \(v_o \) is plotted against pNPP concentrations of 0-5.0 mM (A) and 0-1.0 mM (B). Solid line represents the best fit of the Michaelis-Menten equation using the nonlinear least-squares methods.

Fig. 3. Dependence of \(v_o \) on the pNPP concentration in the BIALP-catalyzed hydrolysis of pNPP in the presence of amines and alcohols. The reaction was carried out in the presence of 1.0 mM MgCl₂ and 20 μM ZnCl₂, at pH 9.8, at 20°C. \([E]_0\) is 40-400 pM. The \(v_o/[E]_0 \) is plotted against pNPP concentrations. Solid line represents the best fit of the Michaelis-Menten equation using the nonlinear least-squares methods. Symbols for the buffers: 1.0 M diethanolamine, ◯; 1.0 M ethylamine, △; and 0.5 M ethanol, ●; 1.0 M methylamine, □; and 1.0 M dimethylamine, ◇.

Fig. 4. Dependence of \(v_o \) on the pNPP concentration in the BIALP-catalyzed hydrolysis of pNPP in the presence of aminoalcohols. The reaction was carried out in the presence of 1.0 mM MgCl₂ and 20 μM ZnCl₂, at pH 9.8, at 20°C. \([E]_0\) is 40-400 pM. The \(v_o/[E]_0 \) is plotted...
against pNPP concentrations. Solid line represents the best fit of the Michaelis-Menten equation using the nonlinear least-squares methods. Symbols for the buffers: 1.0 M diethanolamine, ○; 1.0 M ethanolamine, △; 1.0 M triethanolamine, □; 1.0 M N-methylethanolamine, ◇; and 0.5 M borate-NaOH. ●.

Fig. 5. Dependence of v_o on the aminoalcohol concentration in the BIALP-catalyzed hydrolysis of pNPP in the presence of aminoalcohols. The reaction was carried out in the presence of 1.0 mM MgCl$_2$ and 20 μM ZnCl$_2$, at pH 9.8, at 20ºC. [E]$_o$ is 40 pM. The v_o/[E]$_o$ is plotted against the concentrations of diethanolamine (A), triethanolamine (B), and N-methylethanolamine (C). Solid line represents the best fit of the Michaelis-Menten equation using the nonlinear least-squares methods. Symbols for pNPP concentration (mM): (A) 0.2, ○; 0.4, △; 0.6, □; 0.8, ◇; 1.0, ▽; 2.0, ●; 3.0, ▲; 4.0, ■; and 5.0, ◆. (B) 0.1, ○; 0.2, △; 0.4, □; 0.6, ◇; 0.8, ▽; 1.0, ●; 1.5, ▲; 2.0, ■; and 3.0, ◆. (C) 0.2, ○; 0.4, △; 0.6, □; 1.0, ◇; 1.5, ▽; 2.0, ●; 3.0, ▲; 4.0, ■; and 5.0, ◆.
Fig. 1. Sekiguchi et al.

Methylamine

Dimethylamine

Ethylamine

Ethanol

Ethanolamine

Diethanolamine

Triethanolamine

N-Methylethanolamine
Fig. 2. Sekiguchi et al.
Fig. 3. Sekiguchi et al.
Fig. 4. Sekiguchi et al.
Fig. 5. Sekiguchi et al.
Fig. 5. Sekiguchi et al.