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Abstract

The closest string problem that arises in both computational biology and coding
theory is to find a string minimizing the maximum Hamming distance from a given
set of strings. This study proposes an efficient heuristic algorithm for this NP-
hard problem. The key idea is to apply the Lagrangian relaxation technique to the
problem formulated as a mixed integer programming problem. This enables us to
decompose the problem into trivial subproblems corresponding to each position of
the strings. Furthermore, a feasible solution can be easily obtained from a solution
of the relaxation. Based on this, a heuristic algorithm is constructed by combining
a Lagrangian multiplier adjustment procedure and a tabu search. Computational
experiments will show that the proposed algorithm can find good approximate
solutions very fast.

Keywords:
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1. Introduction

In computational biology problems related with strings often arise: Given
strings are compared with each other and their common part is searched for.
Among such problems, the closest string problem, which is also referred to as con-
sensus string problem or center string problem in the literature, is to find a string

∗Tel.: +81-75-383-2204, Fax: +81-75-383-2201, E-mail: tanaka@kuee.kyoto-u.ac.jp
∗A preliminary version of the paper was presented at 2010 IEEE International Conference on

Systems, Man and Cybernetics, October 2010.

Preprint submitted to Computers & Operations Research August 9, 2011



that minimizes the maximum Hamming distance from a given set of strings. For
example, a closest string for the three strings GCGT, AGTT and CTGC is ATGT
and the maximum Hamming distance is 2. This problem also appears in coding
theory as an equivalent problem to compute the covering radius of codes [1].

The closest string problem is known to be NP-hard because its decision prob-
lem version over a binary alphabet is NP-complete [1]. Theoretically, PTAS (Poly-
nomial Time Approximation Schemes) [2, 3, 4] can find a good approximate so-
lution in polynomial time. However, they are not directly applicable to practical
problems because of their high time complexity [4]. With regard to exact al-
gorithms, some fixed-parameter algorithms have been proposed so far [5, 6, 7].
These algorithms are not for minimizing the maximum Hamming distance but for
a decision problem version of the problem. Therefore, it is necessary to apply the
algorithms repeatedly to obtain a closest string. Moreover, they are effective only
when the maximum Hamming distance is small. There are also some researches
on exact algorithms for polynomially solvable classes [8, 9], but it is not direct
to extend them to the general problem. An alternative and simple way to solve
the problem exactly is to formulate it as a (mixed-)integer programming problem
[2, 10] and apply a general MIP solver [10, 11, 12]. It is true that this method can
solve small-sized problems, but it fails to when the problem size becomes large.

Studies on (meta)heuristic algorithms have been increasing in these few years
[13, 10, 14, 15, 12, 16, 17]. Most of them were applied to small-sized instances
with the string length not more than 1000. The only exception is [12], where a
simple local search [10] was improved to parallel multistart one and it was applied
to medium-size instances with the string length up to 5000. In the case of 20
characters, solutions by their algorithm were on average at most 6.5% worse than
optimal or best solutions by a commercial MIP solver, although the algorithm took
1 or 2 minutes on a parallel machine with 28 nodes.

The purpose of this study is to propose a more efficient heuristic algorithm
for the closest string problem. The key idea is to apply the Lagrangian relaxation
technique to the mixed-integer programming formulation, which enables us to ob-
tain a tight lower bound and an approximate solution at the same time. Based on
this, a heuristic algorithm will be constructed by combining a Lagrangian mul-
tiplier adjustment procedure and a tabu search. Computational experiments will
show that the proposed algorithm can find optimal or near-optimal solutions very
quickly.

This paper is organized as follows. In Section 2, the closest string problem is
formally described and it is formulated as a mixed-integer programming problem.
In Section 3, the formulated problem is relaxed via the Lagrangian relaxation
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technique. Next, in Section 4, three lemmas on the properties of the Lagrangian
relaxation are presented and proved. Then, in Section 5, a heuristic algorithm is
constructed based on the relaxation. In Section 6, computational experiments are
conducted and the proposed algorithm is compared with the existing algorithms.
Finally, Section 7 concludes this study.

2. Problem Description and Formulation

In this section the closest string problem will be formulated as a mixed-integer
programming problem. In [10], three types of formulations are presented. Among
them, this study employs the formulation originally proposed in [2] whose linear
programming relaxation gives a tight lower bound.

Let us denote an alphabet composed of M characters a1, . . ., aM by Σ (=
{a1, . . . ,aM}) and define an index set M by M = {1, . . . ,M}. A string s over
Σ is a sequence of characters in Σ. The length of s is denoted by |s| and the jth
character of s is denoted by s[ j]. That is, s belongs to Σ|s| and is described by
s = s[1] · · ·s[|s|].

Assume that N strings si (i ∈N = {1, . . . ,N}) of length L (|s1|= · · ·= |sN |=
L) over Σ are given. The closest string problem considered in this study is to find a
string s of length L over Σ that minimizes the maximum Hamming distance from
si (i ∈N ). Here, the Hamming distance dH(si,s) between si and s is defined by

dH(si,s) = |{ j ∈L |si[ j] 6= s[ j]}|, (1)

where L = {1, . . . ,L}. By using dH(si,s), the problem can be formulated as as
follows.

d∗ = min
s

max
i∈N

dH(si,s), (2)

s.t. s[ j] ∈ Σ, j ∈L . (3)

Let us define sets of characters A j ⊆ Σ ( j ∈L ) composed of those appearing
at the jth position of si (i ∈N ) by

A j =
⋃

i∈N
{si[ j]}. (4)

Its cardinality is denoted by m j = |A j| ≤ M and index sets M j are defined by
M j = {1, . . . ,m j} for j ∈L . Let us also define v j

i (i ∈N , j ∈L ) so that the
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v j
i -th element of A j is equal to si[ j]. Next, we introduce decision variables xk j

(k ∈M j, j ∈L ) that are defined by

xk j =
{

1 s[ j] is the kth element of A j,
0 otherwise. (5)

Then, the closest string problem can be formulated as the following mixed-integer
programming problem (IP):

d∗ = min
d,xxx

d, (6)

s.t. ∑
k∈M j

xk j = 1, j ∈L , (7)

d + ∑
j∈L

xv j
i , j ≥ L, i ∈N , (8)

d ≥ 0, (9)
xk j ∈ {0, 1}, k ∈M j, j ∈L . (10)

In (IP), the constraints (7) require that exactly one character is chosen from
A j for s[ j]. The constraints (8) define the maximum Hamming distance d from
the strings si (i ∈N ) because dH(si,s) can be expressed by

dH(si,s) = L− ∑
j∈L

xv j
i , j. (11)

3. Lagrangian Relaxation

Since the closest string problem is formulated as the mixed-integer program-
ming problem (IP), we can solve it by applying a general MIP solver. However,
it takes long computation time when the number of strings N or the string length
L is large. Therefore, this study employs the Lagrangian relaxation technique to
obtain a lower bound of (IP) and, at the same time, a good approximate solution of
(IP). Here, the violation of the constraints (8) in (IP) is penalized by Lagrangian
multipliers µi ≥ 0 (i ∈N ) and the following Lagrangian relaxation (LR) is ob-
tained:

d̂∗(µµµ) = min
d,xxx

{
d + ∑

i∈N
µi(L−d− ∑

j∈L
xv j

i , j)

}

= min
d,xxx

{(
1− ∑

i∈N
µi

)
d− ∑

i∈N
µi ∑

j∈L
xv j

i , j

}
+L ∑

i∈N
µi, (12)

s.t. (7), (9), (10).
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Clearly, d̂∗(µµµ) satisfies
d̂∗(µµµ)≤ d∗. (13)

From the first term of the righthand side of (12), d∗(µµµ) becomes d∗(µµµ) =−∞ by
choosing d = +∞ if ∑i∈N µi > 1 holds. Therefore, we can assume that ∑i∈N µi≤
1 for obtaining a lower bound of d∗. In this case,(

1− ∑
i∈N

µi

)
d ≥ 0 (14)

holds and the equality is always achievable by choosing d as d = 0. Hence, (LR)
can be converted to the following equivalent problem (LR’):

d̂∗(µµµ) = −max
xxx ∑

j∈L
∑

i∈N
µixv j

i , j +L ∑
i∈N

µi, (15)

s.t. (7), (10).

Since the first term of the righthand side of (15) is decomposable with respect to
j ∈L , we can decompose (LR’) into L subproblems (LR j), which are given by

d̂∗j (µµµ) = −max
xxx j

∑
i∈N

µixv j
i , j

= −max
xxx j

∑
k∈M j

∑
i∈N
v j
i =k

µi

xk j, (16)

s.t. ∑
k∈M j

xk j = 1, (17)

xk j ∈ {0, 1}, k ∈M j. (18)

By using d̂∗j (µµµ), d̂∗(µµµ) is expressed by

d̂∗(µµµ) = ∑
j∈L

d̂∗j (µµµ)+L ∑
i∈N

µi. (19)

The subproblem (LR j) is easy to solve in O(N) time and d̂∗j (µµµ) is given by

d̂∗j (µµµ) =− max
k∈M j ∑

i∈N
v j
i =k

µi. (20)
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Therefore, (LR) can be solved in O(LN) time for a given set of Lagrangian multi-
pliers µµµ and the optimal objective value d̂∗(µµµ) of (LR) can be expressed by

d̂∗(µµµ) =− ∑
j∈L

max
k∈M j ∑

i∈N
v j
i =k

µi +L ∑
i∈N

µi. (21)

It should be noted that the median string problem to minimize the sum of Ham-
ming distances can be formulated as

d∗median = min
xxx ∑

i∈N

(
L− ∑

j∈L
xv j

i , j

)
= −max

xxx ∑
i∈N

∑
j∈L

xv j
i , j +LN, (22)

s.t. (7), (10).

By comparing (22) with (15), we can say that (LR’) is equivalent to the weighted
median string problem to minimize the weighted sum of Hamming distances.

It is true that (13) always holds, but we should choose appropriate Lagrangian
multipliers in (LR’) to obtain a tight lower bound of d∗. For this purpose, we
consider the following Lagrangian dual (DLR).

d̂∗max = max
µµµ

d̂∗(µµµ), (23)

s.t. ∑
i∈N

µi ≤ 1, (24)

µi ≥ 0, i ∈N . (25)

How to solve (DLR) will be explained in Section 5.

4. Properties of Lagrangian Relaxation

In this section three lemmas on the properties of the Lagrangian relaxation
will be presented.

As already explained in the preceding section, a lower bound of (IP) can be
obtained by solving the Lagrangian dual (DLR). Another way to obtain a tight
lower bound is to solve the linear programming relaxation (LP) of (IP) generated
by relaxing the integrity constraints (10), which is given by

d̃∗ = min
d,xxx

d, (26)

s.t. (7), (8), (9),
xk j ≥ 0, j ∈L , k ∈M j. (27)
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The following lemma confirms that d̂∗max in (23) and d̃∗ in (26) are identical.

Lemma 1. The optimal objective values of the Lagrangian dual (DLR) and the
LP relaxation (LP) are identical:

d̂∗max = max
µµµ

d̂∗(µµµ) = d̃∗. (28)

PROOF. See Appendix A.

The second lemma enables us to simplify (DLR).

Lemma 2. Optimal Lagrangian multipliers µ∗i (i∈N ) for (DLR) satisfy ∑i∈N µ∗i =
1.

PROOF. See Appendix B.

From (21) and Lemma 2, d̂∗max(= d̃∗) can be obtained by the following (DLR’):

d̂∗max = −min
µµµ

∑
j∈L

max
k∈M j ∑

i∈N
v j
i =k

µi +L, (29)

s.t. (25),

∑
i∈N

µi = 1. (30)

The last lemma is on equally distributed strings.

Lemma 3. Assume that P(si[ j] = αk) = pk (i∈N , j ∈L , k∈M ) holds. That is,
the probability of the occurrence of each character at any position in any string
is independent. Then, for a sufficiently large L there exist optimal Lagrangian
multipliers satisfying

µ
∗
i = 1/N, i ∈N . (31)

PROOF. See Appendix C.

This lemma together with the Lagrangian dual (DLR’) implies an intuitive
fact that a closest string is also a median string for equally distributed strings.
However, the converse is not always true because the median string problem in
general does not have a unique solution. For example, AC, AT, GC and GT are
all median strings for the two strings AC and GT, while only AT and GC are the
closest strings.
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5. Proposed Algorithm

The proposed heuristic algorithm is composed of two parts. The first is a sub-
gradient algorithm to solve the Lagrangian dual (DLR’): Lagrangian multipliers
µµµ are iteratively updated to maximize d̂∗(µµµ). More specifically, for some µµµ the
Lagrangian relaxation (LR’) is solved and then µµµ is updated by the subgradient
information. It is repeated until a termination condition is satisfied. The second
is a tabu search to improve a solution of (LR’). It is often the case with heuris-
tic algorithms based on the Lagrangian relaxation technique that a solution of a
Lagrangian relaxation is not always feasible for the original problem and hence
some conversion algorithm is required. Fortunately, such a conversion is unnec-
essary in the proposed algorithm: An optimal solution of (LR’) is also feasible
for the original problem (IP). More precisely, an optimal solution xxx of (LR’) is
integral and hence is feasible for (IP). In addition, the minimum d satisfying the
constraints (8) and (9) gives the maximum Hamming distance for this xxx. How-
ever, it does not mean that this solution is optimal also for (IP). Therefore, a tabu
search [18] is applied for further improvement. In the following subsections, the
multiplier adjustment by the subgradient algorithm will be first explained, and the
tabu search will be given next.

5.1. Multiplier Adjustment by Subgradient Algorithm
It is a standard method to apply the subgradient algorithm to adjust Lagrangian

multipliers for a Lagrangian dual (eg. [19]) because its objective function is con-
vex but nondifferentiable. Here, this algorithm is modified to satisfy the constraint
(30).

Let µ
(t)
i (i∈N ) be Lagrangian multipliers at the tth iteration and x(t)

k j (k∈M j,

j ∈ L ) be the optimal solution of (LR’) for µµµ(t). The multipliers µ
(t+1)
i at the

(t +1)th iteration are calculated as follows.

ν
(t+1)
i = max

µ
(t)
i +α

(t) dbest− d̂∗(µµµ
(t))

∑
i∈N

(g(t)
i )2

g(t)
i , 0

 , (32)

µ
(t+1)
i =

ν
(t+1)
i

∑
i∈N

ν
(t+1)
i

, (33)

g(t)
i = L− d̂∗(µµµ

(t))− ∑
j∈L

x(t)
v j

i , j
, (34)
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where α(t) is the step size and dbest is the objective value of the current best solu-
tion of (IP) obtained heuristically by the tabu search in the next subsection. The
only difference from the ordinary subgradient algorithm is that multipliers are
scaled by (33) to satisfy the constraint (30).

5.2. Tabu Search
To obtain a good approximate solution of (IP), the solution xxx(t) of the relax-

ation (LR’) for µµµ(t) is improved by a simple tabu search. A single move in the tabu
search is determined as follows. Here, the string yielded by the current solution
xxx(t) is denoted by s.

1. Let the objective value of s be d (= maxi∈N dH(si,s)).
2. Let the index set of strings Nmax ⊆N be

Nmax =
{

i
∣∣∣∣dH(si,s) = d

}
. (35)

3. Every position p such that si[p] = s[p] holds for some i ∈Nmax is labeled
as tabu-active.

4. For every tabu-inactive position p:

• Obtain the set of candidate characters C p ⊂Ap by

C p =
⋃

i∈Nmax

{si[p]} . (36)

• For every element cp
q of C p (1≤ q≤ |C p|):

– Generate a candidate string ŝ(p,q) by

ŝ(p,q)[ j] =
{

s[ j], j 6= p,
cp

q , j = p.
(37)

– Compute V (p,q) by

V (p,q) = ∑
i∈N

(dH(si, ŝ(p,q))−dH(si,s))dH(si,s). (38)

5. Find (p∗, q∗) that minimizes V (p∗,q∗).
6. Update s by s := ŝ(p∗,q∗) and the position p∗ is labeled as tabu-active.
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In every move of the tabu search, it is ensured that the maximum Hamming
distance d does not increase. For this purpose, such a position that changing the
character of s at that position increases d is labeled as tabu-active in 3) of the
procedure. To determine the next move, an alternative objective function V (p,q)
in (38) is used in place of the maximum Hamming distance for ŝ(p,q). It is because
the maximum Hamming distance may not decrease in a single move and hence
is inappropriate for determining the best move. Since (dH(si, ŝ(p,q))− dH(si,s))
takes only −1, 0 and 1, V (p,q) can be rewritten as follows.

V (p,q) = ∑
i∈N

Vi(p,q),

Vi(p,q) =


−dH(si,s) if dH(si,s) decreases,
dH(si,s) if dH(si,s) increases,
0 otherwise.

(39)

This implies that V (p,q) becomes small if

(a) The number of strings si satisfying dH(si, ŝ(p,q)) < dH(si,s) is large.
(b) dH(si,s) is large when dH(si, ŝ(p,q)) < dH(si,s).
(c) The number of strings si satisfying dH(si, ŝ(p,q)) > dH(si,s) is small.
(d) dH(si,s) is small when dH(si, ŝ(p,q)) > dH(si,s).

For example, let us consider that four given strings s1, . . ., s4 and the current
solution s for them are as in Figure 1. Since dH(s2,s)= dH(s4,s)= max1≤i≤4 dH(si,s),
Nmax becomes Nmax = {2,4}. The only candidate position p in 4) of the proce-
dure is 4 and C 4 = {G,A}. The objective values V for the candidate characters
in C 4 are V (4,1) = 1−3+0+0 =−2 and V (4,2) = 1+0−2−3 =−4. Hence
“A” is chosen for the next move and the new solution is ATCAGT.

6. Computational Experiments

6.1. Results for randomly generated instances
The algorithm proposed in the preceding section is applied to randomly gen-

erated instances. Following [12], they are generated as follows.

(1) Instances where each character occurs with the equal probability 1/M. Three
types of alphabets are considered in these instances: M = 2 (binary codes,
Σ = {0,1}), M = 4 (DNA sequences, Σ = {A,C,G,T}) and M = 20 (amino
acid sequences).
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s1: A T G C G T d(s1,s) = 1

s2: A C C G G A d(s2,s) = 333

s3: T T C A G T d(s3,s) = 2

s4: G T C A A T d(s4,s) = 333

s: A T C C G T

Nmax = {2,4}, C 4 = {G,A}

V (4,1) = 1−3+0+0 =−2

V (4,2) = 1+0−2−3 =−4

Figure 1: Choice of a move in the tabu search (L = 6, M = 4, N = 4)

(2) As another type of instances with M = 4, the probabilities of the occurrences
of the characters A, C, G and T are chosen as 0.14, 0.36, 0.36 and 0.14,
respectively. It simulates the genome of the Actinobacteria Streptomyces
coelicolor whose GC-content is 72%.

The number of strings N and the string length L are chosen as N ∈ {10,20, . . . ,50}
and L ∈ {1000,2000, . . . ,5000}. For each combination of M, N and L, 10 in-
stances are generated. The computation is performed by running a program coded
in C (gcc) on a desktop computer with an Intel CoreTM i7 960 CPU (3.2GHz).
Parameters for the subgradient algorithm in 5.1 and the tabu search in 5.2 are de-
termined by some preliminary experiments. In the subgradient algorithm, the step
size α(t) is initialized as α(0) = 2.0 and decreased by α(t+1) = 0.8α(t) when the
current best lower bound maxs≤t d̂∗(µµµ(s)) is not improved for 5 successive iter-
ations. The initial Lagrangian multipliers µµµ(0) are chosen as µ

(0)
i = 1/N from

Lemma 3. The iteration is terminated when the gap (dbest−maxs≤t d̂∗(µµµ(s))) be-
comes less than one, i.e. the current best solution is proved to be optimal, or α(t)≤
10−3 is satisfied. In the tabu search, the tabu length is chosen as max(dN/10e,2).
The tabu search is terminated if the objective value d is not improved in 4N suc-
cessive moves.

The results are summarized in Tables 1–4. In these tables, “LB av.” denotes
the average of the best lower bounds obtained by the subgradient algorithm for
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(DLR’), “dbest av.” the average of the best objective values (maximum Hamming
distances) of approximate solutions obtained by the proposed algorithm, “opt.”
the number of instances for which the gap between the best lower bound and
the best objective value is less than one, “average gap abs.” the average gap,
“average gap %” the average gap in percent, “maximum gap abs.” the maximum
gap, “maximum gap %” the maximum gap in percent, and “time (s)” the average
CPU time in seconds. Here, the averages and maxima are calculated over 10
instances. In addition, the average gap is the average of (dbest−dLBe), and the
average gap in percent is the average of 100(dbest−dLBe)/dLBe, where LB and
dbest denote the best lower bound and the objective value of the best approximate
solution, respectively. The maximum gap and the maximum gap in percent are
calculated in a similar manner. The reason why LB is rounded upwards to the
nearest integer is that dLBe actually is a lower bound because of the integrity of
the optimal objective value.

From the tables, we can see that very good solutions are obtained by the pro-
posed algorithm. Indeed, the gap is at most 2. This fact also implies that a tight
lower bound is obtained by the Lagrangian relaxation technique. The instances
with N = 10 are the easiest and the solutions are almost always optimal. The
problem becomes harder as N increases and when N = 50, optimality of approx-
imate solutions is not ensured except when M = 20. The hardest instance type
seems the one with M = 2 (Table 1) or with 72% GC-content (Table 3). It follows
that instances with a smaller number of characters are harder for the proposed
algorithm.

6.2. Comparison with the MIP approach
Next, the proposed algorithm will be compared with the MIP approach. The

instances in the preceding subsection are solved also by a general MIP solver to
(IP). As the MIP solver, IBM ILOG CPLEX 12.1 is applied and the maximum
CPU time is limited to 3600 seconds. Please note that CPLEX uses 8 threads,
while the proposed algorithm is a single-thread program.

The results are summarized in Tables 5–8. In these tables, “opt.” denotes
the number of optimally solved instances by the MIP approach, “dMIP the ob-
jective value of the optimal (or best) solution obtained within the time limit.
“dbest− dMIP” denotes the difference between the objective values by the pro-
posed algorithm and the MIP approach, and “-1”, “0” and “1” denote the num-
bers of instances for which the difference are -1, 0 and 1, respectively. “av-
erage gap” and “maximum gap” are computed in a similar way to those in Ta-
bles 1–4 for dbest and dMIP. For example, “average gap %” denotes the average of
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100(dbest− dMIP)/dMIP. Finally, “time (s)” denotes the average CPU time of the
MIP approach in seconds.

From the tables, it can be observed that the absolute difference between the
objective values of the proposed algorithm and the MIP approach is at most 1
although the former is much faster than the latter. This fact confirms the effective-
ness of the proposed algorithm. Moreover, the proposed algorithm can always find
solutions better than or equal to those by the MIP approach in much shorter time
for the instances with M = 20 (Table 8). On the other hand, a better solution is
found only for a single instance of the instances with M = 4 and 72% GC-content
(Table 7). Therefore, we can say that the instances with M = 20 are the easiest
and those with M = 4 and 72% GC-content (especially when N is large) are the
hardest for the proposed algorithm.

6.3. Comparison with the existing heuristic algorithms
In this subsection the proposed algorithm will be compared with the existing

(meta)heuristic algorithms [15, 12, 16, 17]. Here, [13] and [14] are not taken into
consideration because experimental results presented in [13, 14] are insufficient
for a significant comparison: The GA in [13] was applied only to a single instance,
and the parallel GA and SA in [14] to such instances where both the string length
L and the number of strings N are not more than 40.

First, the compounded genetic and simulated annealing algorithm (CGSA) in
[15] is considered. In [15], 18 randomly generated instances with M = 2, N ∈
{10,15,20} and L∈ {300,400, . . . ,800}were solved by the CGSA and the results
are summarized in Table 9. In Table 9, “gap” is the gap between the lower bound
by the linear programming relaxation (LP) and the best solution by CGSA among
20 trials, and “time” is the average CPU time on a computer with a 2.5GHz Intel
Pentium4 CPU. By comparing Table 9 with the first two rows of Table 1, we
can safely conclude that the proposed algorithm outperforms the CGSA in both
solution quality and CPU time even if the difference of the computer speed is
taken into account.

In [12] a multistart local search was run on a parallel machine with 28 nodes.
Then, its solutions were compared with optimal ones obtained by applying a com-
mercial MIP solver to (IP) (when it failed to solve (IP) within 3600 seconds, the
best solution was used instead). The average gaps between the objective values
of their solutions and those of optimal (or best) solutions are summarized in Ta-
ble 10. In addition to them, average CPU times are also presented. By comparing
“average gap” in Table 10 with “average gap %” in Tables 5–8, we can verify that
the proposed algorithm can find better solutions than the algorithm in [12] because
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the latter is much smaller than the former. Moreover, Table 10 and Tables 1–4 tell
that the proposed algorithm is faster than the algorithm in [12] although the for-
mer is coded as a single-thread program, while the latter was run on a parallel
machine.

Next, the data-coded GA in [16] is considered. Here, exactly the same in-
stances with L = 500 in [16] are solved by the proposed algorithm and the results
are presented in Table 11 together with those by the data-coded GA in [16]. In
Table 11, “objective” of the GA denotes the best solutions among 40 trials and
“time” the average computation time of the trials on a 2.53GHz Intel Pentium4
CPU. This table shows that the proposed algorithm always yields a better solution
than the data-coded GA and most instances are solved optimally, although the for-
mer is applied only once for each instance. Furthermore, the former is much faster
than the latter even if the difference of the computer speed is taken into account.

Finally, the Ant Colony Optimization algorithm in [17] is considered. The
instances in [17] are generated randomly for M = 4, N ∈ {10,20, . . . ,50} and
L ∈ {10,20, . . . ,50}∪{100,200, . . . ,1000}. Table 12 summarizes the results for
the five instances with L = 1000, where the averages are of 20 trials and the com-
putation was performed on a 1.86GHz Intel Pentium M 750 CPU.

It is possible that uniform randomness of the instances in [17] is not sufficient
because the objective values are too worse than those in Table 2 (note that the
objective values in Tables 1–4 are consistent with the optimal (or best) ones in [12]
except for instances with GC-content 72%). Nevertheless, the proposed algorithm
seems better than the Ant Colony Optimization algorithm in [17]. For example,
the proposed algorithm can always find optimal solutions for instances with N =
10 and L = 1000, while the solution by the Ant Colony Optimization algorithm
deviates every trial. In addition, the former is faster than the latter even if the
difference of the computer speed is taken into account.

7. Conclusion

In this study an efficient heuristic algorithm was proposed for the closest string
problem based on the Lagrangian relaxation technique. First, some properties of
the Lagrangian relaxation including the relation to the median string problem were
proved and presented. Next, a heuristic algorithm was constructed. In this frame-
work, Lagrangian multipliers are adjusted by the subgradient algorithm and a tabu
search is applied to improve solutions of the Lagrangian relaxation obtained in the
course of the algorithm. Computational experiments showed that the proposed al-
gorithm can find optimal or near-optimal solutions very quickly and outperforms
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the existing heuristic algorithms. Future research directions will be to construct
an exact algorithm based on the properties shown in this study, to extend the pro-
posed algorithm to the closest substring problem, and so on.
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Appendix A. Proof of Lemma 1

Let us consider the linear programming relaxation (LLR) of (LR). Since (LLR)
has integral optimal solutions, the optimal objective values of (LR) and (LLR) are
identical. It is well-known from the linear programming theory that the optimal
objective value of a linear programming problem is achievable by its Lagrangian
relaxation if multipliers are chosen as equal to the optimal dual variables. Since
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(LLR) is identical to a Lagrangian relaxation of (LP), we can conclude that (28)
holds.

Appendix B. Proof of Lemma 2

From (21), d̂∗max satisfies

d̂∗max = − ∑
j∈L

max
k∈M j ∑

i∈N
v j
i =k

µ
∗
i +L ∑

i∈N
µ
∗
i

= ∑
j∈L

 ∑
i∈N

µ
∗
i − max

k∈M j ∑
i∈N
v j
i =k

µ
∗
i

≥ 0. (B.1)

Assume that ∑i∈N µ∗i 6= 1. Since ∑i∈N µ∗i < 1 from the discussion in Section 3,
∑i∈N µ∗i can be expressed by ∑i∈N µ∗i = 1/β where β > 1. Now, let us define
µ

†
i (i ∈N ) by µ

†
i = β µi. Then, d̂(µµµ†) is given by

d̂(µµµ
†) = − ∑

j∈L
max
k∈M j ∑

i∈N
v j
i =k

µ
†
i +L ∑

i∈N
µ

†
i

= −β ∑
j∈L

max
k∈M j ∑

i∈N
v j
i =k

µ
∗
i +βL ∑

i∈N
µ
∗
i

= β d̂∗max > d̂∗max. (B.2)

It contradicts the optimality of µµµ∗.

Appendix C. Proof of Lemma 3

Here, only the case when N = 2 and Σ = {A, B} (M = 2) is considered for sim-
plicity because the same arguments hold in more general cases. In the considered
case (s1[ j], s2[ j]) can be (A, A), (B, B), (A, B) and (B, A). From the assumption of
the lemma, the numbers of the occurrences of (A, B) and (B, A) are the same for a
sufficiently large L. Therefore, if we define sets of positions Pl ⊂L (l = 1,2,3)
by

P1 = { j ∈L |s1[ j] = s2[ j]},
P2 = { j ∈L |s1[ j] = A∧ s2[ j] = B},
P3 = { j ∈L |s1[ j] = B∧ s2[ j] = A}, (C.1)
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then |P2|= |P3| holds.
Let Q : P2→P3 be an arbitrary bijective mapping. By Q, define a bijective

mapping S : s→ s′ on ΣL as follows.

s′[ j] =


s[ j] j ∈P1,
s[Q( j)] j ∈P2,
s[Q−1( j)] j ∈P3.

(C.2)

Then, S (s1) = s2 and S (s2) = s1 hold. This implies that s1 commutes s2 and vice
versa only by re-sequencing the strings. Therefore, if µµµ∗ = (µ∗1 ,µ∗2 ) is optimal for
(DLR), then also is µµµ† = (µ∗2 ,µ∗1 ).

Let us assume that µ∗1 6= µ∗2 and define σ1 = 2 and σ2 = 1. Then, from the
optimality of µµµ†,

d̂∗max = L− ∑
j∈L

max
k∈M j ∑

i∈N
v j
i =k

µ
∗
i = L− ∑

j∈L
max
k∈M j ∑

i∈N
v j
i =k

µ
∗
σi

(C.3)

holds. Since
∑

j∈L
max
k∈M j ∑

i∈N
v j
i =k

µi (C.4)

is a convex function of µµµ ,

∑
j∈L

max
k∈M j ∑

i∈N
v j
i =k

(µ
∗
i + µ

∗
σi

)≤ ∑
j∈L

max
k∈M j ∑

i∈N
v j
i =k

µ
∗
i + ∑

j∈L
max
k∈M j ∑

i∈N
v j
i =k

µ
∗
σi

(C.5)

is satisfied. It follows that

L− ∑
j∈L

max
k∈M j ∑

i∈N
v j
i =k

µ∗i + µ∗σi

2
≥ d̂∗max + d̂∗max

2
= d̂∗max (C.6)

is satisfied. Therefore, (µµµ∗+µµµ†)/2 = ((µ∗1 +µ∗2 )/2,(µ∗1 +µ∗2 )/2) is also optimal
for (DLR).
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Table 1: Computational results for instances with M = 2

L N LB av. dbest av. opt. average gap maximum gap time (s)
abs. % abs. %

1000 10 378.03 378.7 8 0.20 0.05 1 0.26 0.11
1000 20 411.69 412.6 6 0.40 0.10 1 0.24 0.38
1000 30 427.63 428.9 5 0.60 0.14 2 0.47 1.32
1000 40 439.05 440.8 0 1.30 0.30 2 0.46 2.18
1000 50 445.65 447.7 0 1.70 0.38 2 0.45 2.94
2000 10 754.34 755.1 7 0.30 0.04 1 0.13 0.59
2000 20 821.70 822.7 5 0.50 0.06 1 0.12 1.02
2000 30 855.46 856.7 4 0.60 0.07 1 0.12 2.15
2000 40 875.43 877.3 0 1.40 0.16 2 0.23 4.62
2000 50 889.61 891.9 0 1.90 0.21 2 0.23 6.19
3000 10 1130.53 1131.3 6 0.40 0.04 1 0.09 1.56
3000 20 1234.99 1235.9 6 0.40 0.03 1 0.08 1.92
3000 30 1281.96 1283.3 1 0.90 0.07 1 0.08 4.08
3000 40 1313.00 1314.7 0 1.00 0.08 1 0.08 6.54
3000 50 1331.68 1333.9 0 1.80 0.14 2 0.15 9.76
4000 10 1508.98 1509.8 5 0.50 0.03 1 0.07 3.50
4000 20 1646.14 1646.9 8 0.20 0.01 1 0.06 1.63
4000 30 1710.44 1711.7 1 0.90 0.05 1 0.06 7.42
4000 40 1748.77 1750.5 0 1.10 0.06 2 0.11 8.50
4000 50 1776.39 1778.4 0 1.50 0.08 2 0.11 13.08
5000 10 1881.76 1882.5 7 0.30 0.02 1 0.05 3.16
5000 20 2059.80 2060.6 7 0.30 0.01 1 0.05 4.14
5000 30 2139.53 2140.5 6 0.40 0.02 1 0.05 6.26
5000 40 2184.16 2185.7 0 1.10 0.05 2 0.09 11.89
5000 50 2219.12 2220.9 0 1.40 0.06 2 0.09 15.84
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Table 2: Computational results for instances with M = 4

L N LB av. dbest av. opt. average gap maximum gap time (s)
abs. % abs. %

1000 10 579.79 580.3 10 0.00 0.00 0 0.00 0.00
1000 20 631.27 631.8 9 0.10 0.02 1 0.16 0.42
1000 30 653.94 655.1 4 0.60 0.09 1 0.15 1.87
1000 40 668.09 669.8 0 1.20 0.18 2 0.30 3.00
1000 50 676.45 678.5 0 1.50 0.22 2 0.30 3.80
2000 10 1161.78 1162.1 10 0.00 0.00 0 0.00 0.01
2000 20 1262.41 1262.9 10 0.00 0.00 0 0.00 0.08
2000 30 1306.51 1307.5 7 0.30 0.02 1 0.08 2.80
2000 40 1333.80 1335.5 0 1.20 0.09 2 0.15 6.41
2000 50 1352.29 1354.3 0 1.40 0.10 2 0.15 8.24
3000 10 1739.01 1739.5 10 0.00 0.00 0 0.00 0.03
3000 20 1892.54 1893.0 10 0.00 0.00 0 0.00 0.03
3000 30 1960.41 1961.5 3 0.70 0.04 1 0.05 6.08
3000 40 2000.66 2002.1 1 0.90 0.04 1 0.05 9.41
3000 50 2027.91 2029.7 0 1.40 0.07 2 0.10 12.73
4000 10 2323.26 2323.5 10 0.00 0.00 0 0.00 0.03
4000 20 2524.22 2524.6 9 0.10 0.00 1 0.04 2.05
4000 30 2614.83 2615.6 7 0.30 0.01 1 0.04 4.28
4000 40 2667.43 2668.8 0 1.00 0.04 1 0.04 12.27
4000 50 2703.05 2704.9 0 1.20 0.04 2 0.07 16.99
5000 10 2903.70 2904.2 10 0.00 0.00 0 0.00 0.04
5000 20 3153.97 3154.6 8 0.20 0.01 1 0.03 4.30
5000 30 3267.63 3268.5 7 0.30 0.01 1 0.03 7.14
5000 40 3333.69 3335.0 3 0.70 0.02 1 0.03 13.72
5000 50 3378.38 3380.1 0 1.30 0.04 2 0.06 21.31
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Table 3: Computational results for instances with 72% GC-content

L N LB av. dbest av. opt. average gap maximum gap time (s)
abs. % abs. %

1000 10 524.86 525.4 10 0.00 0.00 0 0.00 0.00
1000 20 563.15 564.2 4 0.60 0.11 1 0.18 0.96
1000 30 578.57 580.0 0 1.00 0.17 1 0.17 1.93
1000 40 587.94 589.7 0 1.20 0.20 2 0.34 2.56
1000 50 593.71 596.0 0 1.90 0.32 2 0.34 3.31
2000 10 1053.51 1053.8 10 0.00 0.00 0 0.00 0.00
2000 20 1125.96 1126.8 7 0.30 0.03 1 0.09 0.92
2000 30 1156.61 1157.9 4 0.60 0.05 1 0.09 3.96
2000 40 1174.14 1176.1 0 1.50 0.13 2 0.17 5.68
2000 50 1186.96 1189.3 0 1.80 0.15 2 0.17 7.22
3000 10 1577.18 1577.6 10 0.00 0.00 0 0.00 0.01
3000 20 1687.69 1688.7 5 0.50 0.03 1 0.06 2.20
3000 30 1735.03 1736.4 3 0.70 0.04 1 0.06 6.11
3000 40 1761.60 1763.5 0 1.50 0.09 2 0.11 9.18
3000 50 1777.94 1780.1 0 1.70 0.10 2 0.11 11.25
4000 10 2098.59 2098.9 10 0.00 0.00 0 0.00 0.01
4000 20 2249.99 2250.7 8 0.20 0.01 1 0.04 1.28
4000 30 2313.14 2314.5 2 0.80 0.03 1 0.04 7.97
4000 40 2344.90 2346.7 0 1.20 0.05 2 0.09 12.18
4000 50 2370.78 2373.2 0 1.90 0.08 2 0.08 15.78
5000 10 2626.12 2626.5 10 0.00 0.00 0 0.00 0.03
5000 20 2813.84 2814.4 7 0.30 0.01 1 0.04 3.79
5000 30 2889.76 2891.2 2 0.80 0.03 1 0.03 10.11
5000 40 2934.45 2936.1 1 1.10 0.04 2 0.07 16.73
5000 50 2961.16 2963.5 0 1.80 0.06 2 0.07 20.27
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Table 4: Computational results for instances with M = 20

L N LB av. dbest av. opt. average gap maximum gap time (s)
abs. % abs. %

1000 10 781.91 782.3 10 0.00 0.00 0 0.00 0.00
1000 20 838.08 838.4 10 0.00 0.00 0 0.00 0.01
1000 30 861.30 861.8 10 0.00 0.00 0 0.00 0.01
1000 40 874.30 874.9 9 0.10 0.01 1 0.11 0.70
1000 50 883.14 883.7 8 0.20 0.02 1 0.11 1.80
2000 10 1566.15 1566.6 10 0.00 0.00 0 0.00 0.00
2000 20 1677.18 1677.7 10 0.00 0.00 0 0.00 0.02
2000 30 1722.76 1723.1 10 0.00 0.00 0 0.00 0.41
2000 40 1748.52 1749.1 10 0.00 0.00 0 0.00 0.04
2000 50 1766.37 1767.1 9 0.10 0.01 1 0.06 2.31
3000 10 2347.40 2347.8 10 0.00 0.00 0 0.00 0.01
3000 20 2516.07 2516.6 10 0.00 0.00 0 0.00 0.03
3000 30 2584.07 2584.6 10 0.00 0.00 0 0.00 0.12
3000 40 2623.20 2623.6 10 0.00 0.00 0 0.00 0.40
3000 50 2649.37 2650.1 8 0.20 0.01 1 0.04 8.72
4000 10 3129.40 3129.8 10 0.00 0.00 0 0.00 0.01
4000 20 3353.93 3354.4 10 0.00 0.00 0 0.00 0.04
4000 30 3446.56 3447.1 10 0.00 0.00 0 0.00 0.07
4000 40 3498.05 3498.6 10 0.00 0.00 0 0.00 0.12
4000 50 3532.48 3533.1 9 0.10 0.00 1 0.03 7.63
5000 10 3911.66 3912.2 10 0.00 0.00 0 0.00 0.02
5000 20 4190.77 4191.3 10 0.00 0.00 0 0.00 0.06
5000 30 4307.47 4307.8 10 0.00 0.00 0 0.00 1.38
5000 40 4372.59 4373.1 10 0.00 0.00 0 0.00 0.61
5000 50 4416.49 4417.0 10 0.00 0.00 0 0.00 0.73
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Table 5: Comparison with the MIP approach (M = 2)

L N opt. dbest−dMIP average gap maximum gap time (s)
-1 0 1 abs. % abs. %

1000 10 8 0 10 0 0.00 0.00 0 0.00 720.00
1000 20 7 0 9 1 0.10 0.02 1 0.24 1103.93
1000 30 2 5 4 1 -0.40 -0.09 1 0.23 2930.18
1000 40 0 0 8 2 0.20 0.05 1 0.23 3600.00
1000 50 0 0 9 1 0.10 0.02 1 0.22 3600.00
2000 10 9 0 10 0 0.00 0.00 0 0.00 360.09
2000 20 5 0 10 0 0.00 0.00 0 0.00 1800.31
2000 30 2 3 6 1 -0.20 -0.02 1 0.12 2884.23
2000 40 0 0 7 3 0.30 0.03 1 0.11 3600.00
2000 50 0 0 9 1 0.10 0.01 1 0.11 3600.00
3000 10 9 0 10 0 0.00 0.00 0 0.00 360.18
3000 20 6 0 10 0 0.00 0.00 0 0.00 1444.68
3000 30 2 0 9 1 0.10 0.01 1 0.08 2884.90
3000 40 0 0 10 0 0.00 0.00 0 0.00 3600.00
3000 50 0 1 9 0 -0.10 -0.01 0 0.00 3600.00
4000 10 9 0 10 0 0.00 0.00 0 0.00 360.13
4000 20 8 0 10 0 0.00 0.00 0 0.00 725.24
4000 30 0 1 9 0 -0.10 -0.01 0 0.00 3600.00
4000 40 0 0 9 1 0.10 0.01 1 0.06 3600.00
4000 50 0 0 10 0 0.00 0.00 0 0.00 3600.00
5000 10 9 0 10 0 0.00 0.00 0 0.00 360.15
5000 20 7 0 10 0 0.00 0.00 0 0.00 1297.09
5000 30 1 5 5 0 -0.50 -0.02 0 0.00 3245.93
5000 40 0 0 9 1 0.10 0.00 1 0.05 3600.00
5000 50 0 3 7 0 -0.30 -0.01 0 0.00 3600.00
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Table 6: Comparison with the MIP approach (M = 4)

L N opt. dbest−dMIP average gap maximum gap time (s)
-1 0 1 abs. % abs. %

1000 10 10 0 10 0 0.00 0.00 0 0.00 0.11
1000 20 10 0 9 1 0.10 0.02 1 0.16 2.04
1000 30 6 0 8 2 0.20 0.03 1 0.15 1450.50
1000 40 1 0 7 3 0.30 0.04 1 0.15 3240.42
1000 50 0 0 5 5 0.50 0.07 1 0.15 3600.00
2000 10 10 0 10 0 0.00 0.00 0 0.00 0.33
2000 20 10 0 10 0 0.00 0.00 0 0.00 2.80
2000 30 9 0 8 2 0.20 0.02 1 0.08 383.46
2000 40 2 0 6 4 0.40 0.03 1 0.08 2881.66
2000 50 0 0 6 4 0.40 0.03 1 0.07 3600.00
3000 10 10 0 10 0 0.00 0.00 0 0.00 0.31
3000 20 10 0 10 0 0.00 0.00 0 0.00 8.90
3000 30 4 0 9 1 0.10 0.01 1 0.05 2271.46
3000 40 0 1 9 0 -0.10 -0.00 0 0.00 3600.00
3000 50 0 0 6 4 0.40 0.02 1 0.05 3600.00
4000 10 10 0 10 0 0.00 0.00 0 0.00 0.70
4000 20 10 0 9 1 0.10 0.00 1 0.04 265.77
4000 30 6 1 9 0 -0.10 -0.00 0 0.00 1717.12
4000 40 0 0 10 0 0.00 0.00 0 0.00 3600.00
4000 50 0 0 8 2 0.20 0.01 1 0.04 3600.00
5000 10 10 0 10 0 0.00 0.00 0 0.00 0.68
5000 20 10 0 8 2 0.20 0.01 1 0.03 204.94
5000 30 7 0 10 0 0.00 0.00 0 0.00 1349.66
5000 40 0 3 7 0 -0.30 -0.01 0 0.00 3600.00
5000 50 0 0 7 3 0.30 0.01 1 0.03 3600.00
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Table 7: Comparison with the MIP approach (M = 4 and GC-content is 72%)

L N opt. dbest−dMIP average gap maximum gap time (s)
-1 0 1 abs. % abs. %

1000 10 10 0 10 0 0.00 0.00 0 0.00 0.07
1000 20 9 0 6 4 0.40 0.07 1 0.18 361.79
1000 30 5 0 6 4 0.40 0.07 1 0.17 1807.24
1000 40 0 0 8 2 0.20 0.03 1 0.17 3600.00
1000 50 0 0 1 9 0.90 0.15 1 0.17 3600.00
2000 10 10 0 10 0 0.00 0.00 0 0.00 0.53
2000 20 10 0 8 2 0.20 0.02 1 0.09 3.83
2000 30 8 0 6 4 0.40 0.03 1 0.09 722.59
2000 40 1 0 5 5 0.50 0.04 1 0.09 3274.13
2000 50 0 0 3 7 0.70 0.06 1 0.08 3600.00
3000 10 10 0 10 0 0.00 0.00 0 0.00 0.36
3000 20 10 0 6 4 0.40 0.02 1 0.06 13.32
3000 30 4 0 9 1 0.10 0.01 1 0.06 2162.45
3000 40 0 0 5 5 0.50 0.03 1 0.06 3600.00
3000 50 0 0 3 7 0.70 0.04 1 0.06 3600.00
4000 10 10 0 10 0 0.00 0.00 0 0.00 0.85
4000 20 10 0 8 2 0.20 0.01 1 0.04 169.21
4000 30 3 0 9 1 0.10 0.00 1 0.04 2629.78
4000 40 0 0 8 2 0.20 0.01 1 0.04 3600.00
4000 50 0 0 2 8 0.80 0.03 1 0.04 3600.00
5000 10 10 0 10 0 0.00 0.00 0 0.00 0.79
5000 20 10 0 7 3 0.30 0.01 1 0.04 203.96
5000 30 6 0 6 4 0.40 0.01 1 0.03 1825.67
5000 40 0 1 7 2 0.10 0.00 1 0.03 3600.00
5000 50 0 0 2 8 0.80 0.03 1 0.03 3600.00
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Table 8: Comparison with the MIP approach (M = 20)

L N opt. dbest−dMIP average gap maximum gap time (s)
-1 0 1 abs. % abs. %

1000 10 10 0 10 0 0.00 0.00 0 0.00 0.10
1000 20 10 0 10 0 0.00 0.00 0 0.00 0.59
1000 30 10 0 10 0 0.00 0.00 0 0.00 2.69
1000 40 9 0 10 0 0.00 0.00 0 0.00 431.81
1000 50 6 2 8 0 -0.20 -0.02 0 0.00 1441.46
2000 10 10 0 10 0 0.00 0.00 0 0.00 0.27
2000 20 10 0 10 0 0.00 0.00 0 0.00 0.81
2000 30 10 0 10 0 0.00 0.00 0 0.00 46.69
2000 40 10 0 10 0 0.00 0.00 0 0.00 34.01
2000 50 9 0 10 0 0.00 0.00 0 0.00 371.31
3000 10 10 0 10 0 0.00 0.00 0 0.00 0.38
3000 20 10 0 10 0 0.00 0.00 0 0.00 1.22
3000 30 10 0 10 0 0.00 0.00 0 0.00 7.12
3000 40 9 1 9 0 -0.10 -0.00 0 0.00 436.00
3000 50 6 2 8 0 -0.20 -0.01 0 0.00 1451.05
4000 10 10 0 10 0 0.00 0.00 0 0.00 0.54
4000 20 10 0 10 0 0.00 0.00 0 0.00 1.79
4000 30 10 0 10 0 0.00 0.00 0 0.00 125.76
4000 40 9 1 9 0 -0.10 -0.00 0 0.00 468.19
4000 50 6 3 7 0 -0.30 -0.01 0 0.00 1447.59
5000 10 10 0 10 0 0.00 0.00 0 0.00 0.74
5000 20 10 0 10 0 0.00 0.00 0 0.00 3.23
5000 30 10 0 10 0 0.00 0.00 0 0.00 44.27
5000 40 8 2 8 0 -0.20 -0.00 0 0.00 735.64
5000 50 8 2 8 0 -0.20 -0.00 0 0.00 879.72
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Table 9: Average gap and average CPU time for instances with M = 2, L ∈ {300,400, . . . ,800}
and N = {10,15,20} in [15]

average gap (%) average timea (s)
7.4 19.3

a: 2.5GHz Pentium4.

Table 10: Average gaps from optimal solutions and average CPU times for instances with L ∈
{1000,2000, . . . ,5000} and N ∈ {10,20,30} in [12]

type average gap (%) average timeb (s)
M = 2 0.5–9.3 0.1–8.0
M = 4 1.0–3.1 1.2–72.8
M = 4 and GC-content is 72% 0.9–3.2 2.7–61.8
M = 20 2.2–6.5 3.1–112.1

b: parallel computing with 28 nodes (Xeon DP).
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Table 11: Comparison of the proposed algorithm with the GA in [16] for instances with L = 500

M no. proposed GA in [16]
objective time (s) objective timec (s)

1 187 0.16 188 22.5
2 186 0.14 188 22.5

2 3 190 0.00 191 22.4
4 193 0.00 194 24.5
5 188 0.00 189 22.4
1 290 0.00 292 23.0
2 290 0.00 293 23.0

4 3 290 0.00 292 23.1
4 292 0.00 294 23.0
5 292 0.00 294 22.9
1 362 0.00 364 21.8
2 362 0.00 363 21.9

10 3 365 0.00 366 21.8
4 366 0.00 368 21.6
5 364 0.00 365 21.7
1 393 0.00 395 20.5
2 392 0.00 394 20.6

20 3 393 0.00 396 20.6
4 393 0.00 395 20.6
5 393 0.00 395 20.6
1 405 0.00 408 20.0
2 404 0.00 407 20.2

30 3 401 0.00 403 20.1
4 406 0.00 409 19.9
5 404 0.00 407 20.0

bold: optimal, c: 2.53GHz Pentium4.
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Table 12: Results of the Ant Colony Optimization algorithm in [17] for five instances with M = 4
and L = 1000

N average objective standard deviation average timed (s)
10 652 3.72 7.85
20 695 2.49 11.80
30 713 2.29 10.70
40 722 1.91 16.00
50 729 1.68 18.30

d: 1.86GHz Pentium M 750.
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