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We examined the dynamics of the deformation and phase separation of two-component vesicles.
First, we numerically investigated the effects of (i) thermal noise, (ii) hydrodynamic flow induced
by the line tension of the domain boundary and (iii) composition-dependent bending rigidity on the
coarsening dynamics of a phase-separated pattern on the surfaces of vesicles with fixed shapes. The
dynamical exponent z (NDB ∼ t−z, the total length of the domain boundaries) of the coarsening of
phase-separated pattern was found to decrease from z = 1/3 under no thermal noise to 1/5 < z < 1/4
when including the effects of thermal noise. We also found that the hydrodynamic effect enhances
the coarsening in a bicontinuous phase separation for a spherical vesicle. In phase separations of a
shape-fixed tubular vesicle, a band-like phase separation with periodicity along the longer axis of
the tube occurs because of the composition-dependent bending rigidity and the higher curvatures at
the tube end-caps. Second, we also explored the dynamics of shape deformation coupled with phase
separation through the bending rigidity of the membrane which depends on the local composition
in lipid, and found that the composition-dependent bending rigidity crucially influences the phase
separation and deformation of the vesicle. The results of simulations are in good agreement with
experimentally observed behaviors known as “shape convergence” [Yanagisawa et al, 2008 Phys.
Rev. Lett. 100 148102].

PACS numbers: 64.75.St, 87.16.D-, 82.70.Uv

I. INTRODUCTION

It is well-known that lipid membranes and their closed
forms, vesicles, exhibit a wide variety of shapes, including
sphere, cup, biconcave, prolate dumbbell, pear, starfish,
and that the transformations among these shapes occur
through changes in environmental factors such as tem-
perature, pH and osmotic pressure. These vesicle shape
transformations have fascinated many scientists. Lipid
bilayers seen in the membranes of biological cells, such
as red blood cells, are in a fluid state at physiologi-
cal temperature where lipid molecules can diffuse within
the membranes. Therefore, such a membrane is referred
to as a fluid membrane. Until the early 1960’s, it was
difficult to theoretically explain the shape deformations
of fluid-membrane vesicles. After the pioneering works
of Canham[1] and Helfrich[2], increasing numbers of re-
searchers have theoretically and experimentally investi-
gated the shape deformations of homogeneous fluid mem-
brane vesicles caused by changes in environmental factors
such as temperature, pH and osmotic pressure.

Recently, much attention has been paid to the mem-
branes and vesicles of binary and/or ternary lipid mix-
tures [3–29] because these systems are a simpler model
systems for understanding the behaviors of real biomem-
branes which are intrinsically composed of many kinds
of lipids and membrane proteins. So far, shape deforma-
tions coupled with phase separation for multi-component
vesicles, have been investigated theoretically[3–11] and
experimentally[18–29]. Theoretically obtained equilib-
rium shapes of budding induced by the line tension of do-
main boundaries and/or local spontaneous curvature[3–

7] and phase diagrams describing shape deformations
and phase-separated patterns in two-component vesicles
[10, 11] have been reported. Dynamics of shape defor-
mation and phase separation have been explored by nu-
merical simulations using a generalized time-dependent
Ginzburg-Landau equation coupled with shape deforma-
tion through a composition-dependent spontaneous cur-
vature and domain boundary energy [12, 13], using Monte
Carlo simulations [14, 15] and using dissipative particle
dynamics (DPD) [16, 17]. In experiments with vesicles
composed of ternary lipid mixtures, Veatch and Keller
have reported miscibility phase diagrams [19]. Critical
phenomena in membranes of ternary lipid mixtures have
also been investigated experimentally [21]. The critical
behaviors of the membranes are reported to be consis-
tent with those in the two-dimensional Ising universal-
ity class in comparisons between experimentally obtained
and theoretically predicted critical exponents. Sakuma
et al [27] have reported pore formation by temperature
change in two-component vesicles composed of cone- and
cylinder-like lipids. They also find that a rolled rim of
the pore is induced by local spontaneous curvature at the
pore periphery.

In the present paper, we focus on the dynamics of
two-component vesicles composed of type-A and type-
B lipids. In such membranes, if each type of lipid has an
inherently different shape such as cylinder, cone, inverse-
cone shapes and so forth, the local spontaneous curva-
ture may depend on the local composition [3–13]. Fur-
thermore, if a membrane composed only of each type of
lipid exhibits different bending rigidity, the local bend-
ing moduli of a two-component membrane may depend
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on the local composition[3–8, 22–25]. In this context,
Yanagisawa et al[23, 24] reported that the bending rigid-
ity of a ternary component vesicle depends on its lo-
cal composition, which crucially influences the dynam-
ics of its phase separation and the vesicle deformation.
In these experiments, the vesicle shapes are first con-
trolled by an applied osmotic pressure difference at a
higher temperature where the membrane exhibits a sin-
gle phase. Next, the system temperatures are reduced to
induce an intra-membrane phase separation. The results
showed a wide variety of shape deformation dynamics
coupled with phase separations. In addition, in the intra-
membrane phase separation, various shapes induced by
osmotic pressure difference, e.g., prolate, oblate, tripod
and starfish-like shapes, converge into oblate shapes con-
sisting of two nearly flat circular domains rich in lipids
with higher bending rigidity and a cylinder shaped do-
main rich in lipids with lower bending rigidity. This phe-
nomenon is referred to as shape convergence.
The aim of the present work is to investigate the ef-

fect of intra-membrane heterogeneity in lipid composition
on the shape deformation dynamics of two-component
vesicles using a theoretical model that is an extension of
the Canham-Helfrich bending elasticity model. Here we
especially focus on the effects of (i) thermal noise, (ii)
hydrodynamic flow induced by line tension at a domain
boundary (i.e., hydrodynamic flow induced by a chem-
ical potential gradient) and (iii) composition-dependent
bending rigidity on the coarsening dynamics of the phase
separation on fixed shape vesicles. Based on the un-
derstanding of the effects of (iii) on the phase separa-
tion dynamics of a fixed curved surface, we investigated
the dynamics of shape deformation and phase separation
from the view point of the coupling of the local com-
position and shape through the composition-dependent
bending rigidity. Finally, we will clarify the origin of the
shape convergence by investigating in detail the role of
the composition-dependent bending rigidity in the time
evolution of the systems where we prepared two types of
initial shapes, i.e., (a) biconcave and (b) prolate dumb-
bell by controlling the osmotic pressure difference and
changing the temperature to induce phase separations
and shape deformations.

II. MODEL OF A TWO-COMPONENT VESICLE

We consider a two-component vesicle composed of a
type-A and type-B lipids as a simpler model system of a
real multi-component biomembrane. We treat the mem-
brane as an infinitely thin sheet because the thickness of
the membrane, d, is sufficiently small compared to the
characteristic vesicle size, R, i.e., (d � R). A position
on the membrane specified by u at time t is expressed by
r(u, t), where u ≡ {u1, u2} parametrizes the membrane
surface. The covariant vectors gα (α ∈ {1, 2}) tangential
to the surface can be obtained by taking a derivative with
respect to uα as gα = ∂r/∂uα. A vector n normal to the
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u1

O

r(u,t)

n

g2

g1

FIG. 1: A membrane portion treated as an infinitely thin
sheet where the covariant tangential vector gα and unit vector
n normal to the surface are drawn.

surface is given by n = (g1×g2)/
√
g, where g is a metric

defined by g = (g1×g2)
2, and thus n·n = 1. The covari-

ant metric tensor gαβ is defined using gα as gαβ ≡ gα ·gβ .
On the infinitely thin sheet, the composition fields can be
defined. Assuming that the local compositions in the in-
ner and outer layer of the bilayer membrane are identical,
the fraction of the type-A and type-B lipids in a unit area
at u on the membrane are given by φA(u, t) and φB(u, t),
respectively. We also assume that the membrane is later-
ally incompressible, which yields the following equation,
φA(u, t) + φB(u, t) = 1. Hence, the essential variables
describing physical constants such as the bending modu-
lus κ, the saddle splay modulus κG, and the spontaneous
curvature Hsp are functions of a local composition differ-
ence φ(u, t) ≡ φA(u, t) − φB(u, t). The total free energy
functional, F , of the two-component vesicle with a to-
tal surface So and a volume V is given by the sum of
the following two contributions, i.e., F = F1 + F2. The
first contribution is the sum of the bending energy and
the energy coming from the osmotic pressure difference
P = Pin − Pout between the inside and outside of the
vesicle, which can be expressed as [7, 23, 24]

F1 =

∫
So

1

2
κ(φ)

[
H −Hsp(φ)

]2
dA

+

∫
So

κG(φ)KdA+ P

∫
V

dV (1)

whereH/2 andK are the mean and Gaussian curvatures,
respectively. dA is an areal element, which is expressed as
dA =

√
gdu1du2 using the metric g of the membrane sur-

face. In a two-component membrane, the local bending
rigidities may depend on the local composition in lipid.
Assuming that the bending rigidities are linear functions
of the local compositions, the bending rigidities can be
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expressed as

κ(φ) = κ(A)φA + κ(B)φB (2)

κG(φ) = κ
(A)
G φA + κ

(B)
G φB (3)

where κ(a) and κ
(a)
G are the bending modulus and the

saddle splay modulus, respectively, of a membrane made
only of a/an a-component lipid (a =A or B). The spon-
taneous curvature may also depend on the local compo-
sition, and is assumed to be given by

Hsp(φ) = H(A)
sp φA +H(B)

sp φB (4)

where H
(a)
sp is the spontaneous curvature of a membrane

consisting only of a/an a-component lipid. The second
contribution is a mixing free energy describing the intra-
membrane phase separations of the lipids. The mixing
free energy is expressed by

F2 = εo

∫
S

[ ξ2

2
gαβφ,α φ,β +f(φ)

]
dA (5)

f(φ) =
a2
2
φ2 +

a4
4
φ4 (6)

where gαβ is the contravariant metric tensor, defined as
the inverse of gαβ , and ξ is proportional to the inter-
face thickness of the domain boundary. The symbol εo
denotes an area energy density and is set to unity. In
eq.(5) and hereafter, X,α stands for a derivative of X(u)
with respect to uα (α ∈ {1, 2}). The first and second
terms in the integrand of F2 are related to the line energy
of the domain boundary and to the mixing free energy
density in bulk, respectively. In the bulk mixing energy

density of eq.(6), a2 = a(T − T
(o)
c ) and a4 is a positive

constant, where T and T
(o)
c represent temperature and

the bare critical temperature, respectively. The actual

critical temperature can be shifted from T
(o)
c to a higher

temperature by a coupling of the local composition and
mean curvature[11]. Using the total free energy F , the
chemical potential µ for φ is given by

µ = −ξ2∆LBφ+ a2φ+ a4φ
3 +

1

2
κ′
GK

+
1

2
κ′(H −Hsp)

2 − κ(φ)(H −Hsp)H
′
sp (7)

where the symbols with a prime are derivatives with re-
spect to φ:

κ′ = (κ(A) − κ(B))/2, (8)

κ′
G = (κ

(A)
G − κ

(B)
G )/2, (9)

H ′
sp = (H(A)

sp −H(B)
sp )/2. (10)

Here we consider the dynamics of a two-component
vesicle, i.e., the phase separation dynamics of
lipids and shape deformation dynamics. The
phase separation dynamics can be described by the

time-dependent Ginzburg-Landau equation in two-
dimensional curved/curving space. The covariant com-

ponent j
(T)
α of the total flux of φ is given by the sum

of the following three contributions (i) random flux j
(R)
α

of φ from thermal fluctuations, (ii) flux coming from the
hydrodynamic convection of φ, (iii) thermodynamic flux
induced by a chemical potential gradient µ for φ. This
component is expressed as

j(T)
α (u, t) = j(R)

α (u, t) + φvα − Lµ,α (11)

where L is a transport coefficient and is assumed to
be constant. The random flux obeys the fluctuation-
dissipation theorem and therefore satisfies the following
relation

〈j(R)
α (u, t)j

(R)
β (u′, t′)〉 =

2kBTLδαβ
1
√
g
δ(u− u′)δ(t− t′) (12)

where 〈(· · · )〉 stands for a statistical average of (· · · ) and
δ(u − u′) ≡ δ(u1 − u′1)δ(u2 − u′2). The time-evolution
equation for φ can be obtained from the equation of con-
tinuity using eq.(11) for the total flux of φ as

∂

∂t
φ(u, t) = −(φvα)|α + L∆LBµ− j(R)

α |α (13)

whereXα|α = Xα|βgαβ , Xα|β denotes a covariant deriva-
tive of Xα with respect to uβ , and is defined by Xα|β =
Xα,β − Γ γ

αβ Xγ , where Γ γ
αβ is the Christoffel symbol

defined by Γ γ
αβ = gα,β · gγ . The symbol ∆LB stands

for the Laplace-Beltrami operator, which is defined as
∆LBX ≡ X|αβgαβ = X|α|βgαβ = X,α |βgαβ . The hy-
drodynamic velocity field vα(u, t) is defined only on the
membrane and can be described by the following Stokes
equation in two-dimensional curved space as

ρ
∂

∂t
vα(u, t) = σ

(v)
αβ |

β − p, α + f (s)
α − φµ,α +σ

(R)
αβ |β (14)

where ρ is the density of the fluid membrane, σ
(v)
αβ |β is

the viscous stress of the fluid membrane and p is the
lateral pressure defined only on the surface. Because the
membrane is considered to be a two-dimensional viscous
fluid, the viscous stress can be expressed as

σ
(v)
αβ = η

(
vα|β + vβ |α

)
(15)

where η is the viscosity of the fluid membrane. Although
the viscosity of a fluid membrane, may generally depend
on the local composition, i.e., η = η(φ), hereafter, we
assume that the viscosity of the membrane is constant for

simplicity. σ
(R)
αβ in the last term of eq.(14) is a random

stress coming from a thermal fluctuation and satisfies the
following relationship [33]

〈σ(R)
αβ (u, t)σ(R)

µν (u′, t′)〉
= 2kBTη(δαβδµν + δαµδβν)δ(u− u′)δ(t− t′) (16)
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Because the vesicle is immersed in a viscous solvent, the
intra-membrane hydrodynamic flow is affected by a three
dimensional hydrodynamic flow of solvent. The incor-
poration of the hydrodynamic effect of the surrounding
solvent on the intra-membrane velocity field vα has al-

ready been investigated [30–32]. The third term f
(s)
α

in l.h.s of eq.(14) represents a force density exerted on
the membrane by the surrounding fluid. In other words,
the term describes a momentum leak of the fluid mem-
brane to a surrounding viscous solvent [30–32]. In the
present system, the surrounding solvent as a whole is as-

sumed to be in a quiescent state, and the force f
(s)
α can

be expressed by f
(s)
α = −λvα with a phenomenological

dumping parameter λ. Therefore, the rate of decrease
of the momentum density of an intra-membrane hydro-
dynamic flow per unit time is −λvα. Furthermore, the
two-dimensional fluid can be regarded as a laterally in-
compressible fluid. The incompressible condition for a
two-dimensional fluid is expressed as

vα|α = 0. (17)

Neglecting the inertia term in eq.(14) and using eq.(17),
the equation of the velocity field (14) can be reduced to
the following equation

η∆LBvα(u, t)− p, α − λvα − φµ,α +σ
(R)
αβ |β = 0. (18)

The equation for the lateral pressure p can be obtained by
applying the incompressible condition eq.(17) to eq.(18)
and is found to be

∆LBp = −(φµ,α )|α + σ
(R)
αβ |αβ . (19)

Assuming that the membrane moves to reduce the to-
tal free energy F , the shape-deformation dynamics can
be described by an energy relaxation type equation. The
time-evolution equation is given by

∂r(u, t)

∂t
= −Lr

δ

δr(u, t)

{
F +

∫
γ
√
gd2u

}
+ f (R) (20)

= −Lr

[
Aαg

α +A⊥n
]
+ f (R) (21)

where Lr is a dumping coefficient and f (R)(u, t) is a ran-
dom force coming from thermal noise. The i-th compo-

nent of the random force f
(R)
i in a Cartesian coordinate

obeys the fluctuation-dissipation theorem and satisfies
the following relationship as

〈f (R)
i (u, t)f

(R)
j (u′, t′)〉

= 2kBTLrδijδ(u− u′)δ(t− t′) (22)

where (i, j ∈ {x, y, z}) A local incompressibility condi-
tion of the membrane area holds because we consider
dynamics on a longer time scale than the characteristic
relaxation time of local area fluctuations from their pre-
ferred areas. Therefore, we introduce a local Lagrange
multiplier γ(u) that serves to guarantee the incompress-
ibility of the local membrane area. The tangential force

Aα and the normal force to the surface A⊥ are given as
[34]

Aα = ξ2(φ,α φ,β )|β +BH,α −γ̄,α +κG(φ)K,α (23)

A⊥ = −ξ2bαβφ,α φ,β +P

−B(H2 − 2K)−∆LBB + γ̄H

− 2H[κG(φ)K +∆LBκG(φ)] + κG(φ)|αβbαβ (24)

where B = κ(φ)[H − Hsp(φ)] and γ̄ = γ + (1/2κH2 +
κGK) + [ξ2/2(∇φ)2 + f(φ)]. The equation for γ̄ can be
obtained from the local incompressibility condition, i.e.,
∂
√
g/∂t = 0, and is

(∆LB −H2)γ̄ − C = 0 (25)

where C is defined as

C = −H
[
ξ2bαβφ,α φ,β

+B(H2 − 2K) + ∆LBB

+ 2H(κGK +∆LBκG)− κG|αβbαβ
]
− P

+ξ2(φ,α φ,β )|αβ + (AH,α )|α + [κG(φ)K,α ]|α. (26)

The equations that need to be solved to investigate the
dynamics of intra-membrane phase separation and vesicle
shape deformation are eqs.(13), (21) and (25).

III. NUMERICAL SIMULATION

A. Thermal noise effect on phase separation for a
spherical vesicle

Before investigating the full dynamics of a two-
component vesicle in which the shape deformation and
the intra-membrane phase separation interact, we ex-
amine the effects of (i) thermally induced random flux,
(ii) intra-membrane hydrodynamic flow and (iii) the
composition-dependent bending rigidity κ(φ) on the
intra-membrane phase separation dynamics by numer-
ically solving eq.(13) on a vesicle with a fixed shape.
Assuming that a vesicle has very little excess area and
that the exchange rate of water between the inside and
the outside of the vesicle through the membrane is much
slower than the inverse of the characteristic diffusion time
of the lipid, we can use a rigid sphere as the fixed shape
of vesicle to investigate the effect of (i) the thermal noise
and (ii) the hydrodynamic flow.
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(a-2) t=300~ (a-3) t=500~

(b-1) t=100~ (b-2) t=300~ (b-3) t=500~

(c-1) t=100~ (c-2) t=300~ (c-3) t=500~

FIG. 2: Typical patterns of phase separation in φo = 0.3
for a perfect spherical vesicle for (a) ζ = 0 (without thermal
random flux), (b) ζ = 0.4, and (c) ζ = 0.8 at t̃ = 100, t̃ = 300,
and t̃ = 500, where φo are defined as the spatial average of φ.
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FIG. 3: Log-log plot of ÑDB versus the scaled time t̃. The plot
for ζ = 0.0 (�) is shifted downward to avoid overlapping the

other graphs of ζ 6= 0. The solid lines are guides ÑDB ' t−1/3,
t−1/4 and t−1/5 from the bottom to top, respectively. The
data for each ζ are averaged over five independent runs.

We also use an end-capped cylinder to clarify (iii) the
effect of the composition-dependent bending rigidity κ(φ)
on the phase separation dynamics. We take the unit of
space to be ξ̃(≡ ξ/|a2|1/2) and the unit of time τ to be

τ = ξ̃2/L|a2|. We scale φ by φeq = (|a2|/a4)1/2. Us-

ing the space and time units, the strength of the ran-
dom flux in eq.(11) can be specified by ζ, defined as

ζ = [2kBTa4/ξ̃
2|a2|2]1/2. In Fig. 2, we observe typical

patterns of intra-membrane phase separation in φo = 0.3
with different strengths of thermal noise (a) ζ = 0 (no
thermal noise) (b) ζ = 0.4 and (c) ζ = 0.8 at the scaled
time t̃ = 100, 300 and 500, where φo is defined as the
spatial average of φ. We can see from Fig. 2 that the
distortion of the domain boundary increases with an in-
crease in the strength of the random flux. This trend
implies that the effective line tension is reduced by the
thermal noise. The distorted domain boundary and re-
duction of effective line tension may influence the coars-
ening dynamics of the phase-separated pattern. In Fig.
3, we show a log-log plot of ÑDB(t), which is defined as

ÑDB(t) = 100NDB(t)/NTotal, where NDB is the number
of lattice points located at the domain boundary (φ ' 0)
and NTotal is the total number of lattice points. The data
for ζ = 0 begin at t̃ = 20 in Fig. 3 because the domain
boundary has not yet been established for t̃ < 20, as
seen in Fig. 4. Figure 4 shows the standard deviation of

〈(
δ
φ
)2
〉1
/2

t

500100101
0.1

1

ζ=1.0:

0.8:

0.6:

0.4:

0.2:

0.0:

~

FIG. 4: The standard deviation of φ from the average value
φo = 0.3 as a function of t̃. The data for each ζ are averaged
over five independent runs.

φ from the average value φo = 0.3 as a function of t̃,

〈(δφ)2〉 ≡ 1

So

∫ [
φ(u, t)− φo

]2
dA, (27)

where So is the total surface area of the vesicle. In the
early stage of phase separation, the thermally induced
random current enhances the growth of |δφ| with an in-
crease of ζ, as seen in Fig. 4. Regarding to the coarsen-
ing dynamics in the late stage, as clearly seen in Fig. 3,
we have confirmed that NDB follows the “(−1/3)-power
law” (i.e., z = 1/3, NDB ∼ t−z) for ζ = 0.0 [12], although
the coarsening slows after t̃ ' 300 because the domain
size almost reaches the system size. On the other hand,
when ζ ≥ 0.1 the coarsening is slower than for ζ = 0 be-
cause of a thermal-noise effect. The dynamical exponent
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z when ζ ≥ 0.1 is 1/5 < z < 1/4. The decrease of z
in ζ ≥ 0.1 may result from a significant decrease in the
effective line tension due to the thermal noise. So far, the
investigated coarsening dynamics in off-critical quenches
have had phase-separated patterns that are a dispersion
of circular domains, and the total length of their domain
boundaries decreases as t−1/3 [12–17]. It has been gener-
ally accepted that the coarsening dynamics in off-critical
quenches can be explained by the following two differ-
ent mechanisms: as (i) collision and coalescence of do-
mains migrating with Brownian motion and (ii) Lifshitz-
Slyozov (“evaporation-condensation”) processes. As al-
ready known for the phase separation in bulk systems,
Lifshitz-Slyozov mechanisms give z = 1/3, and the Brow-
nian coagulation process gives z = 1/d [35], where d is the
system dimensionality. If these assumption are valid in
the phase separation on the sphere surface, the exponent
should be z = 1/2 in the dominant Brownian coagula-
tion process case and z = 1/3 with no thermal noise.
Because there is no Brownian migration of a circular do-
main for ζ = 0 (see Fig. 2(a)), the main mechanism of
growth, especially in the late stage, is (ii) the Lifshitz-
Slyozov mechanism. Precisely speaking, however, we can
see some domain-coalescence events in the early and in-
termediate stages. These domain coalescence are induced
not by the Brownian migrations of domains but by mi-
grations induced by a composition gradient because the
distances between adjacent domains in the early and in-
termediate stages are small. Such an event can be seen
in the phase-separated pattern at t̃ = 100 in Fig. 2(a)
(ζ = 0.0). We also see an evaporation of a domain lo-
cated near the north pole of the sphere and a ripening of
the domain located at the left side of the sphere in Fig.
2(a). Therefore, in the early and intermediate stages
(i’) domain coalescence through migrations induced by
a composition gradient (not by Brownian motion) and
(ii) a Lifshitz-Slyozov mechanism comprise the coarsen-
ing mechanism. In late stage, on the other hand, the
(ii) Lifshitz-Slyozov mechanism is the main mechanism,
although still there is a small possibility of observing
the composition-gradient-induced coalescence even in the
late stage. In cases with ζ 6= 0, we can observe Brownian
domain migrations, domain coalescence and evaporation-
condensation processes. As seen from the snapshots for
ζ = 0.4 and ζ = 0.8 in Fig. 2(b) and (c), it takes longer
for collision and coalescence of circular domains by Brow-
nian migration to occur.

B. Hydrodynamic effects on phase separation on a
spherical vesicle

Next we demonstrate the effects of intra-membrane hy-
drodynamic flow induced by a chemical potential gradi-
ent (i.e., the term in eq.(18), −φµ,α, involving an interfa-
cial stress at a domain boundary) on the phase separation
dynamics. The flow field is obtained by solving eqs.(13),
(18) and (19). To make eq.(18) and eq.(19) dimensionless

using units of time and space, vα, p and µ are scaled by
vo = ξ/τ , σo = η/τ and µo = |a2|φeq, respectively. The
dimensionless parameters appearing in the dimensionless
expressions of eq.(18) and eq.(19) are λ̃ = λ/(η/ξ2) and

g̃ = τ |a2|2/ηa4 preceding φ̃µ̃,α̃. To clarify the hydro-
dynamic effects on the phase separation dynamics, we
omit the thermal noise terms, (i.e., the random current
in eq.(13), and random stress in eq.(18)). In Fig. 5, we
show a phase-separated pattern and the hydrodynamic
flow field in the system of φo = −0.2, λ̃ = 0.1 and g̃ = 1
at t̃ = 250. The phase separation pattern shown in Fig.
5 occurs just after the coalescence of two domains, and
a flow field is induced to reduce the length of the do-
main boundary. Similar to a binary fluid blend in a bulk
system, the effect of intra-membrane hydrodynamic flow
may influence the coarsening dynamics of the domains.
Figure 6 shows a log-log plot of NDB versus time in the
system of φo = 0 (critical quenching case). If the vis-
cosity of the surrounding solvent is chosen to be high,
the value of the dumping parameter λ in eq.(14) will
be larger, which causes greater suppression of the intra-
membrane hydrodynamic flow. The effect of the dump-
ing constant λ on the coarsening dynamics can be seen
in Fig. 6. The time dependences of the total perime-
ter length NDB for λ̃ = 10 show a similar behavior to
those of the system with no hydrodynamic flow. On the
other hand, the rate of decrease of NDB in the system

FIG. 5: Phase-separated patterns in the system of φo =
−0.2 and λ̃=0.1 at t̃ = 250. The arrows shown on the
phase-separated pattern represent an intra-membrane hydro-
dynamic flow field induced by the line tension at the domain
boundary. Note that the flow field is magnified by one hun-
dred times to make the flow field clearly visible.
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FIG. 6: Log-log plot of ÑDB versus t̃ in the system of φo = 0
for (a) no hydrodynamic flow, (b) λ̃ = 10, (c) λ̃ = 1 and (d)

λ̃ = 0.1 and g̃ = 1. The guide lines ÑDB ' t−1/3, t−1/2, t−2/3

and t−1 are also shown. The data for each λ are averaged
over five independent runs.

of λ̃ = 0.1 becomes faster than that of λ̃ ≥ 1. Figure
7 shows the magnitude of hydrodynamic flow Vmag in-
duced by the line tension of the domain boundary. Vmag

is defined by

Vmag =

[
1

So

∫
So

gαβvαvβ dA

]1/2
. (28)

It is clearly seen from Fig. 7 that the hydrodynamic
flows are more strongly suppressed with increasing λ̃. As
seen from Fig. 6, the time region t̃ < 30 is an early
stage, and the coarsening of domains begins. As clearly
shown in Fig. 6, the dynamical exponent z in λ̃ = 0.1

 0

 0.02

 100  200  300  400  500

V
m
a
g

t

λ=0.1

λ=1.0

λ= 10

~

~

FIG. 7: Magnitude of the velocity field induced by the line
tension of domain boundaries appearing in the system of φo =
0. The system corresponds to that shown in Fig. 6.

is larger than 1/3. In particular, z is close to 2/3 in
the 30 < t̃ < 70 time region, where the magnitude of
hydrodynamic flow defined in eq.(28) becomes large as
seen in Fig. 7. In the time region t̃ > 70, the magnitude
of the hydrodynamic flow Vmag is smaller than that in the
time region 30 < t̃ < 70. The exponent z is close to 1/2
[35] in the time region 70 < t̃ < 200, and z approaches
1/3 in t̃ > 300. The fact that the exponent z is not
unity in the time region where the hydrodynamic effect
becomes dominant in coarsening dynamics but is close to
a value in the range 1/2 < z < 2/3 may be attributed to
the dimensionality of the system. It has been reported
in two-dimensional bulk systems that the exponent z is
2/3 even in the region where the hydrodynamic effect is
dominant [36]. The exponent z = 1/3 in the very late

stage (i.e., t̃ > 300) for λ̃ = 0.1 is probably due to a
finite system size effect.

C. Effect of composition-dependent bending
rigidity on phase separation on a tubular vesicle

To investigate the effects of composition-dependent
bending rigidities on phase separation, we perform simu-
lations of phase separation on a shape-fixed tubular vesi-
cle with κ(A)/κ(B) = 1.25. The tubular vesicle used
in the present work consists of a cylinder with a ra-
dius Ro(' 11.2ξ̃) and a length Lo(' 39.0ξ̃) and two
hemispheres with the same radius Ro, as shown in Fig.
8(a). Tubular vesicles with a shape similar to the capped
cylinder can be realized by imposing a large osmotic
pressure difference[23, 24, 34]. To clarify the effects of
composition-dependent bending rigidity κ(φ) on phase
separation, we fix the shape of the cylindrical vesicle. Al-
though the Gaussian modulus κG and the spontaneous
curvature Hsp may also depend on the local composition,
we have neglected their composition dependence to focus
only on the effect of κ(φ). We show the time evolutions
of phase separation on a tubular vesicle with a constant
bending rigidity κo in Fig. 8 and with a composition-
dependent bending rigidity κ(φ) in Fig. 9. We assume
that the type-A and type-B lipids are homogeneously dis-
tributed in the initial state with a small thermal compo-
sition fluctuation in the tubular vesicle. After quench-
ing the system to the region inside the binodal line of
phase separation, the usual isotropic spinodal decompo-
sition takes place when the bending rigidity is constant,
as seen in Fig. 8. When the bending rigidity depends on
the local composition, an axisymmetric band-like phase
separation with a periodicity along the longer axis of the
tubular vesicle occurs in the early stage ((a) t̃ = 10).
The phase-separated band structure coarsens with time,
as seen in Fig. 9. The formation of the band structure
of phase-separated domains comes from the coupling of
the composition-dependent bending rigidity and the lo-
cal mean curvature. The type-A lipid whose membranes
have a higher rigidity prefer to diffuse toward the cylin-
der part with a lower mean curvature and away from
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(a) t=10~ (b) t=50~ (c) t=100~ (d) t=400~

FIG. 8: Time-sequential snapshots of phase separation
on a vesicle with a constant bending rigidity κo at t̃ =
10, 50, 100, 400.

(a) t=10~ (b) t=50~ (c) t=100~ (d) t=400~

FIG. 9: Time sequential snapshots of phase separation on a
vesicle with a composition-dependent bending rigidity κ(φ) at
t̃ = 10, 50, 100, 400.

the hemisphere with a higher mean curvature. There-
fore, the type-A lipids near the region that connects the
cylinder and hemisphere cap diffuse toward the cylinder
part; simultaneously, the type-B lipids with a lower rigid-
ity counter-diffuse toward the caps. However, as seen in
Fig. 9(a) and (b), the type-A lipids close to both ends of
the capped cylinder are left behind in the beginning of
phase separation, although the type-A lipids prefer the
flat region. The domains rich in the type-A lipids left
behind at the ends of both caps then disappear through
the evaporation-condensation process. These phase sepa-
ration processes explained above occur axisymmetrically,
except for coalescence of bands in the coarsening process
seen in Fig. 9(b), which is the origin of the formation of
the band structure for κ = κ(φ).

D. Effect of composition-dependent bending
rigidity κ(φ) on shape deformation and phase

separation dynamics

Using a deformable lattice, we examine the effects of
composition-dependent bending rigidity on the dynam-
ics of the shape deformation and intra-membrane phase
separation, and compare the numerical results with ex-
perimental results obtained by Yanagisawa et al [23, 24].

In these experiments, the shapes of vesicle are first con-
trolled by an applied osmotic pressure difference at a
temperature higher than Tc, where the two-component
membrane exhibits a single phase, and the tempera-
ture of the system is then quenched to induce an intra-
membrane phase separation. They found a wide vari-
ety of shape deformations coupled with phase separa-
tions. In addition, various shapes induced by osmotic
pressure difference[37], e.g., prolate-, oblate-, tripod- and
starfish-like shapes, converge to oblate shapes after intra-
membrane phase separation, which is referred to as shape
convergence. In our numerical simulations, we follow the
same procedure as that performed in the experiments.
By solving eq.(21) in homogeneous vesicles over a long
time so that the systems reach a stable state under an ap-
plied osmotic pressure difference P̃ = Pr3o/κo = 8.5, we
obtained (a) biconcave and (b) prolate dumbbell-shaped
vesicles (see Fig. 10(a) and (b)) as a metastable state
corresponding to an energy minimal state and an equi-
librium state with minimal of free energy F1, respectively
[11, 34]. Next, we quench systems with these two shapes
and with various φo’s as initial states to a temperature
lower than Tc to invoke a phase separation, and we in-
vestigate the dynamics of shape deformation and phase
separation.

First, in Fig. 11 we show stable shapes and phase-
separated patterns obtained by long-time numerical sim-
ulations for φo = −0.2, 0 and 0.2 where the biconcave
shape shown in Fig. 10(a) is used as the initial shape.
As seen in Fig. 11, when the initial shape is biconcave,
the obtained stable shapes in φo = 0 and φo = −0.2
are pancake-like. The stable shape for φo = 0.2, on
the other hand, is prolate. The characteristic feature
of these stable states in Fig. 11 is that each of these
stable shapes is composed of two less-curved end-caps
rich in the type-A lipid and a cylinder rich in the type-
B lipids. Dynamical processes to reach the stable states
are qualitatively same and are explained below. After
the quenching, first the type-A lipids diffuse to the top

(a) (b)

FIG. 10: Initial shapes used in the simulation, (a) biconcave
and (b) prolate dumbbell shapes. These initial shapes (a) and
(b) are stationary and at equilibrium, satisfying A⊥ = 0 in

eq.(24) with P̃ = 8.5.
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(a) φο=-0.2 (Side) (b) φο=0 (Side) (c) φο=+0.2 (Side)

(a) φο=-0.2 (Top) (b) φο=0 (Top) (c) φο=+0.2 (Top)

FIG. 11: Stable shapes (top views in the upper line and side
views in the bottom line) and the phase-separated pattern
obtained in the system (a) φo = −0.2, (b) φo = 0 and (c)
φo = 0.2 after phase separation using the biconcave shape
shown in Fig. 10(a) as the initial state.

(a) φο=-0.2 (Side) (b) φο=0 (Side) (c) φο=+0.2 (Side)

(a) φο=-0.2 (Top) (b) φο=0 (Top) (c) φο=+0.2 (Top)

FIG. 12: Stable shapes (top views in the upper line and side
views in the bottom line) and phase separated pattern ob-
tained in the system (a) φo = −0.2, (b) φo = 0 and (c)
φo = 0.2 after phase separation using the prolate dumbbell
shape shown in Fig. 10(b) as the initial state.

and bottom concave regions where the mean curvature is
smaller than that in the other region as demonstrated in
the phase separation on the fixed tubular vesicle in the
section III C. The concave shapes in the two regions then
change to almost flat shapes. The shape deformation
and phase separation described above occur axisymmet-
rically, which results in the states in Fig. 11. The radius
of the nearly flat end-cap of these stable shapes increases
with φo as ro(1 + φo)

1/2 and equivalently the length of
cylindrical domain decreases with the increase of φo as
ro(1− φo)/(1 + φo)

1/2, where ro = (So/4π)
1/2.

In Fig. 12 we also show stable shapes and phase-
separated patterns obtained by the same procedure as

(S-d) t=35~ (S-e) t=65~
(S-f) t=300~

(S-g) t=500~ (S-h) t=600~ (S-i) t=800~

(S-a) t=5~ (S-b) t=10~ (S-c) t=20~

(T-g) t=500~ (T-h) t=600~ (T-i) t=800~

(T-a) t=5~

(T-e) t=65~ (T-f) t=300~

(T-b) t=10~

(T-d) t=35~

(T-c) t=20~

FIG. 13: Time sequential snapshots of a system of κ̃′ = 0.1
and φo = −0.2 at t̃ = (a) 5, (b) 10, (c) 20, (d) 35, (e) 65,
(f) 300, (g) 500, (h) 600 and (i) 800 after quenching the tem-
perature below Tc. The initial shape (t̃ = 0) is the prolate
dumbbell shape shown in Fig. 10(b). The top and side views
for each time are specified by “T-” and “S-” in the figures.

in Fig. 11, but the initial shape used here is the prolate
dumbbell shape shown in Fig. 10(b). As seen from com-
parison between the states with the same φo in Fig. 11
and Fig. 12, the obtained stable shapes in φo = −0.2
and φo = 0 are basically the same as those in Fig. 11.
This finding indicates that the obtained stable states in
φo = −0.2 and φo = 0 are the equilibrium states, al-
though these two corresponding shapes (Fig. 11(a) and
Fig. 12(a), Fig. 11(b) and Fig. 12(b)) are not exactly
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the same. In the case of φo = 0.2 shown in Fig. 11(c),
however, the stable shape and the phase-separated pat-
tern are different from those in Fig. 12(c) obtained in
the case that the initial shape is the biconcave shape. To
understand why these two stable states in φo = 0.2, Fig.
11(c) and Fig. 12(c), are different, in the following we
consider how the systems in Fig. 12 reach these stable
shapes. Prior to explaining the time evolution of the sys-
tem shown in Fig. 12(c) φo = 0.2, we display in Fig.
13 snapshots of the time evolution of a system started
from an initial state with φo = −0.2 and with the pro-
late dumbbell shape shown in Fig. 10(b). As seen from
Fig. 13(a), the type-A lipids with higher bending rigidity
prefer to diffuse to the cylinder region with a mean cur-
vature smaller than that in the cap regions and then form
a domain at the cylinder part. After the type-A lipids
form the cylindrical domain, the cylinder radius becomes
larger and the length of the cylinder simultaneously be-
comes smaller to reduce the curvature of the cylinder, as
seen in (a)-(d) of Fig. 13. The oblate shape seen in (S-
e) and (T-e) seems to be stable for a certain time up to
around t̃ ' 300, but the circular cross-section of cylinder
begins to distort to an ellipsoidal shape from t̃ ' 300,
as can be seen in Fig. 13(T-e). As shown by arrows in
Fig. 13(T-f), in the distorted cylinder domain, two re-
gions with higher curvatures and lower concentrations in
type-A lipid are formed, and therefore the rigidity of the
membrane at the two regions becomes smaller. The two
weaker regions against a bend are formed almost simul-
taneously at the positions in opposition to each other.
Then, by breaking the cylinder domain into two domains
as seen in (e)-(h), each of the two domains rich in the
type-A lipid forms a domain with a less curvature, which
results in the state shown in (i). It should be noted that
the place where the cylindrical domain breaks into two
domains comes from an initially given concentration dis-
tribution with a small fluctuation; however, the relative
positions of the two places of breaking, will be always in
opposition. The state shown in (i) was quite stable for
our possible simulation time, and the state is hence con-
sidered to be an equilibrium state. In the system with
φo = 0 and the prolate dumbbell shape as the initial
shape, we can also see qualitatively the same time evolu-
tion as in Fig. 13 for φo = −0.2.

In the system of φo = 0.2, however, the time evolu-
tion and the resultant stable state are different from that
described above. In this case, the type-A lipids also pre-
fer to diffuse to the cylinder region with a mean cur-
vature smaller than that in the cap regions and form
a domain at the cylinder portion described in the case
of φo = −0.2. However, after forming the cylindrical
domain rich in type-A lipids, the cylindrical domain be-
comes stable. Although the state shown in Fig. 12(c) is
considered a metastable state rather than an equilibrium
state, the state is quite stable because the cylindrical
domain is too large to be broken into two domains to
reduce the total bending energy. Actually, the size of the
cylindrical domain in φo = 0.2 is larger than those in

Top View Side View

FIG. 14: Another type of stable state ((a)top views and (b)
side views) seen in the system with φo = 0 and with the pro-
late dumbbell shape shown in Fig. 10(b) as the initial state.
The phase-separated pattern in the stable state is similar to
the two leather pieces covering a baseball.

φo = −0.2 and φo = 0. Therefore, within our possible
simulation time the system can not reach the state shown
in Fig. 11(c), which is considered to be an equilibrium
state.

As explained above, after quenching of the systems to
induce phase separations, almost all of the states started
from the biconcave and prolate dumbbell shapes fall into
states composed of two almost flat domains rich in the
type-A lipids with higher bending rigidity and a cylindri-
cal domain rich in the type-B lipids, except for the states
shown in Fig. 12(c). These results are in good agreement
with experimentally observed behaviors known as shape
convergence.

In the system of φo = 0, we also observed another sta-
ble state whose shape is close to an ellipsoid and whose
phase-separated pattern is similar to the two leather
pieces of a baseball, as shown in Fig. 14. The state
is also stable because the thermal random current of φ
is neglected in simulations performed in Sec. IIID. To
our knowledge, the state shown in Fig. 14 has not been
observed experimentally. Therefore, this state is consid-
ered to be a metastable state. If we take thermal noise
into account, the state will fall into the state shown in
Fig. 11(b) and Fig. 12(b).

IV. CONCLUSION

We derived a set of equations that describe the shape
deformation and phase separation dynamics of a two-
component membrane whose bending moduli depends
on the local composition of the lipids. Using the time-
evolution equations we demonstrated the effects of (i)
thermal noise, (ii) hydrodynamic flow induced by the line
tension of the domain boundary and (iii) composition-
dependent bending rigidity on the coarsening dynam-
ics of the phase-separated patterns for shape-fixed vesi-
cles (spherical for (i) and (ii), and a tubular for (iii))
in Sec.III A, III B and III C, respectively. Regarding to
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the effects of thermal noise, the dynamic exponent z in
NDB ∼ t−z of phase separation in φo = 0.3 is found to be
1/3 with no thermal noise and 1/5 < z < 1/4 with ther-
mal noise (ζ > 0.1). The main coarsening mechanism
in the late stage of the system under no thermal noise
is the evaporation-condensation process. In the systems
with thermal noise (ζ > 0.1), we observed Brownian mi-
grations and domain coalescence in addition to the evap-
oration condensation process. The decrease of the dy-
namical exponent z in the systems of ζ > 0.1 seems to
originate from a significant decrease in the effective line
tension, as seen from the large fluctuation of the inter-
face line. We also found that the hydrodynamic effect can
accelerate the coarsening in a bicontinuous phase sepa-
ration of φo = 0. In the critical quenching (φo = 0), the
dynamical exponent of the domain coarsening z seems to
be 2/3 in the beginning of the late stage t̃ > 70, where
the average magnitude of the hydrodynamic current is
significantly enhanced, and z is close to 1/2 [35] in the
time region 70 < t̃ < 200. The dynamical exponent
finally changes to 1/3 due to the intrinsic finite-size ef-
fect of the finite-size vesicle. We also investigated the
effect of the composition-dependent bending rigidity on
the phase separation dynamics in a shape-fixed tubular
vesicle. The coupling of local composition and curvature
through κ(φ) was found to induce the formation of ax-

isymmetric band-like domains. Finally, using an oblate
biconcave shape and a prolate dumbbell shape as the
two types of initial shapes prepared by applying an os-
motic pressure difference according to the same proce-
dure in the experiment done by Yanagisawa et al[23, 24],
we also investigated the dynamics of shape deformation
and phase separation of two-component vesicles with a
composition-dependent bending rigidity. We found that,
after quenching the systems to induce phase separations,
almost all of the states that were in biconcave and pro-
late dumbbell shapes change into states composed of two
almost-flat domains rich in type-A lipids with a higher
bending rigidity and a cylindrical domain rich in the
type-B lipids. This result is in good agreement with the
experimentally observed behavior known as shape con-
vergence.
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