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Abstract

Higher order simple-pole type operators, that is, higher order linear or-
dinary differential operators with a large parameter η whose coefficients

have simple poles at the origin, are discussed from the viewpoint of the
exact WKB analysis. Making use of the technique of microdifferential

operators, we clarify the singularity structure of the Borel transform of
their WKB solutions.

1 Introduction

The purpose of this paper is to develop the exact WKB analysis for a

class of higher order simple-pole type operators, which were introduced

in our preceding paper [KKoT]. They are, in an intuitive description,

higher order linear ordinary differential operators with a large param-

eter η whose coefficients may have simple poles at the origin of C, and

by their exact WKB analysis we mean the analytic study of the singu-

larity structure of their Borel transformed WKB solutions. See [KT]

and references cited therein for the general theory of the exact WKB

analysis. The precise definition of the class of operators is given in

Definition 2, and it is called the class (S) after Section 4, “Discussions

and concluding remarks”, of [KKoT]. The class (S) is larger than the

class (S0) of operators studied in [KKoT]; an important point is that

the constant c which describes the Stokes phenomena in question (cf.

[KKoT, (3.8) and (4.29)]) is not a genuine constant but rather an in-

finite series of η−1 for operators in (S). (Parenthetically we note that

in Section 4 of this paper the object corresponding to c is designated

by λ0 when it is a genuine constant and by λ(η) when it is an infinite

series.) In order to overcome troubles caused by this fact we make use

of microdifferential operators acting on the Borel transform of WKB

solutions, in parallel with [AKT2] and [KKKoT]. See, e.g., [K3] for the

basic properties of microdifferential operators.
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The plan of this paper is as follows. In Section 2 we introduce

the class (S) of simple-pole type operators and establish the following

decomposition theorem (Theorem 2.4):

For an m-th order (m ≥ 3) operator P (x, d/dx, η) in (S) we can

find first order operatorsQ(l) = d/dx−ηq(l)(x, η) (l = 1, 2, · · · ,m−2)

and a second order operator R in (S) so that they satisfy

(1.1) xP = Q(1)Q(2) · · ·Q(m−2)xR

near the origin, where x stands for the multiplication operator and q(l)

has the form

(1.2)
∑

k≥0

q
(l)
k (x)η−k,

with holomorphic functions {q(l)
k (x)} satisfying the estimate (2.87). In

accordance with the decomposition (1.1) we find in Theorem 2.5 that

WKB solutions ψ(l) and ψ± of the equation Pψ = 0 so that ψ(l) has

the form

(1.3) exp

(

−
∫

(

∑

k≥0

q̃
(l)
k (x)η−k+1

)

dx

)

with

(1.4) q̃
(l)
0 = q

(l)
0 and q̃

(l)
k being holomorphic near the origin

and that

(1.5) Rψ± = 0.

As q̃
(l)
k is holomorphic near the origin, the WKB-theoretically inter-

esting object is the operator R. Hence we concentrate our attention

on analyzing the structure of second order simple-pole type operators.

Then it is reasonable to analyze a Schrödinger operator L̃ obtained by

eliminating the first order part from the operator R by the traditional
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guage transformation (3.4). We note that L̃ may acquire double poles

through the elimination of the first order part. Thus our main task in

Section 3 is to find an appropriate canonical form of the Schrödinger

operator L̃. In this direction we obtain the following decisive result:

the Borel transform L̃B of the operator L̃ is microlocally equivalent to

the following operator

(1.6) MB =
∂2

∂x2
− 1

x

∂2

∂y2
−
∑

k≥0 λk(∂/∂y)
−k

x2
(λk ∈ C) ;

that is, Theorem 3.3 proves that there exist microlocally invertible

microdifferential operators X and Y for which

(1.7) h(x)L̃BX = YMB

holds for some non-vanishing function h(x) that appears in conjunction

with a coordinate transformation that is needed to consider L̃B and

MB in the same coordinate system. Furthermore, microdifferential

operators X and Y enjoy a beautiful and useful integral representation

of the form (3.95). Concretely speaking, we find that the action of

the operator X upon multi-valued analytic functions (such as Borel

transformed WKB solutions) is expressed as an integral operator whose

kernel function is a linear differential operator of infinite order (in the

sense of [SKK]). Although MB has a simple form, it is still difficult to

analyze MB as it stands. Hence in Section 4 we study its reduction to

a further simplified operator

(1.8) M0B =
∂2

∂x2
− 1

x

∂2

∂y2
− λ0

x2
.

This reduction is again attained with the help of microdifferential oper-

ators. As the analytic structure of solutions of the equation M0Bϕ = 0

is concretely studied in [Ko2], we combine the results in [Ko2] with

the results in Sections 3 and 4 to obtain Theorem 5.1 that concretely
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describes the structure of Borel transformed WKB solutions for the

equation L̃ψ = 0. We note that our reasoning has become a clear-cut

one by the use of integral representation of the form (3.95), which en-

ables us to find where the singularities of the integral are located. Thus

we can bypass the hard and delicate computations which [Ko2] needed

to analyze second order operators in class (S0).

2 Decomposition theorem for simple-pole type opera-

tors

We begin our discussion by defining class (S) of simple-pole type op-

erators. We also introduce an auxiliary class (S̃) of operators whose

coefficients are holomorphic near the origin.

Definition 2.1. (i) Let P be an operator of the form

(2.1)
dm

dxm
+ ηA1(x, η)

dm−1

dxm−1
+ · · · + ηmAm(x, η),

where η is a large parameter and

(2.2) Aj(x, η) =
∑

k≥0

Aj,k(x)η−k

with Aj,k being a meromorphic function on a neighborhood U of the

origin in C. Then we say that P is in class (S) if the following condi-

tions (2.3)∼ (2.6) are satisfied:

(2.3) A1,0 is holomorphic on U ,

(2.4) xA1,k (k ≥ 1) and xAj,k (j = 2, 3, · · · ,m; k ≥ 0) are

holomorphic on U ,
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(2.5) for each compact set K in U there exists a constant CK for

which

sup
x∈K

|xAj,k| ≤ Ck+1
K k!

holds for every k and j = 1, 2, · · · ,m,
(2.6) for αj=

def
Res
x=0

Aj,0 (j = 2, 3, · · · ,m) we find

(2.6.a) α2 6= 0, αm 6= 0,

and

(2.6.b) f(ζ)=
def

m
∑

j=2

αjζ
m−j = 0 has mutually different

(m− 2) roots.

(ii) Class (S̃) consists of operators of the form xP for P in (S).

Remark 2.1. (i) It follows from the definition that an operator P̃ in

(S̃) has the following form:

(2.7) x
dm

dxm
+ ηÃ1(x, η)

dm−1

dxm−1
+ · · · + ηmÃm(x, η),

where Ãj(x, η) =
∑

k≥0 Ãj,k(x)η−k (j = 1, 2, · · · ,m) satisfy

(2.8) Ãj,k (1 ≤ j ≤ m; k ≥ 0) are all holomorphic on U ,

(2.9) Ã1,0(0) = 0,

(2.10) Ã2,0(0) 6= 0, Ãm,0(0) 6= 0,

and

(2.11) f̃ (ζ)=
def

m
∑

j=2

Ãj,0(0)ζm−j = 0 has mutually different (m − 2)

roots.

(ii) Classes (S) and (S̃) were first introduced in [AKKoT2] as classes

(K̃) and ( ˜̃K) respectively. The importance of class (S) was emphasized

in Section 4 of [KKoT], from which this paper stems.
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We first show the following decomposition theorem (Theorem 2.1)

for operators in class (S̃). A corresponding result for operators in class

(S) (Theorem 2.4 below) will follow from this theorem.

Theorem 2.1. Let P̃ be an m-th (m ≥ 3) order operator in (S̃)

that has the form (2.7). Then there exist an open neighborhood V

of the origin, holomorphic functions q̃k(x) (k = 0, 1, 2, · · · ) defined

on V and an (m− 1)-st order operator R̃ in (S̃) that is defined on

V which satisfy the following relations (2.12) and (2.13) if we let

q̃(x, η) denote
∑

k≥0 q̃k(x)η−k and define a differential operator Q̃

by d/dx− ηq̃(x, η) :

(2.12) P̃ = Q̃R̃,

(2.13) for each compact set K in V there exists a constant MK

for which the following relation holds for every k :

sup
x∈K

|q̃k(x)| ≤M k+1
K k!

.

Proof. Let us write down the required operator R̃ as

(2.14) x
dm−1

dxm−1
+ ηã1(x, η)

dm−2

dxm−2
+ · · · + ηm−1ãm−1(x, η)

with

(2.15) ãj(x, η) =
∑

k≥0

ãj,k(x)η−k,

and try to find {ãj,k} together with {q̃k} so that (2.12) is satisfied.

Then the comparison of coefficients of like orders of differentiation in
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(2.12) entails the following relations:

(2.16)










































Ã1 = ã1 − xq̃ + η−1, (2.16.1)

Ã2 = ã2 − q̃ã1 + η−1ã
′
1, (2.16.2)

Ã3 = ã3 − q̃ã2 + η−1ã
′
2, (2.16.3)

... ...

Ãm−1 = ãm−1 − q̃ãm−2 + η−1ã
′
m−2, (2.16.m− 1)

Ãm = − q̃ãm−1 + η−1ã
′
m−1. (2.16.m)

Here and in what follows ã
′
1 etc. respectively stand for dã1/dx etc. In

what follows we try to construct ãj,k and q̃k by comparing the coeffi-

cients of like powers of η−1 in (2.16).

First the comparison of the top degree part, i.e., the degree 0 part

of (2.16) results in the following relations.

(2.17)











































Ã1,0 = ã1,0 − xq̃0, (2.17.1)

Ã2,0 = ã2,0 − q̃0ã1,0, (2.17.2)

Ã3,0 = ã3,0 − q̃0ã2,0, (2.17.3)
... ...

Ãm−1,0 = ãm−1,0 − q̃0ãm−2,0, (2.17.m− 1)

Ãm,0 = − q̃0ãm−1,0. (2.17.m)

Solving the equations (2.17) for aj,0 (1 ≤ j ≤ m− 1) and q̃0, we find

the following relations with the convention that Ã0,0 = x:

(2.18) ãj,0 =

j
∑

l=0

Ãl,0q̃
j−l
0 (j = 1, 2, · · · ,m− 1)

and

(2.19)
m
∑

l=0

Ãl,0q̃
m−l
0 = 0.
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To find the required holomorphic function q̃0(x), we introduce the fol-

lowing function:

(2.20) F̃ (x, ζ) =
m
∑

l=0

Ãl,0(x)ζm−l.

Then it follows from (2.9), (2.10) and (2.11) that the equation F̃ (0, ζ) =

0 has mutually different (m− 2) roots ζ = ζ (p) (p = 1, 2, · · · ,m− 2).

Note that (2.10) guarantees

(2.21) ζ(p) 6= 0 (p = 1, 2, · · · ,m− 2).

It is then clear that

(2.22)
∂F̃

∂ζ
(x, ζ)

∣

∣

∣

(x,ζ)=(0,ζ(p))
6= 0

for p = 1, 2, · · · ,m − 2. Thus it follows from the implicit function

theorem that there exist (m−2) holomorphic functions {ζ (p)(x)} which

satisfy

(2.23) F̃ (x, ζ(p)(x)) = 0 and ζ (p)(0) = ζ(p).

Let us choose one of them, say ζ (1)(x), as q̃0(x), and let V denote

its domain of definition. Then we can fix holomorphic functions ãj,0
(j = 1, 2, · · · ,m − 1) by (2.18). It is clear from (2.9), (2.10), (2.18)

and (2.23) that we find

(2.24) ã1,0(0) = 0,

(2.25) ã2,0(0) 6= 0.

We also obtain by (2.10), (2.17.m) and (2.21) that

(2.26) ãm−1,0(0) 6= 0.

To confirm that the equation

(2.27)
m−1
∑

j=2

ãj,0(0)ζm−1−j = 0
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has (m− 3) (if m ≥ 4) mutually distinct roots, we note that

(2.28) F̃ (x, ζ) =
(

ζ− q̃0(x)
)(

xζm−1 + ã1,0(x)ζm−2 + · · ·+ ãm−1,0(x)
)

follows from (2.12). In fact, by replacing d/dx by ξ in (2.12) and

comparing the part of (2.12) which has homogeneous degreem in (ξ, η),

we immediately find (2.28) by setting ξ = ζη. If we set x = 0 in

(2.28), the choice of q̃0(x) together with (2.20) and (2.24) guarantees

that (2.27) has (m − 3) roots ζ = ζ (p) (p = 2, 3, · · · ,m − 2), which

are mutually distinct. Thus the functions {ãj,0}j=1,2,··· ,m−1 meet the

requirements (2.9), (2.10) and (2.11) that the top degree part of an

operator in (S̃) should satisfy.

Next we construct q̃k (k ≥ 1) and {ãj,k}1≤j≤m−1 (k ≥ 1) in an

inductive manner with respect to k so that they satisfy (2.16). Let us

begin our discussion by explicitly writing down the degree (−k) (in η)

part of (2.16). Here and in what follows δ1,k stands for Kronecker’s

delta.

(2.29)






















































































Ã1,k = ã1,k − xq̃k + δ1,k, (2.29.1)

Ã2,k = ã2,k −
k
∑

l=0

q̃lã1,k−l + ã
′
1,k−1, (2.29.2)

Ã3,k = ã3,k −
k
∑

l=0

q̃lã2,k−l + ã
′
2,k−1, (2.29.3)

... ...

Ãm−1,k = ãm−1,k −
k
∑

l=0

q̃lãm−2,k−l + ã
′
m−2,k−1, (2.29.m− 1)

Ãm,k = −
k
∑

l=0

q̃lãm−1,k−l + ã
′
m−1,k−1. (2.29.m)

For the sake of the clarity of description we rewrite (2.29) in a matrix
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form:

(2.30) C















q̃k
ã1,k

ã2,k
...

ãm−1,k















=















ã0,k

ã1,k

ã2,k
...

ãm−1,k















,

where

(2.31) C =















x −1 0
ã1,0 q̃0 −1

ã2,0 0 q̃0 −1 ...... ... . . . −1

ãm−1,0 0 0 q̃0















,

(2.32) ã0,k = δ1,k − Ã1,k

and

(2.33) ãj,k = ã
′
j,k−1 −

k−1
∑

l=1

q̃lãj,k−l − Ãj+1,k (1 ≤ j ≤ m− 1).

First we note

detC = x

∣

∣

∣

∣

∣

∣

∣

∣

∣

q̃0 −1 0
q̃0 −1 ...

. . . −1

0 q̃0

∣

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

∣

ã1,0 −1 0
ã2,0 q̃0 −1 ...... . . . −1

ãm−1,0 0 q̃0

∣

∣

∣

∣

∣

∣

∣

∣

∣

(2.34)

= xq̃m−1
0 + ã1,0q̃

m−2
0 +

∣

∣

∣

∣

∣

∣

∣

∣

∣

ã2,0 −1 0
... q̃0 −1
... . . . −1

ãm−1,0 0 q̃0

∣

∣

∣

∣

∣

∣

∣

∣

∣
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= · · · = xq̃m−1
0 + ã1,0q̃

m−2
0 + · · · + ãm−1,0.

Hence it follows from (2.28) and the choice of q̃0 that

(2.35) detC 6= 0 on V

if V is chosen further smaller if necessary. Therefore, if q̃k and

{ãj,k}1≤j≤m−1 have been found for 0 ≤ k ≤ k0 − 1, we can obtain

q̃k0(x) which is holomorphic on V by

(2.36) det C̃k0/ detC,

where

(2.37) C̃k0 =











ã0,k0 −1 0
ã1,k0 q̃0 −1 ...... . . . −1

ãm−1,k0 0 q̃0











.

Once q̃k0 is fixed, we can construct {ãj,k0}1≤j≤m−1 explicitly by solving

(2.29) in an inductive manner with respect to j starting with

(2.38) ã1,k0 = Ã1,k0 + xq̃k0 − δ1,k0.

Thus we can find q̃k and {ãj,k}1≤j≤m−1 so that (2.16) may be satisfied.

Hence what remains to be done is the following estimation:

For each compact set K in V there exists a constant CK for which

(2.39) sup
x∈K

|q̃k(x)| ≤ Ck+1
K k!

and

(2.40) sup
x∈K

|ãj,k(x)| ≤ Ck+1
K k! (1 ≤ j ≤ m− 1)

hold for every k.

This estimation can be done in the same way as in [KKoT], but for

the sake of completeness we briefly describe its core part.
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In what follows we fix an arbitrary point x0 in V , and we let D(r)

denote a closed disc centered at x0 with radius r. Let r0 be a positive

number such that

(2.41) D(r0) ⊂ V.

It follows from (2.5) and the definition of class (S̃) that we have a

constant M for which

(2.42) sup
x∈D(r1)

j=1,2,··· ,m

|Ãj,k(x)| ≤ k!M k+1(r0 − r1)
−k

holds for any r1 < r0.

We now prove the existence of a constant C for which

(2.43.k) sup
x∈D(r1)

j=1,2,··· ,m−1

{|q̃k|, |ãj,k|} ≤ k!Ck+1(r0 − r1)
−k

holds for every k. As (2.43.0) is clear, we prove (2.43.k) by the induc-

tion on k. Since

(2.44) det C̃k0 = ã0,k0q̃
m−1
0 + ã1,k0q̃

m−2
0 + · · · + ãm−1,k0,

(2.36) implies that it suffices to show

(2.45.k0) sup
x∈D(r1)

j=1,2,··· ,m−1

|ãj,k0| ≤ k0!C
k0+1(r0 − r1)

−k0

on the condition that (2.43.k) holds for k = 0, 1, · · · , k0 − 1. To

prove (2.45.k0) we follow the reasoning in [AKT1, Appendix, §A.1]. To

dominate |dãj,k0−1/dx| we use the following device: for each positive

number r that is smaller than r0 we use the induction hypothesis by

defining

(2.46) r1 = r +
r0 − r

k0
.

Then we have

(2.47) r0 − r1 =
(

1 − 1

k0

)

(r0 − r).
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Hence it follows from the induction hypothesis and Cauchy’s formula

that we have

sup
D(r)

∣

∣

∣

dãj,k0−1

dk

∣

∣

∣ ≤ (k0 − 1)!Ck0(r0 − r1)
−k0+1 k0

r0 − r
(2.48)

≤ k0!C
k0

(

1 − 1

k0

)−k0+1

(r0 − r)−k0

≤ k0!C
k0e(r0 − r)−k0,

where e = 2.718 · · · . Since

(2.49)

k0−1
∑

k=1

(k0 − k)!k! ≤ 4(k0 − 1)!

holds for k0 ≥ 2, the definition (2.33) of ãj,k implies

sup
D(r)

j=1,2,··· ,m−1

∣

∣ãj,k0

∣

∣(2.50)

≤ k0!C
k0+1
(

eC−1 + 4k−1
0 +

(M

C

)k0+1
)

(r0 − r)−k0.

Hence by choosing C sufficiently large we find

(2.51) sup
D(r)

j=1,2,··· ,m−1

∣

∣ãj,k0

∣

∣ ≤ k0!C
k0+1(r0 − r)−k0.

Since r is an arbitrary positive number that is smaller than r0, this

proves (2.45.k0). Thus the induction proceeds. Therefore we find

(2.43.k) for every k. Since x0 is an arbitrary point in V , this im-

plies the existence of a constant CK for which (2.39) and (2.40) hold

for every k. This completes the proof of Theorem 2.1.

Q.E.D.

Let us now consider the situation where the operator P̃ in (S̃) is of

order m ≥ 4. Then the repeated applications of Theorem 2.1 entail
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the existence of an operator R̃ in (S̃) and first order operators Q̃(j)

= d/dx − ηq(j)(x, η) (j = 1, 2) so that they satisfy the following

conditions:

(2.52) P̃ = Q̃(1)Q̃(2)R̃,

(2.53) q̃(j)(x, η) =
∑

k≥0

q̃
(j)
k (x)η−k (j = 1, 2), where {q̃(j)

k (x)} sat-

isfy the same growth condition (2.13) that {q̃k(x)} satisfy.

We note that (2.11) together with (2.28) entail

(2.54) q̃
(1)
0 (0) 6= q̃

(2)
0 (0).

Concerning the structure of Q̃(1) and Q̃(2) we find the following

Proposition 2.2. Let Q̃(1) and Q̃(2) be as above. Then there

uniquely exists another pair of operators Q̂(1) and Q̂(2) which sat-

isfy the following:

(2.55) Q̂(j) has the form d/dx − ηq̂(j)(x, η) with q̂(j)(x, η) =
∑

k≥0

q̂
(j)
k (x)η−k, where {q̂(j)

k } satisfy (2.13),

(2.56) q̂
(j)
0 = q̃

(j)
0 (j = 1, 2),

(2.57) Q̃(1)Q̃(2) = Q̂(2)Q̂(1).

Proof. In order to attain (2.57), q̂(1) and q̂(2) should satisfy

(2.58) q̂(2)(x, η) + q̂(1)(x, η) = q̃(1)(x, η) + q̃(2)(x, η)

(2.59) q̂(2)q̂(1) − η−1dq̂
(1)

dx
= q̃(1)q̃(2) − η−1dq̃

(2)

dx
.

From the logical viewpoint, solving these equations and solving (2.16)

are different problems. But the procedure employed to solve (2.58) and
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(2.59) is basically the same as that used in the proof of Theorem 2.1.

Actually the problem is slightly easier this time, as the top degree

parts are given by (2.56). Then the comparison of the coefficients of

η−k (k ≥ 1) in (2.58) and (2.59) gives the following relations:

(2.60) q̂
(2)
k + q̂

(1)
k = q̃

(1)
k + q̃

(2)
k ,

(2.61) q̂
(2)
k q̂

(1)
0 +

k−1
∑

l=1

q̂
(2)
k−lq̂

(1)
l + q̂

(2)
0 q̂

(1)
k − q̂

(1)′
k−1 =

k
∑

l=0

q̃
(1)
k−lq̃

(2)
l − q̃

(2)′
k−1.

Rewriting these in a matrix form, we find

(2.62) C





q̂
(2)
k

q̂
(1)
k



 =











q̃
(1)
k + q̃

(2)
k

q̂
(1)′
k−1 −

(

k−1
∑

l=1

q̂
(2)
k−lq̂

(1)
l

)

+
k
∑

l=0

q̃
(1)
k−lq̃

(2)
l − q̃

(2)′
k−1











where

(2.63) C =

(

1 1

q̂
(1)
0 q̂

(2)
0

)

.

It follows from (2.54) and (2.56) that

(2.64) detC
∣

∣

x=0
6= 0.

Therefore we can find q̂
(2)
k and q̂

(1)
k uniquely in an inductive manner

with respect to k. By the same reasoning as in the proof of Theorem 2.1

we can confirm that they satisfy the growth order condition of the form

(2.13).

Q.E.D.

Repeated applications of Theorem 2.1 show that an m-th (m ≥ 3)

order operator P̃ in (S̃) can be decomposed as follows:

(2.65) P̃ = Q̃(1) · · · Q̃(m−2)R̃,
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where

(2.66) Q̃(l) =
d

dx
− ηq̃(l)(x, η)

with

(2.67) q̃(l)(x, η) =
∑

k≥0

q̃
(l)
k (x)η−k.

To fix the situation let us suppose

(2.68) q̃
(j)
0 (x) = ζ (j)(x),

where {ζ (j)(x)}j=1,2,··· ,m−2 are solutions of (2.28). One implication of

Proposition 2.2 is that, for a permutation σ of indices {1, 2, · · · ,m−2},
we can find another decomposition

(2.69) P̃ = Q̂(σ(1)) · · · Q̂(σ(m−2))R̂,

where

(2.70) Q̂(σ(l)) =
d

dη
− ηq̂(σ(l))(x, η)

with

(2.71) q̂
(σ(l))
0 (x) = ζ (σ(l))(x)

and

(2.72) R̂ = R̃.

The important point is that the second order operator R̃ is not altered

although other factors Q̃(j) (j = 1, 2, · · · ,m−2) are interchanged with

necessary modifications of lower degree terms, namely q
(j)
k with k ≥ 1.

This observation suggests that we should concentrate our attention on

the structure of the equation R̃ψ = 0 from the viewpoint of WKB

analysis near the origin. Actually we have the following

17



Theorem 2.3. Let P̃ be an m-th (m ≥ 3) order operator in (S̃).

Then, in parallel with the decomposition (2.65), we find the follow-

ing m WKB solutions ψ̃± and ψ̂(j) (1 ≤ j ≤ m−2) of the equation

P̃ ψ̃ = 0 near the origin so that they satisfy the following:

(2.73) R̃ψ̃± = 0,

(2.74) ψ̂(j) = exp
(

η

∫ x

0

q̂(j)(x, η)dx
)

,

where

(2.75) q̂(j)(x, η) = ζ (j)(x) +
∑

k≥1

q̂
(j)
k (x)η−k

with q̂
(j)
k (x) being holomorphic on a neighborhood V of the origin.

Proof. Since R̃ is a second order operator we can readily construct

WKB solutions ψ̃± of (2.73). Then it follows from (2.65) that P ψ̃± = 0.

In order to confirm the existence of solutions of the form (2.74), we

may repeat the reasoning in the proof of Theorem 2.1 to prove the

decomposition P = R̂Q̂ with Q̂ being d/dx − ηq̂(j)(x, η). Here we

show another device used in [AKKoT2]. Let T̃ denote the adjoint

operator P̃ ∗ of P̃ . It follows from Remark 2.1 that P̃ ∗ belongs to (S̃),

and hence we can apply Theorem 2.1 to P̃ ∗ = T̃ . Then we have

(2.76) T̃ = Q̃R̃,

(2.77) R̃ belongs to (S̃),

(2.78) Q̃ =
d

dx
− ηq̃(j)(x, η),

where

(2.79) q̃(j)(x, η) = −ζ (j)(x) −
∑

k≥1

q̃
(j)
k (x)η−k

18



with q̃
(j)
k (x) being holomorphic on a neighborhood V of the origin.

Hence we find

(2.80) P̃ = T̃ ∗ = R̃∗Q̃∗,

while

(2.81) Q̃∗ = − d

dx
− ηq̃(j)(x, η).

Hence the equation P̃ ψ̃ = 0 is seen to have a WKB solution ψ̂(j)(x, η)

of the form of (2.74) if we choose q̂(j) = −q̃(j).

Q.E.D.

Remark 2.2. It follows from the assumptions (2.9), (2.10) and (2.11)

together with Theorem 4.1 of [AKKoT1] that the logarithmic derivative

of a WKB solution ψ̃ of P̃ ψ̃ = 0 is uniquely determined by its highest

degree (in η) part. Hence a WKB solution ϕ̃ of P̃ ψ̃ = 0 such that the

highest degree part of d log ϕ̃/dx coincides with d log ψ̃+/dx (resp.,

d log ψ̃−/dx) should coincide with ψ̃+ (resp., ψ̃−), and we conclude

R̃ϕ̃ = 0. Therefore the WKB theoretic structure of the WKB solution

ϕ̃ of the equation P̃ ϕ̃ = 0 can be clarified at least near the origin by

the analysis of the second order equation R̃ψ̃ = 0, which we will do in

the subsequent sections.

We have so far discussed operators in (S̃). Results for operators in

(S) are readily deduced from the corresponding results for operators in

(S̃). For example, a simple algebraic argument deduces the following

Theorem 2.4 from Theorem 2.1 and Proposition 2.2. We note that

Theorem 2.4 below is basically the same as an announced result in

[KKoT], i.e., Theorem 4.4 in [KKoT, Section 4].

Theorem 2.4. Let P be an m-th (m ≥ 3) order operator in (S).

Then there exist an open neighborhood V of the origin, meromor-

phic functions q
(l)
k (x) (l = 1, 2, · · · ,m− 2; k ≥ 0) defined on V and
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a second order operator R defined on V that belongs to (S) so that

they may satisfy the following conditions (2.84) ∼ (2.88), if we let

q(l)(x, η) and Q(l) (l = 1, 2, · · · ,m− 2) respectively denote

(2.82)
∑

k≥0

q
(l)
k (x)η−k

and

(2.83)
d

dx
− ηq(l)(x, η) :

(2.84) q
(l)
k (x) (k 6= 1) is holomorphic on V,

(2.85) xq
(l)
1 (x) is holomorphic on V,

(2.86) Res
x=0

q
(l)
1 (x) = −1,

(2.87) for each compact set K in V there exists a constant MK

for which

sup
x∈K

|q(l)
k (x)| ≤M k

Kk!

holds for each l = 1, 2, · · · ,m− 2 and every k ≥ 2,

(2.88) P = Q(1)Q(2) · · ·Q(m−2)R.

Furthermore the operator R is uniquely determined by P regardless

of the choice of operators {Q(l)}1≤l≤m.

Proof. Let P̃ denote the operator xP . Then P̃ belongs to (S̃), and

hence repeated applications of Theorem 2.1 enable us to find a second

order operator R̃ in (S̃) and operators {Q̃(l)}1≤l≤m−2 described by

(2.66) and (2.67) so that they satisfy

(2.89) P̃ = Q̃(1)Q̃(2) · · · Q̃(m−2)R̃
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on an open neighborhood V of the origin. We note that operators

{Q̃(l)}1≤l≤m−2 and R̃ are with holomorphic coefficients on V . On the

other hand, the commutation relation between the differential operator

d/dx and the multiplication operator x entails

(2.90)
( d

dx
− ηq̃(l)(x, η)

)

x = x
( d

dx
− ηq̃(l)(x, η) + x−1

)

,

that is,

(2.91) Q̃(l)x = x(Q̃(l) + x−1).

Therefore, if we set

(2.92) q(l)(x, η) = q̃(l)(x, η) − η−1x−1

and define Q(l) by d/dx− ηq(l), we find the relation

xP = Q̃(1)Q̃(2) · · · Q̃(m−2)xx−1R̃(2.93)

= xQ(1)Q(2) · · ·Q(m−2)x−1R̃.

Hence by setting R = x−1R̃ we obtain

(2.94) P = Q(1)Q(2) · · ·Q(m−2)R

with R in (S). It is clear that {Q(l)}1≤l≤m−2 satisfy the required con-

ditions including somewhat intriguing condition (2.86). Furthermore,

as we can obtain (2.89) from (2.94) by reversing the above reasoning,

Proposition 2.2 entails that the operator R = x−1R̃ is uniquely fixed

by P , regardless of the choice of Q(l)’s. This completes the proof of the

theorem.

Q.E.D.

In view of the way how to find Q(l)’s and R from Q̃(l)’s and R̃, we

readily obtain the following Theorem 2.5 from Theorem 2.3:
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Theorem 2.5. Let P be an m-th (m ≥ 3) order simple-pole type

operator in class (S). Then, in parallel with the decomposition

(2.88), we find the following m WKB solutions ψ± and ψ(j) (1 ≤
j ≤ m − 2) of the equation Pψ = 0 near the origin so that they

satisfy the following:

(2.95) Rψ± = 0,

(2.96) ψ(j) = exp
(

η

∫ x

0

q̂(j)(x, η)dx
)

,

where

(2.97) q̂(j)(x, η) = ζ (j)(x) +
∑

k≥1

q̂
(j)
k (x)η−k

with q̂
(j)
k (x) being holomorphic on a neighborhood V of the origin.

Proof. Applying Theorem 2.3 to P̃ = xP we immediately find that it

suffices to choose ψ(j) = ψ̂(j). Since R = x−1R̃, it is also clear that we

can take ψ̃± as ψ±. Thus this theorem is an immediate consequence of

Theorem 2.3.

Q.E.D.

3 A canonical form of a second order simple-pole type

operator in (S)

In view of Theorem 2.5, our principal aim is now to clarify the WKB-

theoretic structure of a second order simple-pole type operator R in

class (S). To attain this aim let us first note the following well-known

lemma.
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Lemma 3.1. Let R be a second order simple-pole type operator in

(S) that has the following form:

(3.1)
d2

dx2
+ ηA1(x, η)

d

dx
+ η2A2(x, η),

where

(3.2) Aj(x, η) =
∑

k≥0

Aj,k(x)η−k (j = 1, 2)

with A1,0, xA1,k (k ≥ 1) and xA2,k (k ≥ 0) being holomorphic on

a neighborhood U of the origin. Then the equation Rψ = 0 can be

brought to the Schrödinger equation of the form

(3.3)
d2ϕ

dx2
= η2Q(x, η)ϕ

through the gauge transformation

(3.4) ϕ = exp
(1

2
η

∫ x

A1(x, η)dx
)

ψ,

where

(3.5) Q = −A2(x, η) +
1

4
A1(x, η)

2 +
1

2
η−1dA1(x, η)

dx
.

A straightforward computation validates Lemma 3.1. One impor-

tant point in the above gauge transformation is that 1
2
η
∫ x
A1,0(x)dx

is a holomorphic function. Hence it does not cause any problems in

performing the Borel transformation of ϕ; this term only results in

translating the Borel transform of ψ by 1
2

∫ x
A1,0dx in the y (= the

variable dual to η)-plane. For reference purposes we note the concrete

form of the potential

(3.6) Q =
∑

k≥0

Qk(x)η−k.

(3.7) Q0 = −A2,0 +
1

4
A2

1,0,
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(3.8) Q1 = −A2,1 +
1

2
A1,0A1,1 +

1

2

dA1,0

dx
,

(3.9) Qk = −A2,k +
1

4

(

∑

p+q=k

A1,pA1,q

)

+
1

2

dA1,k−1

dx
(k ≥ 2).

Thus one immediately notices that, although Q0 and Q1 are with a

simple pole at the origin, Qk (k ≥ 2) is, in general, with a double

pole. We note that, if the operator is in class (S0) studied in [KKoT],

Qk (k ≥ 3) is with a simple pole at the origin. As we will see below,

this means that we cannot employ the results of [Ko1] but that we

should use the results in [Ko3] concerning the construction of the so-

called “formal coordinate transformation” that brings the potential Q

of the Schrödinger equation (3.3) to its canonical form given below.

For the convenience of the reader we quote below the result of [Ko3]

as Proposition 3.2. See [Ko3] for its proof. It is basically the same as

the reasoning in Section 2 of [Ko1].

Proposition 3.2. ([Ko3, Proposition 2]) Let L̃ denote the following

Schrödinger operator:

(3.10)
d2

dx̃2
− η2Q̃(x̃, η),

where its potential

(3.11) Q̃(x̃, η) =
Q̃0(x̃)

x̃
+ η−1Q̃1(x̃)

x̃
+
∑

k≥2

η−k
Q̃k(x̃)

x̃2

satisfies the following conditions:

(3.12) each Q̃k(x̃) is holomorphic on a neighborhood U of the

origin,

(3.13) Q̃0(0) 6= 0,

24



(3.14) for each compact set K in U there exists a constant CK

for which the following estimate holds for every k :

sup
x̃∈K

|Q̃k(x̃)| ≤ Ck+1
K k!.

Then we can find a series λ(η) =
∑

j≥0 λjη
−j, a neighborhood Ṽ

of {x̃ = 0} and a series x(x̃, η) that is of the form

(3.15) x0(x̃) + η−1x1(x̃) + η−2x2(x̃) + · · · ,
where {xj(x̃)}j≥0 are holomorphic on V , so that they satisfy the

following conditions (3.16) ∼ (3.20):

(3.16) xj(0) = 0 for every j = 0, 1, 2, · · · ,

(3.17)
dx0

dx̃
(0) 6= 0,

(3.18) there exists a constant C for which the following estimate

holds for every j :

sup
V

|xj(x̃)| ≤ Cj+1j!

(3.19)

Q̃(x̃, η) =
(dx

dx̃

)2
(

1

x(x̃, η)
+ η−2 λ(η)

x(x̃, η)2

)

− 1

2
η−2{x(x̃, η); x̃},

(3.20) λj = Q̃j+2(0) (j ≥ 0).

Here and in what follows {x; x̃} stands for the Schwarzian deriva-

tive, i.e.,

(3.21) {x; x̃} =
d3x/dx̃3

dx/dx̃
− 3

2

(

d2x/dx̃2

dx/dx̃

)2

.
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It is known (e.g., [KT, Chap.2]) that the relation (3.19) guarantees

that the equation

(3.22) L̃ψ̃ = 0

is WKB-theoretically equivalent to the equation

(3.23) Mψ = 0,

where

(3.24) M =
d2

dx2
− η2

(

1

x
+ η−2λ(η)

x2

)

,

in the sense that, for a WKB solution ψ(x, η) of (3.23),

(3.25) ψ̃(x̃, η) =
(dx

dx̃

)−1/2

ψ(x(x̃, η), η)

is a WKB solution of (3.22), and vice versa (with the use of the in-

verse formal coordinate transformation x̃ = x̃(x, η), whose existence

is guaranteed by (3.17)). Since the Borel transform ψB of a WKB

solution ψ of Mψ = 0 can be concretely analyzed with the help of

microdifferential operators, as we will show in Section 4, we try to an-

alyze the Borel transform ψ̃B of ψ̃ through (3.25). In the last century

this was thought to be a hard task to carry out from the viewpoint of

microlocal analysis for simple-pole type operators even when λ is a gen-

uine constant (as opposed to an infinite series as in Proposition 3.2).

(See, e.g., the introduction of [Ko2].) Fortunately, the recent study

[AKT2] has made a breakthrough in this subject, and by employing

the method developed in [AKT2] we can analyze the precise meaning

of the equivalence of (3.22) and (3.23) through microlocal analysis ap-

plied to their Borel transforms. It should be worth emphasizing that

one crucial point that enabled [AKT2] to formulate their results using

particular integro-differential operators, which we also employ below,

26



is the following elementary and widely-applicable observation: the in-

equality (3.26) below, which had been used in [AKT1] to analyze the

structure of an equation near its simple turning point, can be improved

as (3.27):

(3.26)
∑

j1+j2+···+jk=j

j1,j2,··· ,jk≥1

j1!j2! · · · jk! ≤ j!,

(3.27)
∑

j1+j2+···+jk=j

j1,j2,··· ,jk≥1

j1!j2! · · · jk! ≤ 4k−1(j − k + 1)!.

This fact indicates that the reasoning of [AKT2] has an ample applica-

tion scope, and our reasoning below is one example that shows the wide

applicability of the reasoning in [AKT2]. Although the proof of Theo-

rems 3.3 and 3.5 is essentially the same as that of Theorems 1.6 and 1.7

of [KKKoT], we describe its core part below in view of its importance

in the main theme of this paper — microlocal approach to the exact

WKB analysis, WKB analysis based on the Borel transformation.

In order to deduce Theorems 3.3 and 3.5 below from Proposition 3.2,

we first make some notational preparations. To begin with, we intro-

duce the inverse function g(x) of x = x0(x̃), that is,

(3.28) x = x0(g(x)), x̃ = g(x0(x̃)).

The existence of g(x) near the origin is guaranteed by (3.17). Then,

rewriting the Borel transform L̃B of the operator L̃ in (x, y)-coordinate,

we find

L̃B

∣

∣

∣

x̃=g(x)
=
(dg

dx

)−2
[

∂2

∂x2
−
(

d2g/dx2

dg/dx

)

∂

∂x

]

− Q̃
(

g(x),
∂

∂y

) ∂2

∂y2

(3.29)
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=
(dg

dx

)−2
[

∂2

∂x2
−
(

d2g/dx2

dg/dx

)

∂

∂x
− 1

x

∂2

∂y2

− (dg/dx)2

g(x)
Q̃1(g(x))

∂

∂y
− (dg/dx)2

g(x)2

(

∑

k≥2

Q̃k(g(x))
( ∂

∂y

)2−k
)]

.

Here we have used the relation

(3.30)
Q̃0(x̃)

x̃
=
(dx0

dx̃

)2 1

x0(x̃)
,

or

(3.31)
Q̃0(g(x))

g(x)
=
(dg

dx

)−2 1

x
,

which is a consequence of the comparison of the top degree (in η) part

of (3.19).

Let us now define microdifferential operators L and M respectively

by

L =
∂2

∂x2
−
(

d2g/dx2

dg/dx

)

∂

∂x
− 1

x

∂2

∂y2
− (dg/dx)2

g(x)
Q̃1(g(x))

∂

∂y

(3.32)

− (dg/dx)2

g(x)2

(

∑

k≥2

Q̃k(g(x))
( ∂

∂y

)2−k
)

and

(3.33) M =
∂2

∂x2
− 1

x

∂2

∂y2
−
∑

k≥0

λk
x2

( ∂

∂y

)−k
.

We note that M is nothing but the Borel transform of the operatorM .

Then we have the following Theorem 3.3 that asserts that operators L
and M are intertwined by microdifferential operators.
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Theorem 3.3. Let ω0 be an open neighborhood of x = 0, and set

(3.34) Ω0 = {(x, y; ξ, η) ∈ T ∗
C

2
(x,y); x ∈ ω0, η 6= 0}

and

(3.35) Ω∗
0 = {(x, y; ξ, η) ∈ Ω0; x 6= 0}.

Then there exist microdifferential operators X and Y defined on

Ω0 that satisfy

(3.36) LX = YM
on Ω∗

0 and that are invertible on Ω0.

Proof. To begin with we note that ψ(x(x̃, η), η) which appears in the

right-hand side of (3.25) can be formally written as

(3.37)
∑

n≥0

1

n!

(

∑

k≥1

xk(x̃)η−k
)n( ∂n

∂xn
ψ(x, η)

)∣

∣

∣

x=x0(x̃)
.

Hence its Borel transform is expressed in (x, y)-coordinate as

(3.38)

(

∑

n≥0

1

n!

(

∑

k≥1

xk(g(x))
( ∂

∂y

)−k)n ∂n

∂xn

)

ψB(x, y).

If we employ the notation of the symbol calculus (cf. [A]), (3.38) is

rewritten as

(3.39) : exp
((

∑

k≥1

xk(g(x))η−k
)

ξ
)

: ψB(x, y).

Here, and in what follows, we use the notation : s(x, y, ξ, η) : for a

symbol s to designate the corresponding normal ordered product, that

is, in the current situation a product in which all the multiplication

operators by functions of x stand to the left of all the differential oper-

ators in x. We also use the notation σ(X ) to designate the symbol of
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a microdifferential operator X . Having the expression (3.39) in mind,

we try to find required operators X and Y in the following form:

(3.40) X = : C(x, η) exp(r(x, η)ξ) : ,

(3.41) Y = : C∗(x, η) exp(r(x, η)ξ) : ,

where C(x, η), C∗(x, η) and r(x, η) are symbols of microdifferential

operators respectively of order 0, 0 and −1. Let rk(x) denote the coef-

ficient of η−k in r; that is,

(3.42) r(x, η) =
∑

k≥1

rk(x)η−k.

The computation below aims to relate the series r(x, η), or rather

(3.43) s(x, η) = x + r(x, η),

with x(x̃, η) given in Proposition 3.2 through the coordinate transfor-

mation x̃ = g(x). Since X is free from y and since

(3.44)
∂p

∂ξp
σ(L) = 0 if p ≥ 3,

it follows from the symbol calculus that we find

(3.45) σ(LX ) = σ(L)σ(X ) + σξ(L)σx(X ) +
1

2!
σξξ(L)σxx(X ).

Here, and in what follows, we use the subscript x (resp., ξ) to designate

the differentiation by x (resp., ξ), i.e., rx = dr/dx, rxx = d2r/dx2, etc.

We also use the letter E as an abbreviation of

(3.46) exp(r(x, η)ξ).
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Thus we obtain

σ(LX )

(3.47)

=
[

ξ2 − 1

x
η2 − gxx

gx
ξ − g2

x

g
Q̃1(g(x))η

− g2
x

g2

(

∑

k≥2

Q̃k(g(x))η2−k
)]

C(x, η)E

+
(

2ξ − gxx
gx

)(

CxE + rxξCE
)

+
1

2!
(2)
(

CxxE + 2CxrxξE + rxxξCE + (rxξ)
2CE

)

= (1 + rx)
2ξ2CE +

[(

2Cx −
gxx
gx
C
)

(1 + rx) + rxxC
]

ξE

+
[(

− 1

x
η2 − g2

x

g
Q̃1(g(x))η − g2

x

g2

(

∑

k≥2

Q̃k(g(x))η2−k
))

C

− gxx
gx
Cx + Cxx

]

E.

In parallel with (3.47) we find

σ(YM)

(3.48)

= (C∗E)
(

ξ2 − 1

x
η2 −

∑

k≥0

λk
x2
η−k
)

+
∑

n≥1

1

n!
(rnC∗E)

[

(−1)n+1n!x−(n+1)η2
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+
∑

k≥0

(−1)n+1(n + 1)!x−(n+2)λkη
−k
]

= C∗E
[

ξ2 −
∑

n≥0

(−1)n(r/x)nx−1η2

−
(

∑

k≥0

λkη
−k
)(

∑

n≥0

(−1)n(n + 1)(r/x)nx−2
)]

= C∗E
[

ξ2 − η2

x(1 + (r/x))
−
(

∑

k≥0

λkη
−k
)( 1

x2(1 + (r/x))2

)]

= C∗E
[

ξ2 − η2

s
−

(
∑

k≥0 λkη
−k)

s2

]

.

Then the comparison of the coefficients of ξ lE (l = 2, 1, 0) in (3.47)

and (3.48) entails the following relations:

(3.49) (1 + rx)
2C = C∗,

(3.50)
(

2Cx −
gxx
gx
C
)

(1 + rx) + rxxC = 0,

(

− 1

x
η2 − g2

x

g
Q̃1(g(x))η− g2

x

g2

(

∑

k≥2

Q̃k(g(x))η2−k
))

C− gxx
gx
Cx+Cxx

(3.51)

= −C∗
(η2

s
+

∑

k≥0 λkη
−k

s2

)

.

Since we have

(3.52) sx = 1 + rx, sxx = rxx,

we can rewrite (3.50) as

(3.53)
Cx
C

=
1

2

(gxx
gx

− sxx
sx

)

.
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Hence we obtain

(3.54) C = γ(gx)
1/2(sx)

−1/2

with some constant γ. In view of the way C and C∗ appear in (3.49)

and (3.50) , we may choose γ to be 1 without loss of generality. Then

we find

(3.55) C = (gx)
1/2(sx)

−1/2,

(3.56) C∗ = s2
xC = (sx)

3/2(gx)
1/2.

Substituting (3.56) into (3.51) , we obtain

1

x
η2 +

g2
x

g
Q̃1(g(x))η +

g2
x

g2

(

∑

k≥2

Q̃k(g(x))η2−k
)

(3.57)

= s2
x

(η2

s
+

∑

k≥0 λkη
−k

s2

)

− C−1
(gxx
gx
Cx − Cxx

)

.

In order to relate (3.57) with (3.19), we first use (3.31) to rewrite η2/x

as

(3.58)
g2
x

g
Q̃0(g(x))η2.

Then (3.57) assumes the following form:

1

g
Q̃0(g(x))η2 +

1

g
Q̃1(g(x))η +

1

g2

(

∑

k≥2

Q̃k(g(x))η2−k
)

(3.59)

= g−2
x s2

x

(η2

s
+

∑

k≥0 λkη
−k

s2

)

− g−2
x C−1

(gxx
gx
Cx − Cxx

)

.

Our computation has so far been performed in (x, y)-coordinate, but

the relation (3.19) is expressed with x̃-variable. Hence we substitute

(3.60) x = x0(x̃)
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into (3.59), and we compare the resulting equation with (3.19). In

order to facilitate the description of (3.59) in x̃-coordinate, we introduce

s̃(x̃, η) and C̃(x̃, η) given by the following:

(3.61) s̃(x̃, η) = s(x0(x̃), η),

(3.62) C̃(x̃, η) = C(x0(x̃), η).

Then we immediately find

ds̃

dx̃
=
(ds

dx

∣

∣

∣

x=x0(x̃)

)dx0(x̃)

dx̃
(3.63)

=
(ds

dx

∣

∣

∣

x=x0(x̃)

)((dg

dx

)−1∣
∣

∣

x=x0(x̃)

)

,

that is,

(3.64)
(

g−2
x s2

x

)

∣

∣

∣

x=x0(x̃)
=
(ds̃(x̃, η)

dx̃

)2

.

Thus the comparison of (3.19) and (3.59) expressed with x̃-variable

tells us what remains to be done is to relate the Schwarzian derivative

with

(3.65) D(x, η) = gx(x)−2C(x, η)−1
(gxx(x)

gx(x)
Cx(x, η) − Cxx(x, η)

)

expressed with x̃-variable. By combining (3.55) and (3.63), we find

(3.66) C̃(x̃, η) =
(ds̃

dx̃

)−1/2

.

On the other hand, (3.54) also implies

(3.67) C(x, η) = C̃(g(x), η).

Hence we have

(3.68) Cx(x, η) =
(dC̃

dx̃

∣

∣

∣

x̃=g(x)

)(dg

dx

)

,
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(3.69) Cxx(x, η) =
(d2C̃

dx̃2

∣

∣

∣

x̃=g(x)

)(dg

dx

)2

+
(dC̃

dx̃

∣

∣

∣

x̃=g(x)

)(d2g

dx2

)

.

Then it follows from the definition of D(x, η) that

D(x, η) = gx(x)−2C(x, η)−1
[

gxx(x)
(dC̃

dx̃

∣

∣

∣

x̃=g(x)

)

(3.70)

− gx(x)2
(d2C̃

dx̃

∣

∣

∣

x̃=g(x)

)

− gxx(x)
(dC̃

dx̃

∣

∣

∣

x̃=g(x)

)]

= −C(x, η)−1
(d2C̃

dx̃2

∣

∣

∣

x̃=g(x)

)

.

Since (3.66) entails

d2C̃

dx̃2
=

3

4
s̃
−5/2
x̃ (s̃x̃x̃)

2 − 1

2
s̃
−3/2
x̃ s̃x̃x̃x̃(3.71)

= −1

2
(s̃x̃)

−1/2
[

(s̃x̃)
−1 s̃x̃x̃x̃ −

3

2
(s̃x̃)

−2 (s̃x̃x̃)
2
]

,

and since

(3.72) C(x0(x̃), η) = C̃(x̃, η) = (s̃x̃)
−1/2,

we conclude from (3.70) evaluated at x = x0(x̃) that

(3.73) D(x0(x̃), η) =
1

2

[

(s̃x̃)
−1s̃x̃x̃x̃ −

3

2
(s̃x̃)

−2(s̃x̃x̃)
2
]

=
1

2
{s̃; x̃}.

Summing up, we find that (3.59) with x being set to be x0(x̃) reads as

follows:

Q̃0(x̃)

x̃
η2 +

Q̃1(x̃)

x̃
η +

∑

k≥2 Q̃k(x̃)η2−k

x̃2
(3.74)

=
(ds̃

dx̃

)2( η2

s̃(x̃, η)
+

∑

k≥0 λkη
−k

s̃(x̃, η)2

)

− 1

2
{s̃; x̃}.

Otherwise stated, the construction of the required operators X and Y
is reduced to finding a series s̃(x̃, η) that satisfies (3.74). Comparing
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(3.74) with (3.19), one immediately finds that x(x̃, η) gives the required

series. Note that (3.43) guarantees that the degree 0 (in η) part of

s̃(x̃, η), the non-free (i.e., a priori given) part in the series s̃, is x0(x̃),

which coincides with the degree 0 part of x(x̃, η). Thus, if we define

(3.75) r(x, η) =
∑

j≥1

xj(g(x))η−j,

(3.76) C(x, η) = (gx)
1/2(sx)

−1/2,

(3.77) C∗(x, η) = (gx)
1/2(sx)

3/2,

the estimate (3.18) guarantees they are the symbols of microdifferential

operators needed to define microdifferential operators X and Y which

satisfy

(3.78) LX = YM.

Furthermore the top degree (in η) parts of C and C∗ are both (gx)
1/2,

which is different from 0 at the origin. Hence both X and Y are

invertible on Ω0 if ω0 is chosen sufficiently small. This completes the

proof of Theorem 3.3.

Q.E.D.

The way of the above construction of the operator X indicates that

XψB(x, y) is the Borel transform of (dx/dx̃)−1/2ψ(x(x̃, η), η) written

down in (x, y)-coordinate. Since the structure of the Borel transformed

WKB solutions of Mψ = 0 will be explicitly analyzed in the next

section, we try to find some concrete form of the integral operator

that realizes the action of the operator X upon multi-valued analytic

functions such as Borel transformed WKB solutions. Since the operator

X has the same form as that studied in [AKT2, Appendix C] (cf.

[AKT2, (C.1) and (C.2)]) and since the basic estimate (C.10) on which
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the reasoning of [AKT2, Appendix C] relies is of the same form as

(3.18), we obtain Theorem 3.5 below by exactly the same reasoning as

in [AKT2].

Remark 3.1. Using this chance, we make a correction of misprints in

[AKT2]: In (C.6) the exponent 1/2 in (r†0)
1/2 should be −1/2. (Two

places.)

In what follows we briefly describe how we can obtain Theorem 3.5.

We refer the reader to [AKT2, Appendix C] for the details.

A crucial step in the proof is the following Proposition 3.4.

Proposition 3.4. ([AKT2, Proposition C.1]) For a domain U in

Cx let Ω denote

(3.79) {(x, y; ξ, η) ∈ T ∗(U × Cy); η 6= 0},
and let P = P (x, ∂/∂x, ∂/∂y) be a microdifferential operator of

order 0 on Ω with the symbol

(3.80) σ(P ) =
∑

j≥0

η−jPj(x, η
−1ξ),

where Pj(x, ζ) is entire for every j and satisfies the following

condition:

There exists a constant C0 such that for each compact set K in

U × Cζ we can find a constant MK satisfying

(3.81) sup
(x,ζ)∈K

|Pj(x, η)| ≤MKj!C
j
0

for j = 0, 1, 2, · · · . Then the action of P upon a (multi-valued)

analytic function φ(x, y) is represented in the following form:

(3.82) (Pφ)(x, y) =

∫ y

y0

K(x, y − y′, ∂/∂x)φ(x, y′)dy′,
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where K(x, y, ∂/∂x) is a differential operator of infinite order (in

the sense of [SKK]) and that is defined on {(x, y); x ∈ U and |y| <
1/C0} and y0 is a reference point that fixes the action of (∂/∂y)−1

as an integral operator.

See [AKT2] for the proof. Here we content ourselves with showing

the explicit form (3.84) below of the kernel function K in terms of

{Pj}j≥0. For this purpose we expand Pj as

(3.83) Pj(x, ζ) =
∑

k≥0

ajk(x)ζk.

Then we find

(3.84) K(x, y, d/dx) =
∑

k≥0

(

∑

j≥0

ajk(x)
yj+k−1

(j + k − 1)!

)( d

dx

)k

.

We next show that the symbol of the operator X is actually of the

form (3.80). If we introduce {hj(x)}j≥0 and {fl,j(x)}1≤l≤j so that

they satisfy

(3.85) C = (gx)
1/2(sx)

−1/2 =
∑

j≥0

η−jhj(x),

(3.86) exp(r(x, η)ξ) = 1 +
∑

1≤l≤j
η−jξlfl,j(x),

it follows from the definition (3.40) of the operator X that its symbol

is
(

∑

j≥0

η−jhj
)(

1 +
∑

1≤l≤j
η−jξlfl,j

)

(3.87)

=
(

∑

j≥0

η−jhj
)(

1 +
∑

k≥0

η−k
∑

l≥1

fl,l+k(η
−1ξ)l

)

=
∑

m≥0

η−m
[

hm +
∑

l≥1

(

∑

j+k=m
j,k≥0

hjfl,l+k

)

(η−1ξ)l
]

.
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Remark 3.2. It immediately follows from (3.86) that

(3.88) fl,j =
1

l!

∑

j1+j2+···+jl=j

jk≥1

rj1rj2 · · · rjl.

Similarly, if we set

(3.89) C−2 = g−1
x (1 + rx) =

∑

j≥0

η−jr†j(x),

we find

(3.90)


















h0 = (r†0)
−1/2

hj = (r†0)
−1/2

∑

1≤l≤j

(−1)lΓ(l + 1/2)

l!Γ(1/2)

∑

j1+j2+···+jl=j

jk≥1

r†j1 · · · r
†
jl

(r†0)
l

(j ≥ 1).

These expressions convince the reader of the importance of the im-

proved estimate (3.27) in our reasoning. (See [AKT2, Remark C.2] for

the details.)

It is now clear from (3.87) that we should choose

(3.91) Pm(x, ζ) = hm +
∑

l≥1

(

∑

j+k=m
j,k≥0

hjfl,l+k

)

ζ l

to find (3.80). The fact that Pm(x, ζ) is an entire function of ζ is con-

firmed by (3.18) and (3.27). We refer the reader to [AKT2, Appendix

C] for the proof of this fact together with the estimate (3.81).

In order to employ Proposition 3.4 in the situation where the operand

φ(x, y) is a Borel transformed WKB solution of the equation Mψ = 0,

we prepare some notations needed for the concrete description. Let U

and S± respectively denote the following sets:

(3.92) U = {(x, y) ∈ C
2; |x|, |y| < δ}
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and

(3.93) S± = {(x, y) ∈ U ; y = ±2
√
x}

where δ is a sufficiently small positive number. We also define

(3.94) U ∗ = U −
(

{(x, y) ∈ U ; x = 0} ∪ S+ ∪ S−
)

.

Then Proposition 3.4 reads as follows:

Theorem 3.5. Let X be the microdifferential operator given by

(3.40) together with (3.75) and (3.76). Then its action upon a multi-

valued analytic function ϕ(x, y) defined on U ∗ is represented as an

integro-differential operator of the form

(3.95) (Xϕ)(x, y) =

∫ y

y0

K(x, y − y′, ∂/∂x)ϕ(x, y′)dy′,

where K(x, y, d/dx) is a differential operator of infinite order that

is defined on {(x, y) ∈ C
2; |x| < C and |y| < C ′ for some positive

constants C and C ′}, and y = y0 is a reference point that fixes the

action of (∂/∂y)−1 as an integral operator. (See Figure 3.1 below.)

The operator Y given by (3.41) together with (3.75) and (3.77) also

enjoys a similar expression.

Figure 3.1.
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Remark 3.3. We will show in the next section that the Borel transform

ψB(x, y) of a WKB solution ψ of the equation Mψ = 0 enjoys the

analyticity properties required for the application of Theorem 3.5.

4 Structure of the Borel transforms of WKB solutions

of the equation Mψ = 0

It follows from Theorems 3.3 and 3.5 that the study of Borel trans-

formed WKB solutions for the simple-pole type Schrödinger equation

L̃ψ̃ = 0 is reduced to that for the equation Mψ = 0. The purpose of

this section is to relate the Borel transformed WKB solution ψB(x, y)

for the equation Mψ = 0 and the Borel transformed WKB solution

χB(x, y, λ0) for the equation M0χ = 0, where M0 designates the fol-

lowing Schrödinger operator:

(4.1)
d2

dx2
− η2

(1

x
+ η−2λ0

x2

)

,

with λ0 being a complex number. In what follows we let θ0 denote

the symbol σ(∂/∂λ0). Then, in parallel with Theorem 3.3 we find the

following

Theorem 4.1. Let U and U ∗ respectively denote

(4.2) {(x, y, λ0; ξ, η, θ0) ∈ T ∗
C

3
(x,y,λ0)

; η 6= 0}
and

(4.3) {(x, y, λ0; ξ, η, θ0) ∈ U ; x 6= 0},
and let M and M0 respectively denote the Borel transform of M

and M0. Then for

(4.4) ρ(η) =
∑

j≥1

λjη
−j
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the microdifferential operator R given by

(4.5) : exp(ρ(η)θ0) :

is well-defined on U and it satisfies the following relation (4.6) on

U ∗ :

(4.6) MR = RM0.

Proof. Since it follows from the definition that λj = Q̃j−2(0), we find

a constant C by the assumption (3.14) so that the following relation

may hold for every j ≥ 1:

(4.7) |λj| ≤ Cj(j − 1)!.

Hence ρ(η) defines a symbol of a microdifferential operator of order at

most −1. Thus R is a well-defined microdifferential operator on U .

Further we find

(4.8) σ(MR) = σ(M)σ(R),

because σ(R) is free from (x, y, λ0). Since σ(R) is free from ξ, σ(M0)

is free from y and ∂2σ(M0)/∂λ
2
0 vanishes identically, we obtain

σ(RM0) = σ(R)σ(M0) +
∂(σ(R))

∂θ0

∂(σ(M0))

∂λ0
(4.9)

= σ(R)σ(M0) − ρ(η)σ(R)x−2

= σ(R)σ(M).

Therefore we find (4.6).

Q.E.D.

In view of the definition (4.5) of the operator R, we find Propo-

sition 3.4 is applicable to our case; that is, the action of R upon a

multi-valued analytic function φ(x, y, λ0) is represented in the follow-

ing form:

(4.10) (Rφ)(x, y, λ0) =

∫ y

y0

R(y − y′, ∂/∂λ0)φ(x, y, λ0)dy
′,
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where R(y, ∂/∂λ0) is a differential operator of infinite order and that

is defined on {(x, y, λ0) ∈ C
3; |y| < C} for some positive constant C.

On the other hand, the Borel transform χ±,B of WKB solutions χ±
of the equation M0χ = 0 is concretely written down in terms of the

Gauss hypergeometric function in the following manner ([Ko1, p.49]):

χ+,B(x, y, λ0)

(4.11)

=
1√
4π

s−1/2F
(

α− 1

2
, β − 1

2
,
1

2
; s
)

∣

∣

∣

s= y

4
√

x
+1

2

=
1√
4π

s−1/2
∑

n≥0

∏n−1
l=0 (α + l − 1/2)(β + l − 1/2)

∏n−1
l=0 (l + 1/2)

sn

n!

∣

∣

∣

s= y

4
√

x
+1

2

,

χ−,B(x, y, λ0)(4.12)

=
1√
−4π

(1 − s)−1/2F
(3

2
− α,

3

2
− β,

1

2
; 1 − s

)

∣

∣

∣

s= y

4
√

x
+1

2

=
1√
−4π

(1 − s)−1/2

×
∑

n≥0

∏n−1
l=0 (l − α + 3/2)(l − β + 3/2)

∏n−1
l=0 (l + 1/2)

(1 − s)n

n!

∣

∣

∣

s= y

4
√

x
+1

2

,

where α and β are constants given by

(4.13) α + β = 2, αβ = −4λ0.

Hence we find

(4.14) (α + l − 1/2)(β + l − 1/2) = −4λ0 + 2(l− 1/2) + (l − 1/2)2

and

(4.15) (l− α+ 3/2)(l− β + 3/2) = −4λ0 − 2(l + 3/2) + (l + 3/2)2.
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These relations guarantee that χ±,B(x, y, λ0) is non-singular outside

{(x, y) ∈ C
2; x = 0} ∪ {(x, y) ∈ C

2; y2 = 4x}; χ±,B(x, y, λ0) depends

holomorphically on λ0 despite the fact that α and β become singular

at λ0 = −1/4. Thus we find R(χ±,B), and hence ψ±,B also, to be

non-singular on U ∗ given in (3.94) with δ0 being sufficiently small as is

required in Theorem 3.5. Furthermore, Gauss’ connection formula

s−1/2F

(

α− 1

2
, β − 1

2
,
1

2
; s

)

(4.16)

= 2
√

1 + 4λ0 sin(π
√

1 + 4λ0)F

(

α, β,
3

2
; 1 − s

)

+ cos(π
√

1 + 4λ0) (1 − s)−1/2F

(

3

2
− α,

3

2
− β,

1

2
; 1 − s

)

entails the following Borel transformed version of the connection for-

mulas for WKB solutions for M0χ = 0.

Proposition 4.2. ([Ko1, Proposition 3.1]) The discontinuity ∆S+χ+,B

(resp., ∆S−χ−,B) of χ+,B(x, y, λ0) (resp., χ−,B(x, y, λ0)) along the

cut S+ = {(x, y) ∈ C
2; Im y = Im(2

√
x), Re y ≥ Re(2

√
x)} (resp.,

S− = {(x, y) ∈ C
2; Im y = Im(−2

√
x), Re y ≥ Re(−2

√
x)}) coin-

cides with 2i cos(π
√

1 + 4λ0)χ−,B(x, y, λ0)

(resp., −2i cos(π
√

1 + 4λ0)χ+,B(x, y, λ0)).

Let us concentrate our attention on one of them, i.e.,

(4.17) ∆S+χ+,B = 2i cos(π
√

1 + 4λ0)χ−,B.

We note that each term in (4.16) depends holomorphically on λ0.

Hence, by applying the integro-differential operator R to (4.11) and

(4.12) , we observe that the singularities of R(χ+,B) and R(χ−,B)

are confined to the set {(x, y) ∈ C
2; y2 = 4x} near the origin, out-

side {x = 0}. Note that R(χ+,B) (resp., R(χ−,B)) coincides with
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the Borel transformed WKB solution ψ+,B (resp., ψ−,B) for the equa-

tion Mψ = 0 modulo holomorphic functions defined on a neighbor-

hood of (x, y, λ0) = (0, 0, λ0), which originate from the arbitrariness

in the choice of the endpoint y0 of the integral. Since χ−,B, and hence

∆S+χ+,B also, has the inverse of square-root type singularity along

{y = 2
√
x}, we can “locally” normalize the action of the operator R

by choosing

(4.18) y0 = 2
√
x.

Here by saying “locally” we mean that the class of the operands is

restricted. Actually we have the following

Lemma 4.3. ([Ko2, Lemma 3.2]) Let φ(x, η) be a Borel trans-

formable (in the sense of [KT] ) series of the following form:

(4.19) exp(−s(x)η)
∑

j≥0

φj(x)η−j−1/2.

Then we find the Borel transform [η−nφ(x, η)]B of η−nφ(x, η) coin-

cides with

(4.20)
1

(n− 1)!

∫ y

s(x)

(y − y′)n−1φB(x, y′)dy′

for n = 1, 2, · · · . Here φB denotes the Borel transform of φ(x, η).

The proof is a straightforward one, and we omit it here. The point

is that, although ∂−ny φB is not canonically fixed in general, it can be

well-defined consistently if the class of the target functions is restricted

appropriately as above. In what follows we use the notation R− when

we want to emphasize the particular choice (4.18) of the endpoint y0.

(The reason of using R−, not R+, is that we want to stress that the

starting formal series contains exp(−2
√
xη), not exp(2

√
xη).)

Now, the singular part of ψ+,B near {y = 2
√
x} is the singular part

of R−(χ+,B), which comes from the singular part of χ+,B. Therefore
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(4.17) entails

(4.21) ∆S+(ψ+,B) = 2iR−
(

(cos π
√

1 + 4λ0)χ−,B
)

.

Summing up, we have the following

Theorem 4.4. Using the notations introduced above, we find that

the discontinuity ∆S+(ψ+,B) of the Borel transformed WKB solu-

tion ψ+ of Mψ = 0 is expressed as

(4.22) 2iR−
(

(cos π
√

1 + 4λ0)χ−,B(x, y, λ0)
)

,

where χ−,B stands for the Borel transformed WKB solution χ− of

M0χ = 0.

Remark 4.1. Using the notations in Lemma 4.3, we can rewrite (4.22)

as

2i
[(

∑

n≥0

ρ(η)n

n!

∂n

∂λn0

)(

(

cos π
√

1 + 4λ0

)

χ−(x, η, λ0)
)]

B
(4.23)

= 2i
[

(

cos π
√

1 + 4(λ0 + ρ(η))
)

χ−
(

x, η, λ0 + ρ(η)
)

]

B

= 2i
[

(

cos π
√

1 + 4λ(η)
)

ψ−
(

x, η, λ(η)
)

]

B
.

This expression explains why (4.21) is called the Borel transformed

version of the connection formula for the WKB solution ψ+ of the

equation Mψ = 0.

5 Structure of the Borel transforms of WKB solutions

of the equation L̃ψ̃ = 0

As in Section 3, we let L (resp., M) denote the Borel transform mul-

tiplied by (dg/dx)2 of a general simple-pole type Schrödinger operator

L̃ written down in (x, y)-coordinate (resp., the Borel transform of the
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canonical simple-pole type Schrödinger operator M). (Note that the

operators L̃ and M are respectively given by (3.10) and (3.24).) Then

Theorem 3.3 asserts that operators L and M are microlocally inter-

twined (in the sense that they are mutually connected through the

relation LX = YM with microlocally invertible operators X and Y),

and Theorem 3.5 shows that the intertwining operators X and Y en-

joy beautiful integral representations. Further Theorem 4.1 shows that

the operator M can be microlocally reduced to a simple operator M0

=
∂2

∂x2
−1

x

∂2

∂y2
−λ0

x2
, which can be concretely analyzed. Summing up

all these, we can concretely describe the analytic structure of the Borel

transformed WKB solutions for the equation L̃ψ̃ = 0, as is shown

in Theorem 5.1 below. We basically use the same notations used in

Sections 3 and 4, but we need the following additional notations to

state Theorem 5.1 below: let V0 be an open neighborhood of (x, λ0)

= (0, Q̃2(0)) and set

(5.1) W0 = {(x, y, λ0; ξ, η, θ0) ∈ T ∗
(x,y,λ0)

C
3; (x, λ0) ∈ V0, η 6= 0}

and

(5.2) W ∗
0 = {(x, y, λ0; ξ, η, θ0) ∈ W0; x 6= 0}.

It is then clear that we may regard X and Y (resp., L and M) as

operators defined on W0 (resp., W ∗
0 ) which are free from ∂/∂λ0. To

stay on the safer side, we note that ψ̃+(x, η) (resp., ψ̃−(x, η)) designates

the WKB solutions of L̃ψ̃ = 0 that contains the factor

exp
(

η
∫ x̃

0

√

Q̃0(x̃)/x̃ dx̃
)

(resp., exp
(

− η
∫ x̃

0

√

Q̃0(x̃)/x̃ dx̃
)

.

Theorem 5.1. (i) Using the notations of Theorems 3.3 and 4.1, we

find the following:

(5.3) LXR = YRM0 holds on W ∗
0 ,
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(5.4) XR and YR are well-defined and invertible on W0.

(ii) There exists an open neighborhood ω̃0 of (x̃, y) = (0, 0) for which

the following holds: the Borel transform ψ̃+,B (resp., ψ̃−,B) of ψ̃+

(resp., ψ̃−) is analytic on

ω̃0 −
(

{(x̃, y) ∈ ω̃0; x̃ = 0}(5.5)

∪ {(x̃, y) ∈ ω̃0; y =

∫ x̃

0

√

Q̃0(x̃)/x̃ dx̃}

∪ {(x̃, y) ∈ ω̃0; y = −
∫ x̃

0

√

Q̃0(x̃)/x̃ dx̃}
)

.

(iii) Using the notations in Proposition 4.2, we find the following

relations (5.6) and (5.7), where X− (resp., X+) designates the inte-

gral operator given by (3.95) with y0 being chosen to be 2
√
x (resp.,

−2
√
x), and R+ denotes, in parallel with the case of R−, the op-

erator R given by (4.10) with y0 being chosen to be −2
√
x :

∆S+ψ̃+,B(g(x), y)(5.6)

= 2iX−R−
(

(cosπ
√

1 + 4λ0)χ−,B(x, y, λ0)
)

holds for x 6= 0 on a neighborhood of (x, y) = (0, 0)

∆S−ψ̃−,B(g(x), y)(5.7)

= 2iX+R+

(

(cos π
√

1 + 4λ0)χ+,B(x, y, λ0)
)

holds for x 6= 0 on a neighborhood of (x, y) = (0, 0).
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