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Abstract 

Regulatory T cells (Treg) are a subset of T cells with strong immunosuppressive activity. 

In the skin, it has recently been revealed that Treg play important roles not only in the 

maintenance of skin homeostasis but also in the regulation of the immune responses, 

such as contact hypersensitivity and atopic dermatitis. Furthermore, the skin plays 

important roles in the induction of Treg in the periphery. In this review, we will provide 

an overview of the mechanism of Treg-mediated immunosuppression and discuss the 

role of Treg in the skin.  

(88 words) 
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Introduction 

Regulatory T cells (Treg) are a subset of T cells with strong immunosuppressive activity. 

Treg were originally identified as CD4
+
CD25

+
 T cells [1] [2]. When mice were depleted 

of CD4
+
CD25

+
 cells, they spontaneously developed autoimmune diseases and allergies, 

indicating that CD4
+
CD25

+
 T cells are essential for the maintenance of self-tolerance. 

Later on, the forkhead box p3 (Foxp3) gene was identified as the master transcriptional 

factor of Treg [3].  

There are at least two kinds of Foxp3
+
 Treg: naturally occurring Treg (nTreg) and 

inducible Treg (iTreg) [4]. nTreg develop in the thymus, and play an important role in 

the maintenance of self-tolerance and immune homeostasis. Scurfy mice, which possess 

a defective Foxp3 gene, exhibit hyperactivation of CD4
+
 T cells and overproduction of 

proinflammatory cytokines, and typically die within a month after birth [5]. Patients 

with IPEX syndrome (immune dysregulation polyendocrinopathy, enteropathy, 

X-linked syndrome) have a mutation in the human FOXP3 gene, and are therefore 

regarded as the human counterpart of scurfy mice [6]. iTreg, on the other hand, are 

induced from naïve T cells in the presence of transforming growth factor (TGF)-, and 

develop in the periphery. Retinoic acid facilitates the differentiation of naïve T cells to 

Foxp3
+
 Treg [7] [8] and may be related to the establishment of oral tolerance, although 

it remains to be determined whether iTreg are functionally stable and to what extent 

they contribute under physiological conditions.  

In addition to Foxp3
+
 Treg, there are other types of Treg, such as Tr1 and Th3 cells; 

these are induced in the periphery [4] [9] [10].  Tr1 cells can be induced through the 

antigenic stimulation of naïve T cells in the presence of IL-10 in vitro, and exert a 

suppressive effect in vitro by inducing large amounts of IL-10 and TGF-. Th3 cells 
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produce TGF- in an antigen-specific manner, and exert a suppressive effect. 

Intriguingly, however, both are Foxp3 and CD25 negative. No further details of this 

population are discussed in this manuscript. 

Evidence has accumulated regarding the regulatory roles of Treg not only in 

self-tolerance, but also in a variety of pathophysiological immune responses, such as 

gastritis [11], arthritis, encephalomyelitis [12], inflammatory bowel disease (IBD) [13], 

insulin-dependent diabetes [14] and various allergic skin diseases such as contact 

hypersensitivity or atopic dermatitis.  

  In this review, we will provide an overview of the mechanism of Treg-mediated 

immunosuppression, mainly focusing on Foxp3
+
 Treg, and discuss the role of Treg in 

the skin immune responses, focusing on contact hypersensitivity and atopic dermatitis. 

 

 

1. Mechanism of suppression by Treg  

Treg potently suppress the proliferation of T cells when Treg are co-cultured with 

responder cells that have been stimulated with a specific antigen or a polyclonal T cell 

receptor stimulator in vitro. Multiple suppression mechanisms have been proposed 

based on in vitro assays; for example, IL-10 [13], TGF-[15], and IL-35 [16]  have 

been considered as possible soluble suppressive factors of T cell proliferation. 

Absorption of IL-2 by Treg may also be involved in inhibiting T cell proliferation [17]. 

It has also been reported that Treg exert their regulatory functions by cell-cell 

contact-dependent factors, such as CD39/CD73 [18] and granzyme/perforin [19]. In 

addition to these direct suppressive effects, Treg indirectly suppress T cell proliferation 

by affecting the function of APCs. It has been reported that Treg inhibited the T cell 
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stimulatory capacity of APCs by down-regulating CD80 and CD86 expression through 

cytotoxic T-lymphocyte antigen (CTLA)-4 and lymphocyte function-associated antigen 

(LFA)-1 [20]. Using two-photon microscopic analysis, Tadokoro et al [21] and Tang et 

al [14]  have revealed that Treg inhibit stable contact and interaction between APCs 

and effector T cells. Treg also stimulate DCs to express the enzyme indoleamine 

2,3-dioxygenase (IDO), which catabolizes the conversion of tryptophan to kynurenine, a 

toxic factor to T cells [22]. In addition to their effect on APCs, it has also been reported 

that Treg down-regulate mast cell function by suppressing mast cell degranulation and 

anaphylactic response through OX40-OX40L interaction [23]. The mechanisms by 

which suppression is achieved may vary depending on context, however, and it has not 

yet been determined how these in vitro findings correlate with in vivo suppression. 

 

2. Characterization of Treg in the skin 

Treg exist in all non-lymphoid tissues; the skin has a particularly high proportion of 

Treg in the steady state [24, 25] [26]. Treg in the skin are CD44
+
 and CD103

high 
[24, 25] 

[26], and express the chemokine receptors CCR4, CCR5, CCR6 and CCR7. CCR5
+
 

Treg preferentially migrate to cutaneous lesions of Leishmania major infection [27]. 

Mice with a complete loss of CCR4 on Treg develop spontaneous lymphocytic 

infiltration and severe inflammation in the skin and lungs, accompanied by peripheral 

lymphadenopathy and increased differentiation of skin tropic CD4
+
Foxp3

−
 T cells. 

Using α-1,3-fucosyltransferase VII (Fut7) deficient mice, Dudda et al [26] have reported 

the importance of E- and P-selectin ligand for Treg migration to the skin. Loss of these 

selectin bindings caused skin-specific inflammation, indicating the essential role of 

skin-resident Treg for maintaining immune homeostasis locally. 
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3. Treg induction and expansion in the skin 

Ultraviolet (UV) radiation to the skin is well known to cause immunosuppression, and 

is accordingly applied as a treatment for a wide variety of skin diseases. Recently, it has 

been revealed that one of the immunosuppressive mechanisms involved in this effect is 

mediated by Treg, which are induced by UV irradiation [28]. It has been proposed that 

the cells responsible for this induction of Treg are epidermal Langerhans cells (LCs), an 

important group of skin-resident dendritic cells. Loser et al. [29] have reported that the 

receptor activator of NF-kappaB ligand (RANKL) was induced in keratinocytes by UV 

exposure, and RANKL-activated LCs were responsible for the development of 

UV-induced Treg. It has also been reported that the induction of Treg by UV irradiation 

was completely abolished by the depletion of LCs using Langerin-DTR mice or steroid 

mometasone [30] [31]. In addition, it has recently been reported that IL-10-producing 

and OX40 ligand-expressing mature LCs are responsible for the induction of Treg upon 

UV exposure [31], suggesting the importance of LCs for Treg induction. In addition to 

UV-induced immunosuppression, similar findings were observed concerning the 

mechanisms involved in immunosuppression during skin grafting. Yoshiki et al. [32] 

have reported that the development of contact hypersensitivity (CHS) was suppressed 

when mice were sensitized with a hapten through full-thickness grafted skin. In this 

model, CD4
+
CD25

+
 but not CD4

+
CD25

-
 T cells in draining lymph nodes (LNs) were 

responsible for this suppression. In addition, a high expression of RANKL was 

observed in the grafted skin, and recombinant RANKL stimulated LCs to produce IL-10. 

These findings suggest that the LCs play important roles in the peripheral induction of 

Treg. Recently, it has been reported that glucocorticoids modify LCs to produce TGF- 
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and expand regulatory T cells in humans [33], implying that glucocorticosteroids may 

exert their anti-inflammatory functions by inducing Treg.  

  The phenotypes and suppression mechanisms of UV-induced Treg are different from 

those of nTreg. Schwartz et al. [34] [35] have reported that the administration of 

CD4
+
CD25

+
 cells from UV-irradiated DNFB-sensitized mice impaired sensitization of 

CHS. These UV-induced Treg did not suppress the CHS response when administered 

before elicitation, though natural CD4
+
CD25

+
 Treg did. Direct injection of UV-induced 

Treg into the elicitation sites did suppress the CHS response, however. They 

accordingly concluded that UV-induced Treg did not express skin-homing receptors for 

E- and P-selectins, and so failed to suppress elicitation. In addition, they reported that 

UV-induced Treg changed APCs in LNs from a stimulatory to a regulatory phenotype 

by modulating the co-stimulatory molecules on APCs, which, in turn, further induce 

Treg [36].  

  Although the importance of LCs has been suggested as mentioned above, other 

groups have reported the importance of dermal DCs in UV-induced immunosuppression 

and peripheral Treg induction. Wang et al. [37] reported the UV-induced 

immunosuppression was abolished by selective depletion of Langerin-positive dermal 

DCs, suggesting the importance of Langerin-positive dermal DCs in Treg induction. It 

has also been reported that retinoic-acid producing CD103-negative dermal dendritic 

cells have the ability to induce Treg in draining LNs [38], in contrast to the equivalent 

phenomenon in the gut, where CD103-positive DCs are responsible for the induction of 

Treg [39] 
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4.  Treg in CHS 

CHS, a frequently used mouse model of contact dermatitis, is a prototype of skin 

immune response, and the role of Treg in CHS has been gradually revealed. 

   The development of CHS is divided into two phases: sensitization and elicitation 

[40]. In the sensitization phase, low molecular weight compounds called haptens are 

cross-linked to epidermal proteins and taken up by resident DCs such as LCs and 

dermal DCs. Subsequently, these cells are matured by proinflammatory cytokines such 

as TNF-α, IL-1β, and prostaglandin E2, and migrate to the draining LNs to present 

antigens in a CCR7 and CXCR4-dependent manner [41, 42]. After antigen 

presentation, naive T cells are activated and differentiated into antigen-specific Th1 

and Tc1 cells under the influence of polarizing signals such as IL-12 and other 

chemical mediators [43]. Th17 cells are also involved in the pathogenesis of CHS [44]. 

When the skin is re-exposed to the same hapten after establishment of the sensitization, 

an antigen-specific T cell-mediated inflammation that is known as elicitation phase is 

provoked. Upon re-exposure to the same hapten, keratinocytes and mast cells produce 

chemokines and pro-inflammatory cytokines such as TNF-α and IL-1β, which activate 

endothelial cells and induce the expression of E- or P-selectins [45-47]. Then, 

neutrophils and antigen-specific T cells enter the dermis and release IFN-, which 

further stimulates keratinocytes to induce massive leukocyte infiltration [48]. 

 

 a. Treg in the CHS response - elicitation phase 

The effect of Treg on CHS has mainly been investigated in the elicitation phase. Ring et 

al. have purified CD4
+
CD25

+
 Treg from naïve mice and administered them into 

TNCB-sensitized recipient mice intravenously one day before elicitation [49]. 
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Administration of Treg significantly suppressed the ear swelling response and 

inflammatory cell infiltration into the skin compared to those of vehicle-treated mice.  

Ring et al. have reported that these suppressive effects are mediated by soluble factors, 

especially IL-10. Administration of a culture supernatant of Treg suppressed the CHS 

response, and this suppression was reversed by an anti-IL-10 Ab. Furthermore, Treg 

from IL-10-deficient mice failed to suppress the CHS response by inhibiting the 

leukocyte influx into the inflamed skin.  

   The same group has recently reported that the adenosine produced by Treg is 

involved in blocking the influx of leukocytes into the skin by downregulating E- and P- 

selectins on endothelial cells [50]. Adenosine triphosphate (ATP) is first degraded by 

CD39 to adenosine diphosphate (ADP) and then to adenosine monophosphate (AMP). 

The AMP is serially dephosphorylated by CD73 to adenosine. Treg are strongly positive 

for both CD39 and CD73 expression; therefore, Treg convert ATP to adenosine and 

suppress the CHS response. On the other hand, conventional T cells exhibit only a low 

basal expression level of CD39. Accordingly, injection of adenosine or Treg abrogated 

the ear-swelling response in CHS, which was not seen using Treg from CD39-deficient 

mice [50]. Moreover, Treg further upregulate CD39 expression after activation; this 

activation is a prerequisite for Treg to acquire their suppressive capacity.   

b. Treg in the CHS response - sensitization phase 

While reports on the role of Treg in the sensitization phase have been rather limited 

compared to those discussing the elicitation phase, some interesting reports have 

recently been published. Dubois et al. [51], for example, have reported the involvement 

of Treg in the induction of oral tolerance and inhibition of DNFB-induced CHS. Oral 

tolerance was induced by feeding DNFB orally prior to DNFB sensitization. Although 
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no such tolerance induction was seen in CD4
+
 T cell-deficient mice, transfer of naïve 

CD4
+
CD25

+
 T cells restores oral tolerance in those mice, in a manner independent of 

IL-10 [51]. The same authors also showed that administration of neutralizing anti-CD25 

monoclonal antibody (mAb) impairs oral tolerance in WT mice. Intriguingly, 

administration of anti-CD25 mAb before sensitization had no significant affect on the 

ear swelling response, suggesting that CD4
+
CD25

+
 T cells are responsible for oral 

tolerance induction, while the role of Treg in the sensitization phase remained unclear. 

Ring et al. have recently reported that the administration of Treg suppressed the extent 

of sensitization in CHS by inhibiting DCs and CD8 T cells in the draining LNs [52]. In 

their report, Treg and DCs established a gap junctions, which caused a reduction in the 

capacity of DCs to stimulate CD8 T cells. In their next report, the same authors stated 

that Treg activation in draining LNs was mediated by ATP, because Treg acquired an 

activated phenotype upon ATP treatment in vitro, while blockage of ATP receptors on 

Treg abrogated ATP-mediated activation and suppressive function of Treg in vivo [53]. 

 

c. The role of endogenous Treg in CHS 

As described above, exogenous administration of Treg suppresses CHS both in the 

sensitization phase and in the elicitation phase. It remains unclear, however, whether 

endogenous Treg play the same suppressive role under physiological conditions. To this 

end, specific depletion of Treg in vivo is required. Although CD4
+
CD25

+
 has been used 

as a marker for Treg, CD25 is expressed in activated CD4 cells as well as in Treg. 

Therefore, Foxp3 is a more definitive marker of Treg, but because Foxp3 is a 

transcriptional factor that exists intracellularly, the purification of live Treg or depletion 

by means of neutralizing mAb has been technically difficult. 
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   To solve these problems, Foxp3 reporter mice expressing human CD2 and human 

CD52 chimeric protein have been generated and designated as Foxp3
hCD2/hCD52

 mice. 

Since Foxp3
+
 cells co-express hCD2 on the cellular surface, live Foxp3

+
 Treg are sorted 

with anti-hCD2 mAb and depleted with neutralizing anti-hCD52 Ab [25]. The mice 

have been used in the investgations into the role of endogenous Treg in CHS. Depletion 

of Treg in the elicitation phase caused the ear swelling response to be enhanced and 

prolonged compared with that seen in the control, indicating that Treg is responsible for 

terminating skin inflammation in CHS [25].  

   In addition, the role and mobility of Treg in the skin during CHS was investigated. 

Kaede-transgenic mice are genetically engineered to ubiquitously express Kaede protein, 

a photoconvertible protein that changes its fluorescence from green to red under 

exposure to violet light. Therefore, mobility of cells from the skin under physiological 

conditions can be analyzed. Treg were found to localize abundantly in the inflamed skin 

seen in CHS, and these skin Treg were found to migrate further back to draining LNs. 

Treg from the skin showed significantly higher mRNA expression of T cell 

suppression-associated molecules such as IL-10, TGF- and CTLA4. Consistently, Treg 

from the skin exhibited significantly stronger suppressive activity both in vivo and in 

vitro (Figure 1). These results suggest that Treg in the skin also play important roles in 

the termination of dermatitis and possibly in the control of systemic immune responses.  

   It has been suggested that Treg in the skin contribute to its homeostasis, since 

chronic depletion of skin Treg leads to the development of spontaneous dermatitis [24] 

[26]. Schneider et al. have reported that CCR7-deficient mice showed a reduced number 

of Treg in draining LNs and an enhanced inflammatory response in CHS after repeated 

hapten application [54], which suggests the homing of Treg to draining LNs through 
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CCR7 plays an important role in eliciting the function of Treg.  

   Endogenous Treg regulate the extent of sensitization as well as that of challenge in 

CHS. Depletion of Treg during the sensitization phase leads to enhanced skin 

inflammation [55]. Mice depleted with Treg population showed increased numbers of 

memory T cells and higher expression levels of costimulatory molecules in DCs in 

draining LNs compared with control mice, suggesting that endogenous Treg modulate 

DC function and thus regulate the extent of sensitization [55]. Recent findings on the 

role of Treg in CHS are summarized in Table 1, and schematic views of those findings 

are illustrated in Figures 3 and 4 

 

5. Atopic dermatitis (AD) and Treg 

Atopic dermatitis is one of the most common skin inflammatory disorders. New insights 

point to an important role of structural abnormalities in the epidermis combined with 

immune dysregulation [56]. Although studies on the role of Th2 cells have focused on 

the pathophysiology of AD, recent reports have indicated the importance of other T cell 

subsets such as Th17 [57] and Treg.  

   Ou et al. [58] have compared the numbers and functionality of peripheral blood 

mononuclear cells (PBMC) between healthy controls and AD patients, and reported that 

AD patients have higher numbers of Treg, each with a suppressive activity comparable 

to that of Treg in healthy controls, in the peripheral blood. Others have also reported 

that increased numbers of Treg in the PBMC of AD patients [59] and expansion of Treg 

were positively associated with disease activity in AD [60]. On the other hand, it has 

also been reported that the numbers of Treg among the PBMC are similar between AD 

and healthy controls [61]. In AD skin lesions, it was initially reported that Treg were 
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absent, while Tr1 were detected [62]. Later on, however, several groups reported the 

existence of Treg in AD skin lesions [63, 64]. Because AD is a chronic inflammatory 

disease with multiple disease stages and multiple factors, and because some treatments 

for AD such as cyclosporine [59, 61, 65], glucocoriticoids [33] and UV radiation [28], 

can alter the number of Treg in the PBMC, the interpretation and comparison of these 

studies will require careful attention.  

   Based on observations of IPEX syndrome patients, who show atopic-like dermatitis 

and high IgE levels, however, it seems probable that the number of Treg is related to the 

development of AD lesions [6]. As for the function of Treg in AD, it has been reported 

that their suppressive activity is similar to that of Treg in healthy controls [58]. Reefer 

et al., however, have reported that a new subtype of Treg with Th2-promoting ability 

has been observed in AD and that its functions depend on the expression of CCR6 [66]. 

In this report, CCR6-negative CD25-high positive Treg produced Th2 cytokines, and 

co-culture with effector T cells selectively enhanced IL-5 production, suggesting the 

heterogeneity of Treg in AD.   

Recently, dysfunction of Treg has been reported in psoriasis [67], another chronic 

inflammatory skin disease. Treg in both lesional skin and blood from psoriasis patients 

showed reduced suppressive activity [67], and such dysfunction was dependent on the 

signaling from IL-6, which was abundantly produced in psoriasis lesion [68]. Local 

cytokine milieu in AD may also alter the function of Treg in AD skin.   

 

  

Conclusion 

We have reviewed the roles of Treg in cutaneous immune responses. A considerable 
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amount of knowledge on Treg has been accumulated, and multiple mechanisms and 

various molecules are reported to be involved in Treg-mediated immunosuppression. It 

is likely that the suppressive mechanisms of Treg may differ depending on disease stage 

and the skin immune response type. Analysis using Foxp3-diphtheria toxin receptor 

knockin mice or Foxp3
hCD2/hCD52

 mice, which enable us to deplete Treg conditionally 

and specifically, will further reveal the molecular mechanisms and physiological 

functions of Treg in cutaneous immune responses.  

   It is crucially important to clarify how and to what extent those molecules are 

involved in Treg function in humans. From a clinical perspective, the precise 

mechanism by which Treg function in the elicitation phase is an important issue to be 

addressed, since most patients with cutaneous immune disease have already been 

sensitized. We expect that further effort in the investigation of Treg will give us 

important clues supporting the development of innovative therapeutic approaches for 

various skin diseases. 
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Figure1. Possible mechanisms involved in suppression by Treg 

(a) Soluble factor-dependent mechanisms. Treg produce large amounts of IL-10, IL-35, 

and TGF-beta, all of which suppress naive/effector T cell activation. Treg also absorb 

IL-2, which causes cytokine deprivation-induced apoptosis among effector T cells. (b) 

Contact-dependent mechanisms. CTLA-4 on Treg deliver negative signals to T cells. 

CD39/CD73 on Treg catalyze ATP and generate pericellular adenosine, exerting an 

anti-inflammatory effect. Treg also may kill responder T cells by a granzyme or 

perforin-dependent mechanisms. (c) Indirect mechanisms. Treg inhibit the interaction 

between DCs and effector T cells. Treg also downregulate DC activation and thus cause 

immunosuppression. 

 

Figure 2. Proposed mechanism of Treg induction by skin DCs  

UV exposure or skin grafting induces RANKL expression on keratinocytes, which 

stimulate LCs. RANKL-stimulated LCs then induce Treg in draining LNs. Under 

conditions of UV exposure, it has also been proposed that the UV-induced Treg affect 

DCs and modify their functions from a stimulatory phenotype to a regulatory phenotype, 

which further induces Treg. In addition to LCs, CD103-negative dermal DCs can induce 

Treg in draining LNs. 

 

Figure 3. Possible mechanism of suppression by Treg in sensitization phase of CHS 

Treg are activated in draining LNs by ATP. They down-regulate DC activation through 

gap junction formation and subsequent T cell proliferation, which controls the extent of 

sensitization.  
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Figure 4. Possible mechanism of suppression by Treg in elicitation phase of CHS 

Treg suppress effector T cells in the LNs and inhibit leukocyte influx into the periphery 

through IL-10 or CD39-dependent mechanisms. In addition, Treg migrating into the 

skin could suppress the effector T cell functions in the skin. Furthermore, a fraction of 

Treg in the skin migrate back to the draining LNs through afferent lymphatic vessels, 

and can return from there to the skin. These skin-derived Treg possess higher 

suppression activity than LN-resident Treg, and contribute to the termination of skin 

inflammation. 
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Table 1.  An overview of recently published papers about Treg and CHS 

 

 Major findings Reference 

 Attenuated sensitization by Treg induced by RANKL-activated LC 

in a UV-immunosuppression model 

[29] 

Sensitization Attenuated sensitization by Treg induced by IL-10 from 

RANKL-activated LC in a skin graft immunosuppression model 

[32] 

 Attenuated sensitization by Treg induced by orally administered 

antigen in an oral tolerance model 

[51] 

 

 Treg attenuate sensitization by modifying DC function through gap 

junction formation 

[52] 

 Treg acquire an activated phenotype by means of ATP in draining 

LNs 

[53] 

 Enhanced ear swelling response resulting from the depletion of 

endogenous Treg 

[55] 

 Reduced ear swelling response resulting from the inhibition of the 

leukocyte influx through IL-10 from Treg  

[49] 

Elicitation Reduced ear swelling response resulting from the inhibition of the 

leukocyte influx through adenosine from Treg via CD39/CD73  

(inhibition of E- and P-selectin expression in endothelial cells) 

[50] 

 Treg acquire activated phenotype by means of ATP in blood. [53] 

 Enhanced and prolonged ear swelling response resulting from 

depletion of endogenous Treg 

[25] 



19 

 

 

Reference 

[1] Sakaguchi S, Sakaguchi N, Asano M, Itoh M, Toda M: Immunologic self-tolerance 

maintained by activated T cells expressing IL-2 receptor alpha-chains (CD25). 

Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. 

J Immunol 155: 1151-1164, 1995. 

[2] Sakaguchi S, Toda M, Asano M, Itoh M, Morse SS, Sakaguchi N: T cell-mediated 

maintenance of natural self-tolerance: its breakdown as a possible cause of various 

autoimmune diseases. J Autoimmun 9: 211-220, 1996. 

[3] Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the 

transcription factor Foxp3. Science 299: 1057-1061, 2003. 

[4] Sakaguchi S, Yamaguchi T, Nomura T, Ono M: Regulatory T cells and immune 

tolerance. Cell 133: 775-787, 2008. 

[5] Brunkow ME, Jeffery EW, Hjerrild KA, Paeper B, Clark LB, Yasayko SA, et al.: 

Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal 

lymphoproliferative disorder of the scurfy mouse. Nat Genet 27: 68-73, 2001. 

[6] Ochs HD, Ziegler SF, Torgerson TR: FOXP3 acts as a rheostat of the immune 

response. Immunol Rev 203: 156-164, 2005. 

[7] Benson MJ, Pino-Lagos K, Rosemblatt M, Noelle RJ: All-trans retinoic acid 

mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high 

levels of co-stimulation. J Exp Med 204: 1765-1774, 2007. 

[8] Mucida D, Park Y, Kim G, Turovskaya O, Scott I, Kronenberg M, et al.: Reciprocal 

TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317: 

256-260, 2007. 



20 

 

[9] Vieira PL, Christensen JR, Minaee S, O'Neill EJ, Barrat FJ, Boonstra A, et al.: 

IL-10-secreting regulatory T cells do not express Foxp3 but have comparable regulatory 

function to naturally occurring CD4+CD25+ regulatory T cells. J Immunol 172: 

5986-5993, 2004. 

[10] Groux H, O'Garra A, Bigler M, Rouleau M, Antonenko S, de Vries JE, et al.: A 

CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. 

Nature 389: 737-742, 1997. 

[11] Suri-Payer E, Cantor H: Differential cytokine requirements for regulation of 

autoimmune gastritis and colitis by CD4(+)CD25(+) T cells. J Autoimmun 16: 115-123, 

2001. 

[12] Furtado GC, Olivares-Villagomez D, Curotto de Lafaille MA, Wensky AK, 

Latkowski JA, Lafaille JJ: Regulatory T cells in spontaneous autoimmune 

encephalomyelitis. Immunol Rev 182: 122-134, 2001. 

[13] Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F: An essential role for 

interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J 

Exp Med 190: 995-1004, 1999. 

[14] Tang Q, Adams JY, Tooley AJ, Bi M, Fife BT, Serra P, et al.: Visualizing 

regulatory T cell control of autoimmune responses in nonobese diabetic mice. Nat 

Immunol 7: 83-92, 2006. 

[15] Nakamura K, Kitani A, Strober W: Cell contact-dependent immunosuppression by 

CD4(+)CD25(+) regulatory T cells is mediated by cell surface-bound transforming 

growth factor beta. J Exp Med 194: 629-644, 2001. 

[16] Collison LW, Workman CJ, Kuo TT, Boyd K, Wang Y, Vignali KM, et al.: The 

inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 450: 566-569, 



21 

 

2007. 

[17] Pandiyan P, Zheng L, Ishihara S, Reed J, Lenardo MJ: CD4+CD25+Foxp3+ 

regulatory T cells induce cytokine deprivation-mediated apoptosis of effector CD4+ T 

cells. Nat Immunol 8: 1353-1362, 2007. 

[18] Deaglio S, Dwyer KM, Gao W, Friedman D, Usheva A, Erat A, et al.: Adenosine 

generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates 

immune suppression. J Exp Med 204: 1257-1265, 2007. 

[19] Gondek DC, Lu LF, Quezada SA, Sakaguchi S, Noelle RJ: Cutting edge: 

contact-mediated suppression by CD4+CD25+ regulatory cells involves a granzyme 

B-dependent, perforin-independent mechanism. J Immunol 174: 1783-1786, 2005. 

[20] Onishi Y, Fehervari Z, Yamaguchi T, Sakaguchi S: Foxp3+ natural regulatory T 

cells preferentially form aggregates on dendritic cells in vitro and actively inhibit their 

maturation. Proc Natl Acad Sci U S A 105: 10113-10118, 2008. 

[21] Tadokoro CE, Shakhar G, Shen S, Ding Y, Lino AC, Maraver A, et al.: Regulatory 

T cells inhibit stable contacts between CD4+ T cells and dendritic cells in vivo. J Exp 

Med 203: 505-511, 2006. 

[22] Grohmann U, Orabona C, Fallarino F, Vacca C, Calcinaro F, Falorni A, et al.: 

CTLA-4-Ig regulates tryptophan catabolism in vivo. Nat Immunol 3: 1097-1101, 2002. 

[23] Gri G, Piconese S, Frossi B, Manfroi V, Merluzzi S, Tripodo C, et al.: 

CD4+CD25+ regulatory T cells suppress mast cell degranulation and allergic responses 

through OX40-OX40L interaction. Immunity 29: 771-781, 2008. 

[24] Sather BD, Treuting P, Perdue N, Miazgowicz M, Fontenot JD, Rudensky AY, et 

al.: Altering the distribution of Foxp3(+) regulatory T cells results in tissue-specific 

inflammatory disease. J Exp Med 204: 1335-1347, 2007. 



22 

 

[25] Tomura M, Honda T, Tanizaki H, Otsuka A, Egawa G, Tokura Y, et al.: Activated 

regulatory T cells are the major T cell type emigrating from the skin during a cutaneous 

immune response in mice. J Clin Invest. 

[26] Dudda JC, Perdue N, Bachtanian E, Campbell DJ: Foxp3+ regulatory T cells 

maintain immune homeostasis in the skin. J Exp Med 205: 1559-1565, 2008. 

[27] Yurchenko E, Tritt M, Hay V, Shevach EM, Belkaid Y, Piccirillo CA: 

CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to sites of 

Leishmania major infection favors pathogen persistence. J Exp Med 203: 2451-2460, 

2006. 

[28] Loser K, Beissert S: Regulation of cutaneous immunity by the environment: an 

important role for UV irradiation and vitamin D. Int Immunopharmacol 9: 587-589, 

2009. 

[29] Loser K, Mehling A, Loeser S, Apelt J, Kuhn A, Grabbe S, et al.: Epidermal 

RANKL controls regulatory T-cell numbers via activation of dendritic cells. Nat Med 

12: 1372-1379, 2006. 

[30] Schwarz A, Noordegraaf M, Maeda A, Torii K, Clausen BE, Schwarz T: 

Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol 

130: 1419-1427. 

[31] Yoshiki R, Kabashima K, Sakabe J, Sugita K, Bito T, Nakamura M, et al.: The 

mandatory role of IL-10-producing and OX40 ligand-expressing mature Langerhans 

cells in local UVB-induced immunosuppression. J Immunol 184: 5670-5677. 

[32] Yoshiki R, Kabashima K, Sugita K, Atarashi K, Shimauchi T, Tokura Y: 

IL-10-producing Langerhans cells and regulatory T cells are responsible for depressed 

contact hypersensitivity in grafted skin. J Invest Dermatol 129: 705-713, 2009. 



23 

 

[33] Stary G, Klein I, Bauer W, Koszik F, Reininger B, Kohlhofer S, et al.: 

Glucocorticosteroids modify Langerhans cells to produce TGF-beta and expand 

regulatory T cells. J Immunol 186: 103-112. 

[34] Schwarz A, Maeda A, Wild MK, Kernebeck K, Gross N, Aragane Y, et al.: 

Ultraviolet radiation-induced regulatory T cells not only inhibit the induction but can 

suppress the effector phase of contact hypersensitivity. J Immunol 172: 1036-1043, 

2004. 

[35] Schwarz A, Maeda A, Schwarz T: Alteration of the migratory behavior of 

UV-induced regulatory T cells by tissue-specific dendritic cells. J Immunol 178: 

877-886, 2007. 

[36] Schwarz A, Schwarz T: UVR-induced regulatory T cells switch antigen-presenting 

cells from a stimulatory to a regulatory phenotype. J Invest Dermatol 130: 1914-1921. 

[37] Wang L, Jameson SC, Hogquist KA: Epidermal Langerhans cells are not required 

for UV-induced immunosuppression. J Immunol 183: 5548-5553, 2009. 

[38] Guilliams M, Crozat K, Henri S, Tamoutounour S, Grenot P, Devilard E, et al.: 

Skin-draining lymph nodes contain dermis-derived CD103- dendritic cells that 

constitutively produce retinoic acid and induce Foxp3+ regulatory T cells. Blood. 

[39] Sun CM, Hall JA, Blank RB, Bouladoux N, Oukka M, Mora JR, et al.: Small 

intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells 

via retinoic acid. J Exp Med 204: 1775-1785, 2007. 

[40] Grabbe S, Schwarz T: Immunoregulatory mechanisms involved in elicitation of 

allergic contact hypersensitivity. Immunol Today 19: 37-44, 1998. 

[41] Randolph GJ, Ochando J, Partida-Sanchez S: Migration of dendritic cell subsets 

and their precursors. Annu Rev Immunol 26: 293-316, 2008. 



24 

 

[42] Kabashima K, Shiraishi N, Sugita K, Mori T, Onoue A, Kobayashi M, et al.: 

CXCL12-CXCR4 engagement is required for migration of cutaneous dendritic cells. 

Am J Pathol 171: 1249-1257, 2007. 

[43] Nagamachi M, Sakata D, Kabashima K, Furuyashiki T, Murata T, Segi-Nishida E, 

et al.: Facilitation of Th1-mediated immune response by prostaglandin E receptor EP1. J 

Exp Med 204: 2865-2874, 2007. 

[44] Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, Homma I, et al.: 

Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing 

suppression of allergic cellular and humoral responses. Immunity 17: 375-387, 2002. 

[45] McHale JF, Harari OA, Marshall D, Haskard DO: Vascular endothelial cell 

expression of ICAM-1 and VCAM-1 at the onset of eliciting contact hypersensitivity in 

mice: evidence for a dominant role of TNF-alpha. J Immunol 162: 1648-1655, 1999. 

[46] Tietz W, Allemand Y, Borges E, von Laer D, Hallmann R, Vestweber D, et al.: 

CD4+ T cells migrate into inflamed skin only if they express ligands for E- and 

P-selectin. J Immunol 161: 963-970, 1998. 

[47] Hirata T, Merrill-Skoloff G, Aab M, Yang J, Furie BC, Furie B: P-Selectin 

glycoprotein ligand 1 (PSGL-1) is a physiological ligand for E-selectin in mediating T 

helper 1 lymphocyte migration. J Exp Med 192: 1669-1676, 2000. 

[48] Mori T, Kabashima K, Yoshiki R, Sugita K, Shiraishi N, Onoue A, et al.: 

Cutaneous hypersensitivities to hapten are controlled by IFN-gamma-upregulated 

keratinocyte Th1 chemokines and IFN-gamma-downregulated langerhans cell Th2 

chemokines. J Invest Dermatol 128: 1719-1727, 2008. 

[49] Ring S, Schafer SC, Mahnke K, Lehr HA, Enk AH: CD4+ CD25+ regulatory T 

cells suppress contact hypersensitivity reactions by blocking influx of effector T cells 



25 

 

into inflamed tissue. Eur J Immunol 36: 2981-2992, 2006. 

[50] Ring S, Oliver SJ, Cronstein BN, Enk AH, Mahnke K: CD4+CD25+ regulatory T 

cells suppress contact hypersensitivity reactions through a CD39, adenosine-dependent 

mechanism. J Allergy Clin Immunol 123: 1287-1296 e1282, 2009. 

[51] Dubois B, Chapat L, Goubier A, Papiernik M, Nicolas JF, Kaiserlian D: Innate 

CD4+CD25+ regulatory T cells are required for oral tolerance and inhibition of CD8+ T 

cells mediating skin inflammation. Blood 102: 3295-3301, 2003. 

[52] Ring S, Karakhanova S, Johnson T, Enk AH, Mahnke K: Gap junctions between 

regulatory T cells and dendritic cells prevent sensitization of CD8(+) T cells. J Allergy 

Clin Immunol 125: 237-246 e231-237. 

[53] Ring S, Enk AH, Mahnke K: ATP activates regulatory T Cells in vivo during 

contact hypersensitivity reactions. J Immunol 184: 3408-3416. 

[54] Schneider MA, Meingassner JG, Lipp M, Moore HD, Rot A: CCR7 is required for 

the in vivo function of CD4+ CD25+ regulatory T cells. J Exp Med 204: 735-745, 2007. 

[55] Honda T, Otsuka A, Tanizaki H, Minegaki Y, Nagao K, Waldmann H, et al.: 

Enhanced murine contact hypersensitivity by depletion of endogenous regulatory T 

cells in the sensitization phase. J Dermatol Sci. 

[56] Boguniewicz M, Leung DY: Recent insights into atopic dermatitis and implications 

for management of infectious complications. J Allergy Clin Immunol 125: 4-13; quiz 

14-15. 

[57] Koga C, Kabashima K, Shiraishi N, Kobayashi M, Tokura Y: Possible pathogenic 

role of Th17 cells for atopic dermatitis. J Invest Dermatol 128: 2625-2630, 2008. 

[58] Ou LS, Goleva E, Hall C, Leung DY: T regulatory cells in atopic dermatitis and 

subversion of their activity by superantigens. J Allergy Clin Immunol 113: 756-763, 



26 

 

2004. 

[59] Hijnen D, Haeck I, van Kraats AA, Nijhuis E, de Bruin-Weller MS, 

Bruijnzeel-Koomen CA, et al.: Cyclosporin A reduces CD4(+)CD25(+) regulatory 

T-cell numbers in patients with atopic dermatitis. J Allergy Clin Immunol 124: 856-858, 

2009. 

[60] Ito Y, Adachi Y, Makino T, Higashiyama H, Fuchizawa T, Shimizu T, et al.: 

Expansion of FOXP3-positive CD4+CD25+ T cells associated with disease activity in 

atopic dermatitis. Ann Allergy Asthma Immunol 103: 160-165, 2009. 

[61] Brandt C, Pavlovic V, Radbruch A, Worm M, Baumgrass R: Low-dose 

cyclosporine A therapy increases the regulatory T cell population in patients with atopic 

dermatitis. Allergy 64: 1588-1596, 2009. 

[62] Verhagen J, Akdis M, Traidl-Hoffmann C, Schmid-Grendelmeier P, Hijnen D, 

Knol EF, et al.: Absence of T-regulatory cell expression and function in atopic 

dermatitis skin. J Allergy Clin Immunol 117: 176-183, 2006. 

[63] Schnopp C, Rad R, Weidinger A, Weidinger S, Ring J, Eberlein B, et al.: 

Fox-P3-positive regulatory T cells are present in the skin of generalized atopic eczema 

patients and are not particularly affected by medium-dose UVA1 therapy. 

Photodermatol Photoimmunol Photomed 23: 81-85, 2007. 

[64] Caproni M, Torchia D, Antiga E, Volpi W, del Bianco E, Fabbri P: The effects of 

tacrolimus ointment on regulatory T lymphocytes in atopic dermatitis. J Clin Immunol 

26: 370-375, 2006. 

[65] Baumgrass R, Brandt C, Wegner F, Abdollahnia M, Worm M: Low-dose, but not 

high-dose, cyclosporin A promotes regulatory T-cell induction, expansion, or both. J 

Allergy Clin Immunol 126: 183-184; author reply 184. 



27 

 

[66] Reefer AJ, Satinover SM, Solga MD, Lannigan JA, Nguyen JT, Wilson BB, et al.: 

Analysis of CD25hiCD4+ "regulatory" T-cell subtypes in atopic dermatitis reveals a 

novel T(H)2-like population. J Allergy Clin Immunol 121: 415-422 e413, 2008. 

[67] Sugiyama H, Gyulai R, Toich E, Garacxi E, Stevens SR, McComick TS, et al.: 

Dysfunctional Blood and Target Tissue CD4�CD25high Regulatory T Cells in 

Psoriasis: Mechanism Underlying Unrestrained Pathogenic Effector T Cell Proliferation. 

J Immunol 174: 164-173, 2005. 

[68] Sugiyama H, Gyulai R, Toich E, Garacxi E, Stevens SR, McComick TS, et al.: 

IL-6 Signaling in Psoriasis Prevents Immune Suppression by Regulatory T Cells. J 

Immunol 183: 3170-3176, 2009. 

 

 



Treg

IL-10,IL-35, TGF-b

Naïve/effector T cells

Figure 1 Possible mechanisms involved in suppression by Treg

Soluble factor-dependent 

mechanisms

CD39/CD73

Contact-dependent mechanisms Indirect mechanisms involving

both soluble and contact-

dependent factors

B: Modifying DC function

IL-2 absorption

A: Outcompeting effector T cells

for interaction with DCs (LFA-1)

A

B

Treg
Treg

DCNaïve/effector T cellsc

Naïve/effector T cells

2.Stimulating DCs to express IDO

Killing/delivering a negative signal

to T cells

Granzyme/

Perforin 

Suppression of T cell activation 1.Downregulating co-stimulatory

molecule (CTLA-4/IL-10/I/TGF-b)

a. b. c.

GITR



UVB, skin grafting

KC

Draining lymph node

Epidermis

RANKL

Proposed mechanism of Treg Induction by skin DCs

CD103(- )dermal DCs

Retinoic acid, TGF-b, IL-10

Langerhans cells

Naïve T cells Treg

Figure 2 



Antigen

Keratinocyte

Lymph nodes

Naïve T cell

Langerhans cells/Dermal DCs

Figure 3 CHS: Sensitization phase

(Th1/Th17 differentiation)

Treg

Regulation of 

antigen presentation

(Gap junction)

Regulation of T cell activation

Effector T cell
Draining LNs

Epidermis

Dermis



Memory/Effector T cell

Figure 4 

Antigen re-exposure

CHS: Elicitation phase

Migration via 

lymph vessels

Inhibition of 

leukocyte influxSkin-derived Treg

Treg

LN resident Treg

Draining LNs

Blood vessels

Epidermis

Dermis

Suppression of T cell activation


