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The morphometric approach (MA) is a powerful tool for calculating a solvation free energy (SFE)
and related quantities of solvation thermodynamics of complex molecules. Here, we extend it to a
solvent consisting of m components. In the integral equation theories, the SFE is expressed as the
sum of m terms each of which comprises solute-component j correlation functions (j = 1, . . . , m).
The MA is applied to each term in a formally separate manner: The term is expressed as a linear
combination of the four geometric measures, excluded volume, solvent-accessible surface area, and
integrated mean and Gaussian curvatures of the accessible surface, which are calculated for com-
ponent j. The total number of the geometric measures or the coefficients in the linear combinations
is 4m. The coefficients are determined in simple geometries, i.e., for spherical solutes with various
diameters in the same multicomponent solvent. The SFE of the spherical solutes are calculated using
the radial-symmetric integral equation theory. The extended version of the MA is illustrated for a
protein modeled as a set of fused hard spheres immersed in a binary mixture of hard spheres. Several
mixtures of different molecular-diameter ratios and compositions and 30 structures of the protein
with a variety of radii of gyration are considered for the illustration purpose. The SFE calculated by
the MA is compared with that by the direct application of the three-dimensional integral equation
theory (3D-IET) to the protein. The deviations of the MA values from the 3D-IET values are less
than 1.5%. The computation time required is over four orders of magnitude shorter than that in the
3D-IET. The MA thus developed is expected to be best suited to analyses concerning the effects of
cosolvents such as urea on the structural stability of a protein. © 2011 American Institute of Physics.
[doi:10.1063/1.3617247]

I. INTRODUCTION

The structures of polyatomic solutes stabilized in sol-
vent are enormously influenced by the solvent properties. One
of the most important quantities in accounting for the sol-
vent effects is the solvation free energy (SFE). However, it
is very difficult to calculate the SFE of a large, complex so-
lute molecule like a protein. In the argument of the structural
stability of a protein, it is often required that the SFE be eval-
uated for a huge number of different structures given. There-
fore, it is crucial to develop an approach which allows us to
calculate the SFE for each structure with sufficient accuracy
as well as with minor computational effort. To this end, in an
earlier work1 we developed the so-called morphometric ap-
proach (MA).

The idea of the MA is to express a solvation quantity Z
by the linear combination of only four geometric measures of
a solute molecule1, 2 (V, A, X, and Y),

Z = C1V + C2A + C3X + C4Y. (1)

Here, V is the excluded volume (the volume of the space
which the centers of solvent molecules cannot enter), A is the

a)Author to whom correspondence should be addressed. Electronic mail:
kinoshit@iae.kyoto-u.ac.jp.

solvent-accessible surface area, and X and Y are the integrated
mean and Gaussian curvatures of the accessible surface, re-
spectively. In the approach, the solute shape enters Z only
via the four geometric measures. Therefore, the four coeffi-
cients (C1−C4) can be determined in simple geometries. They
are calculated from the values of Z for spherical solutes with
various diameters immersed in a model solvent. The radial-
symmetric integral equation theory3 is a useful tool in the cal-
culation.

A solute insertion under isochoric condition gives rise to
a decrease in the total volume available to the translational
displacement of solvent molecules (i.e., an increase in the sol-
vent crowding), leading to a loss of the solvent entropy. This is
a primary origin of the solvophobicity. Upon protein folding
in water (protein folding occurs with almost constant system
volume and pressure4, 5), for example, a large gain in the water
entropy occurs.4–7 An important point is that the translational-
entropy gain predominates over the rotational-entropy gain.5

Further, in many cases the water-entropy change can be ana-
lyzed by modeling water as hard spheres.6, 7 An exception is
the case where the temperature dependence of the entropic
effect plays an important role. For example, the increase
in solubility of methane observed at low temperatures and
cold denaturation of a protein8, 9 cannot be elucidated by the
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hard-sphere model for water. Here, an interesting question
arises: How is this entropic effect influenced by the presence
of cosolvents?

The MA or similar approaches have been applied to
a variety of problems where complexly shaped, solvopho-
bic solutes are treated,10–13 or where the solvophobic ef-
fect plays important roles. In particular, we have been quite
successful in elucidating folding/unfolding mechanisms of
proteins,5–9, 14–17 discriminating the native fold of a protein
from a number of misfolded decoys,18–20 and uncovering
the rotation mechanism of a motor protein.21 In these prob-
lems, the solvation entropy is the key quantity calculated by
modeling a protein with a fixed structure as a set of fused
hard spheres. The solvent is formed either by hard spheres
or water molecules modeled as hard spheres in which point
multipoles22–25 are embedded.

In studies on the unfolding mechanisms, the SFE or re-
lated quantities of solvation thermodynamics must be calcu-
lated for a number of different structures of a protein, and the
use of an efficient method, such as the MA, is highly neces-
sitated. We have developed physical pictures of pressure,14, 15

cold,8, 9 and thermal16, 17 denaturating by employing the MA.
The remaining problem is the denaturation caused by the ad-
dition of cosolvents such as urea. To tackle this type of prob-
lem, the MA that has been developed for pure solvent needs
to be extended to a multicomponent solvent. In the present
study, we perform such an extension.

The basic idea of the extension is first described, and then
it is illustrated for calculating the SFE of a model protein im-
mersed in a binary-mixture solvent. The protein is modeled
as a set of fused hard spheres and the binary-mixture solvent
comprises hard spheres with two different diameters. For a
variety of structures of protein G (the number of residues is
56; the Protein Data Bank Code is 2GB1), we calculate the
values of the SFE using the extended MA and the direct appli-
cation of the three-dimensional integral equation theory (3D-
IET) (Refs. 26–30) to the large, polyatomic solute molecule.
The SFE values calculated via the two routes are compared
with the result that the deviations of the values obtained by
the morphometric approach from those by the 3D-IET are
less than 1.5%. The computation time required in the MA is
over four orders of magnitude shorter than that in the 3D-
IET. Moreover, the MA does not suffer the drawback of the
3D-IET, namely, a large amount of computer storage require-
ments.

II. MODEL AND THEORY

A. Solvent and protein models

The solvent comprises m components. It is formed by
hard spheres with m different diameters. In the present study,
m is set at 2 and binary hard-sphere mixtures are consid-
ered. We test the six systems whose specifications are given in
Table I. Systems 0–1 and 0–2 are pure-solvent systems. The
packing fraction 0.3831 and the molecular diameter 0.28 nm
are the values for water at ambient temperature and pres-
sure. Binary hard-sphere mixtures with different composi-
tions, whose diameter ratios are 1.5 and 2.0, are considered

TABLE I. Six systems considered: dj is the molecular diameter of the jth
component of the solvent, ρjd3 (d = 0.28 nm) is the reduced number density
of the jth component, and ηj is the packing fraction of the jth component
defined as ηj = πρjdj

3/6.

System d1 [nm] d2/d1 ρ1d3 ρ2d3 η1 η2 η1+η2

0–1 0.28 . . . 0.7317 . . . 0.3831 . . . 0.3831
0–2 0.42 . . . 0.2168 . . . 0.3831 . . . 0.3831
1 0.28 1.50 0.5000 0.0800 0.2618 0.1414 0.4032
2 0.28 2.00 0.6000 0.0250 0.3142 0.1047 0.4189
3 0.28 1.50 0.2700 0.1482 0.1414 0.2618 0.4032
4 0.28 1.50 0.1000 0.1985 0.0524 0.3508 0.4032

as systems 1 through 4. The packing fraction of one of the
components is roughly in the range 0.05−0.35.

The protein with a fixed structure is modeled as a set of
fused hard spheres. The (x, y, z)-coordinates of all the pro-
tein atoms are used as part of the input data to account for
the polyatomic characteristics of each structure on the atomic
level. The diameter of each atom is set at the σ -value of
the Lennard-Jones potential parameters of CHARMM22.31 We
consider 30 different structures of protein G which were taken
from local-minimum states of the energy function found in
a replica-exchange molecular dynamics simulation using all-
atom potentials.32

B. Three-dimensional integral equation theory

The integral equation theory is a statistical-mechanical
theory which is popular in liquid state physics. It was origi-
nally developed for a spherically symmetric system. The 3D-
IET theory we employ is an extension to general systems de-
scribed using the cartesian coordinate system.26–30 The great
advantage of the 3D version is that details of the polyatomic
structure of a solute molecule can explicitly be taken into
account.26, 29

Solute I of arbitrary geometry is immersed at infinite di-
lution in mixtures of spheres with diameters dj (j = 1, . . . , m)
forming the solvent. The Ornstein-Zernike (OZ) equation in
the Fourier space is expressed by

WIj (kx, ky, kz) =
m∑

n=1

ρnCIn(kx, ky, kz)Hnj (k), j = 1, . . . , m

(2)
and the hypernetted-chain (HNC) closure equation3 is written
as

cIj (x, y, z) = exp{−uIj (x, y, z)/(kBT )} exp{wIj (x, y, z)}
−wIj (x, y, z) − 1, j = 1, . . . , m. (3)

Here, w = h−c, c is the direct correlation function, h is the
total correlation function, u is the potential, ρ j is the bulk den-
sity of solvent spheres of diameter dj, kB is Boltzmann’s con-
stant, T is the absolute temperature. The capital letters (C, H,
and W) represent the Fourier transforms. Hlj(k) (l = 1, . . . , m;
j = 1, . . . , m; k2 = kx

2+ky
2+kz

2) calculated using the radial-
symmetric HNC theory for spherical particles is part of the
input data. We emphasize that the OZ equation is exact while
the bridge function is neglected in the HNC closure equation.
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In the present study, solute I is a protein molecule with a
prescribed structure. In order to eliminate all the unreasonable
overlaps of the constituent atoms, they are moved to the lo-
cally optimized coordinates by employing a standard energy-
minimization method with the all-atom potentials. After this
treatment, the protein molecule is switched to a set of fused
hard spheres. There are no unreasonable overlaps of the con-
stituent atoms.

Equations (2) and (3) are numerically solved on a cubic
grid. The numerical procedure is briefly summarized as fol-
lows: (1) uIj(x, y, z) (j = 1, . . . , m) is calculated at each 3D
grid point; (2) wIj(x, y, z) is initialized to zero; (3) cIj(x, y, z)
is calculated from Eq. (3), and cIj(x, y, z) is transformed to
Cij(kx, ky, kz) using the 3D fast Fourier transform (3D-FFT);
(4) WIj(kx, ky, kz) is calculated from Eq. (2) and WIj(kx, ky,
kz) is inverted to wIj(x, y, z) using the 3D-FFT; and (5) steps
(3) and (4) are repeated until the input and output functions
for wIj(x, y, z) become identical within convergence tolerance.
On grid points where a solvent particle and the solute overlap,
exp{−uIj(x, y, z)/(kBT)} is zero. On those where a solvent par-
ticle is in contact with the solute, it is set at 0.5, and otherwise
it is unity. The grid spacing (�x, �y, and �z) is set at 0.2d
(d = 0.28 nm), and the grid resolution (Nx × Ny × Nz) is 256
× 256 × 256. It has been verified that the spacing is suffi-
ciently small and the box size (Nx�x, Ny�y, Nz�z) is large
enough for the correlation functions at the box surfaces to be
essentially zero.

A great advantage of the HNC approximation is that the
SFE of solute I, �μ, is obtained from the simple integration
of the direct and total correlation functions expressed by

�μ =
m∑

j=1

�μj, (4)

�μj/(kBT ) = ρj

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
{hIj (x, y, z)2/2 − cIj (x, y, z)

−hIj (x, y, z)cIj (x, y, z)/2}dxdydz,

j = 1, . . . , m. (5)

Equation (5) is obtained as an extension of the Morita-Hiroike
formula33, 34 to the 3D system. We note that the SFE is ex-
pressed as the sum of m terms each of which comprises solute-
component j correlation functions (j = 1, . . . , m). The SFE is
“the excess free energy of the solvent in which solute I is im-
mersed” minus “the excess free energy of a pure solvent.”

C. Morphometric approach

We apply the idea of the MA (Refs. 1 and 2) to each com-
ponent of the solvent

�μj/(kBT ) = C1jVj + C2jAj + C3jXj + C4jYj ,

j = 1, . . . , m. (6)

Here, V is the excluded volume, A is the solvent-accessible
surface area, and X and Y are the integrated mean and
Gaussian curvatures of the accessible surface, respectively.
The subscript “j” represents that the value is for the sol-
vent whose molecular diameter is dj. Therefore, the solute

shape is represented in terms of 4m geometric measures.
The 4m coefficients (C1j−C4j, j = 1, . . . , m), which are in-
dependent of the solute shape, can be determined in sim-
ple geometries. They are calculated from the values of the
SFE for hard-sphere solutes with various diameters (dU: dU/d
= 0.02, 0.04, 0.08, 0.16, 0.32, 0.64, 1.0, 2.0, 4.0, 8.0, 16, and
30, d = 0.28 nm) immersed in the model solvent. The radial-
symmetric integral equation theory for spherical particles3, 32

with the HNC approximation is employed in the calculation.
The SFE of a hard-sphere solute is given by the Morita-
Hiroike formula,33, 34

�μsp =
m∑

j=1

�μspj , (7)

�μspj /(kBT ) = 4πρj

∫ ∞

0
r2{hj (r)2/2 − cj (r)

−hj (r)cj (r)/2}dr, j = 1, . . . , m. (8)

The subscript “sp” represents that the value is for a “spheri-
cal” solute. The 4m coefficients are determined by the least
square fitting applied to the following equation for hard-
sphere solutes:

�μspj /(kBT ) = C1j

(
4πR3

j /3
) + C2j

(
4πR2

j

) + C3j (4πRj )

+C4j (4π ), Rj = (dU + dj )/2,

j = 1, . . . , m, (9)

where �μspj/(kBT) is a function of dU (the values of
�μspj/(kBT) are prepared for the 12 different values of dU).
Once the determination is accomplished, �μ of a protein with
a fixed structure is obtained from Eq. (4) in which �μj is cal-
culated from Eq. (6) using Vj, Aj, Xj, and Yj (j = 1, . . . , m).

The coefficients determined by the least square fitting
for the six systems are collected in Table II. The sum of
[{(�μsp)MA−(�μsp)IET}/(�μsp)IET]2 ((�μsp)MA is the SFE
calculated by the MA and (�μsp)IET that by the 3D-IET) over
the 12 different values of dU is minimized in the fitting. The
solvent diameter of system 0–2 is 1.5 times larger than that
of system 0–1. The four coefficients for system 0–2 are then
obtained by dividing them for system 0–1 by 1.53, 1.52, 1.51,
and 1.50, respectively. As a result, the coefficients of V and A
for system 0–2 are much smaller than those for system 0–1.
This is indicative that a solvent with a larger molecular di-
ameter has smaller solvation effects. The least square fitting
is achieved almost perfectly: As illustrated in Table III for
system 1, the deviations for the 12 different values of dU are
considerably less than 0.2% (this is also true for the other 5
systems).

For checking the accuracy of the MA, the calculation
of the SFE for a model protein (calculation I) and that for
spherical solutes with various sizes (calculation II) must be
performed using the same method. If a molecular dynamics
(MD) simulation is employed in calculation I, for example,
calculation II must also be made using the same MD simu-
lation. If an IET is applied to calculation I with a particular
closure (e.g., the HNC closure adopted in the present study),
calculation II is to be carried out using the IET with the same
closure.
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TABLE II. Coefficients determined by the least square fitting for the six systems.

System C11 [1/Å3] C21 [1/Å2] 4πC31 [1/Å] 4πC41 [−] C12 [1/Å3] C22 [1/Å2] 4πC32 [1/Å] 4πC42 [−]

0–1 0.2698 −0.2141 2.3337 −0.6087 . . . . . . . . . . . .
0–2 0.0799 −0.0950 1.5443 −0.5944 . . . . . . . . . . . .
1 0.1701 −0.1297 1.3847 −0.3604 0.0629 −0.0934 1.8447 −0.9543
2 0.2238 −0.1750 1.8917 −0.5004 0.0436 −0.0977 2.8206 −2.1553
3 0.0746 −0.0512 0.4975 −0.1099 0.0900 −0.1262 2.3826 −1.1699
4 0.0232 −0.0140 0.1158 −0.0155 0.0967 −0.1263 2.2404 −1.0057

As for the reliability of the IET result itself, the IET with
the HNC closure was shown to give quite satisfactory results
even in a quantitative sense for the following examples: the
potential of mean force (PMF) between large spherical solutes
immersed in pure solvent calculated by the radial-symmetric
IET;35 the PMF between large spherical and nonspherical so-
lutes immersed in pure solvent calculated by the 3D-IET;27

and the PMF between large spherical solutes immersed in a
multicomponent solvent calculated by the radial symmetric
IET.36 The PMF represents “the SFE of two solutes separated
by a distance” minus “the SFE of two solutes whose separa-
tion is infinitely large.” The reliability test was performed by
comparing the IET results obtained by the HNC closures with
those either from the density functional theory,27, 36 which was
shown to give the results indistinguishable from those by a
MD simulation for rigid-body systems, or from the IET with
the exact bridge functions.27, 35

It is important to note that the MA can be extended to
the case where a model water is considered as the solvent.
In fact, we have already performed such extension.5–9, 14, 16–21

The radial-symmetric IET is replaced by the angle-dependent
IET22–25 for molecular liquids applied to a multipolar model
for water. A feature of this theory is that the water-water
and solute-water orientational correlations are explicitly taken
into account. It has been shown to give a quantitatively accu-
rate value of the hydration free energy of a nonpolar solute.25

Spherical ions (e.g., Na+ and Cl−) can also be included in the
model water without difficulty.22, 24, 37, 38 Further, we believe
that the solute-solvent van der Waals and electrostatic inter-

TABLE III. Performance of the least square fitting for system 1: β

= 1/(kBT), d = 0.28 nm, and dU is the diameter of the hard-sphere solute. The
deviation D is defined by D [%] = 100{(�μsp)MA−(�μsp)IET}/(�μsp)IET,
where (�μsp)MA is the SFE calculated by the morphometric approach and
(�μsp)IET that by the three-dimensional integral equation theory.

dU/d β(�μsp)MA β(�μsp)IET D [%]

0.02 5.600 × 10–1 5.592 × 10–1 0.16
0.04 6.029 × 10–1 6.030 × 10–1 − 0.02
0.08 6.992 × 10–1 7.004 × 10–1 − 0.16
0.16 9.362 × 10–1 9.370 × 10–1 − 0.09
0.32 1.608 × 100 1.607 × 100 0.09
0.64 3.965 × 100 3.963 × 100 0.05
1.0 8.792 × 100 8.785 × 100 0.08
2.0 4.033 × 101 4.036 × 101 − 0.06
4.0 2.373 × 102 2.377 × 102 − 0.15
8.0 1.618 × 103 1.619 × 103 − 0.07
16 1.193 × 104 1.193 × 104 0.05
30 7.570 × 104 7.561 × 104 0.12

actions can be incorporated in the MA, as long as the ions
are present and their concentration is high enough to screen
the electrostatic interaction (this is the case for aqueous solu-
tion under physiological conditions). We are now investigat-
ing this incorporation.

III. RESULTS AND DISCUSSION

A. Accuracy of �μ1, �μ2, and �μ for the native
structure and an unfolded structure

First, we consider the native structure and the unfolded
structure shown in Fig. 1(a) and in Fig. 1(b), respectively.
The SFE obtained from the MA (�μ)MA is compared with
that calculated by the 3D-IET (�μ)IET for the native structure
in Table IV and for the unfolded structure in Table V. The
comparison is also made in terms of �μ1 and �μ2. The six
systems are considered. The deviation D is defined as either

D [%] = 100{(�μ)MA − (�μ)IET}/(�μ)IET (10)

or

D [%] = 100{(�μj )MA − (�μj )IET}/(�μj )IET, j = 1, 2.

(11)

The superscripts, “MA” and “IET,” represent that the quan-
tities are calculated by the MA and by the 3D-IET, re-
spectively. In pure solvents, the deviation for �μ is less
than 0.15%. In the mixture solvents, the deviations for �μ1

and �μ2 are larger: They become larger as η1 and η2 de-
crease, respectively. The minor component (i.e., the compo-
nent whose number density is smaller) undergoes a larger

FIG. 1. Two representative structures of protein G considered in Tables IV
and V. They are drawn by Accelrys Discovery Studio 3.0.0. (a) The native
structure with Rg = 1.064 nm considered in Table IV (Rg is the radius of gy-
ration). (b) An unfolded structure with Rg = 1.445 nm considered in Table V.
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TABLE IV. Deviations (see Eqs. (10) and (11)) of �μ1, �μ2, and �μ calculated by the morphometric approach
from those by the three-dimensional integral equation theory, respectively. The native structure of protein G shown
in Fig. 1(a) is considered. �μ is the solvation free energy, and its two terms are denoted by �μ1 and �μ2: β

= 1/(kBT). The superscripts, “MA” and “IET,” represent that the quantities are calculated by the MA and by the
3D-IET, respectively.

�μ1 �μ2 �μ

System β(�μ1)MA β(�μ1)IET D [%] β(�μ2)MA β(�μ2)IET D [%] β(�μ)MA β(�μ)IET D [%]

0–1 2400.2 2404.6 −0.14 . . . . . . . . . 2400.2 2404.6 − 0.14
0–2 810.2 811.4 −0.15 . . . . . . . . . 810.2 811.4 − 0.15
1 1531.5 1539.3 −0.51 579.3 562.2 3.04 2110.7 2101.4 0.44
2 2000.2 2007.2 −0.35 407.2 381.8 6.65 2407.4 2389.0 0.77
3 690.4 699.5 −1.29 853.4 834.4 2.27 1543.8 1533.9 0.65
4 220.7 226.6 −2.61 944.3 933.0 1.21 1165.0 1159.6 0.47

deviation. There is a trend that the deviation for �μ2 becomes
larger as the molecular-diameter ratio increases. (The solvent
diameter of component 1 is smaller than that of component 2.)
The maximum deviation observed exceeds 8%. However, the
deviations for �μ1 and �μ2 are always negative and positive,
respectively. Significant cancellation of the deviations occurs
when the summation, �μ1+�μ2, is taken with the result that
the deviation for �μ is only in the range 0.4%−1.0%. Since
the important quantity to be calculated accurately is �μ, we
can conclude that the accuracy of the MA is fairly high.

To examine the effects of the grid size employed in the
3D-IET on the deviation for �μ, we perform additional 3D-
IET calculations for the two representative structures shown
in Fig. 1. The grid spacing (�x, �y, and �z) and the grid res-
olution (Nx × Ny × Nz) are set at 0.1d (d = 0.28 nm) and 512
× 512 × 512, respectively. In system 3, for example, the devi-
ation for the native structure shown in Fig. 1(a) changes from
0.65% to 0.82% and that for the unfolded structure shown in
Fig. 1(b) changes from 0.86% to 1.04%. Thus, we find a finer
grid size leads to no improvement of the agreement between
the SFE-values from the two different sources.

B. Accuracy of �μ1, �μ2, and �μ for a variety
of structures

To verify the broad applicability of the MA, we consider
a variety of structures of protein G. The deviations for �μ1,
�μ2, and �μ in system 1 are plotted against the radius of

gyration Rg in Fig. 2. Those in systems 2, 3, and 4 exhibit
qualitatively the same characteristics. The deviations for �μ1

and �μ2 are always negative and positive, respectively. How-
ever, they are somewhat cancelled out when the summation,
�μ1+�μ2, is taken with the result that the deviation for �μ

becomes considerably small. The deviation for �μ is plotted
against Rg in Fig. 3. The systems 1 through 4 (i.e., the mix-
ture solvents) are considered. Despite that the range of the
Rg-values covered is quite wide (1.0 nm−2.8 nm), the devia-
tion is almost independent of the structure characteristics and
its maximum value is only ∼1.5%.

C. Physical origin of deviations

Figure 4 shows a pair of isolated large spheres (a) and
fused large spheres (b) immersed in a binary mixture solvent
comprising small spheres and medium-sized spheres. There
are spaces which the centers of small spheres cannot enter (s-
spaces) and those which medium-sized spheres cannot enter
(m-spaces). The overlap of s-spaces occurs in (b), and the to-
tal volume of s-spaces are smaller than in (a) by the volume
of the overlapped space Vs. The same can be mentioned for
m-spaces, and the volume of the overlapped space is denoted
by Vm. An important point is that there are spaces which the
centers of small spheres can enter but those of medium-sized
spheres cannot (ms-spaces). The overlap of ms-spaces occurs
in (b), and the total volume of ms-spaces are smaller than
in (a) by “Vm−Vs−Vgreen” where Vgreen is the volume of the
space marked in green in Fig. 4(b). It follows from Eq. (6) that

TABLE V. Deviations (see Eqs. (10) and (11)) of �μ1, �μ2, and �μ calculated by the morphometric approach
from those by the three-dimensional integral equation theory, respectively. The unfolded structure of protein G
shown in Fig. 1(b) is considered. �μ is the solvation free energy, and its two terms are denoted by �μ1 and �μ2:
β = 1/(kBT). The superscripts, “MA” and “IET,” represent that the quantities are calculated by the MA and by
the 3D-IET, respectively.

�μ1 �μ2 �μ

System β(�μ1)MA β(�μ1)IET D [%] β(�μ2)MA β(�μ2)IET D [%] β(�μ)MA β(�μ)IET D [%]

0–1 2552.2 2553.8 −0.06 . . . . . . . . . 2552.2 2553.8 − 0.06
0–2 896.2 896.7 −0.05 . . . . . . . . . 896.2 896.7 − 0.05
1 1634.3 1642.3 −0.49 620.9 598.2 3.81 2255.2 2240.5 0.66
2 2129.2 2136.6 −0.34 436.5 403.7 8.13 2565.7 2540.3 1.00
3 743.6 754.4 −1.43 923.7 898.7 2.79 1667.3 1653.1 0.86
4 239.9 246.7 −2.78 1032.3 1017.5 1.46 1272.2 1264.2 0.63
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FIG. 2. Deviations (see Eqs. (10) and (11)) of �μ1, �μ2, and �μ calculated
by the morphometric approach from those by the three-dimensional integral
equation theory (3D-IET), respectively. System 1 and 30 different structures
of protein G are considered. �μ is the solvation free energy, and its two terms
are denoted by �μ1 and �μ2.

s-spaces and m-spaces are considered but ms-spaces are not
in the MA. Therefore, Vs and Vm are taken into account while
Vgreen is neglected (i.e., Vgreen is set at zero). Consequently, the
total volume of ms-spaces is overestimated by the neglect in
(b): The restriction of the translational freedom caused by the
insertion of a pair of fused large spheres is underestimated
for small spheres, whereas it is overestimated for medium-
sized spheres. (The above argument is made by assuming that
the accuracy of the MA is influenced by the presence of ms-
spaces primarily through the excluded volume.)

A protein is geometrically a set of fused spheres. The
sizes of the spheres are not large, but there are a number of
such spheres. In the MA where Eq. (6) is adopted and the co-
efficients are determined for isolated spheres, �μ1 is under-
estimated while �μ2 is overestimated because the spaces like
ms-spaces are not taken into consideration. This is why the
deviations for �μ1 and �μ2 are always negative and positive,

FIG. 3. Deviation (see Eq. (10)) of the solvation free energy (�μ) calculated
by the morphometric approach from that by the 3D-IET. Systems 1 through
4 and 30 different structures of protein G are considered.

(a) 

(b) 

FIG. 4. Excluded spaces which the centers of small and medium-sized
spheres cannot enter in the presence of a pair of isolated (a) and fused (b)
large spheres. Black solid line: large sphere. Blue broken line: excluded space
for small spheres. Red broken line: excluded space for medium-sized spheres.

respectively. The incorporation of the spaces like ms-spaces
(their four geometric measures) cannot readily be carried out.
However, the deviations are fortunately cancelled out to a sig-
nificantly large extent when the summation, �μ1+�μ2, is
taken with the result that the deviation for �μ becomes con-
siderably small.

D. Brief discussion on solvent effects

We have been quite successful in elucidating
pressure,14, 15, 39, 40 thermal,16, 17 and cold8, 9 denaturation
with the emphasis on the entropic components of the system
free energy. Our principal concern in the next stage is the
elucidation of protein denaturation caused by the cosolvent
(e.g., urea) addition on the basis of the entropic components.
At low pressures, a folded conformation is more favored
than an unfolded state in terms of the solvent entropy
(this is not true at high pressures14, 15, 39, 40). However, the
former is less favored in terms of the protein intramolecular
conformational entropy. If the solvent-entropy effect, which
drives a protein to fold, becomes sufficiently less powerful
by the cosolvent addition, the intramolecular-conformational
entropy dominates, giving rise to unfolding or denaturation.

It is observed from Tables IV and V that with respect
to (�μ)MA (i.e., contribution from the solvent entropy) the
native structure is more stable than the unfolded structure
by −152kBT, −86kBT, −144kBT, −158kBT, −123kBT, and
−107kBT in systems 0–1, 0–2, 1, 2, 3, and 4, respectively.
With respect to (�μ)IET the numbers change to −149kBT,

Downloaded 08 Sep 2011 to 130.54.110.72. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



045103-7 Solvation thermodynamics of complex molecules J. Chem. Phys. 135, 045103 (2011)

−85kBT, −139kBT, −151kBT, −119kBT, and −105kBT, re-
spectively, but the order remains exactly the same. In our ear-
lier work,5 we proposed a method for estimating the mini-
mum and maximum values of the loss of the intramolecular
conformational entropy upon folding (i.e., upon the transition
from an unfolded state to the native structure). For protein G,
the minimum and maximum values are 70kBT and 218kBT,
respectively, in terms of the free-energy increase upon fold-
ing: Here, we assume that the free-energy increase is roughly
∼144kBT (144 = (70 + 218)/2). That is, the native structure
is less stable than the unfolded structure by ∼144kBT with
respect to the intramolecular conformational entropy. As re-
gards the total free energy incorporating the solvent entropy
as well, the native structure is more stable in systems 0–1 and
2 while the unfolded structure is more stable in systems 0–
2, 3, and 4. The two structures are almost equally stable in
system 1.

The solvent diameter of component 2 in system 2 is larger
than in systems 1, 3, and 4, but the total packing fraction
(η1+η2) of system 2 is the highest. As a consequence, com-
ponent 2 acts as a stabilizer of the native structure in system
2. The relative stability between two structures of a protein
is determined by complicated interplay of the details of the
protein structures and the solvent specifications (in particular,
the molecular diameter of component 2 and the total packing
fraction). A variety of structures should be considered in a
theoretical analysis on the effects due to a cosolvent, and we
intend to perform this type of analysis in the next stage.

IV. CONCLUDING REMARKS

We have extended the MA, which is a powerful tool for
calculating a SFE and related quantities of solvation thermo-
dynamics of complex molecules, so that it can be applied to
a multicomponent solvent. The extended version is illustrated
for a protein (protein G with 56 residues) modeled as a set
of fused hard spheres immersed in a binary mixture of hard
spheres. A total of 30 structures of the protein with a variety
of radii of gyration are considered for the illustration purpose.
The molecular-diameter ratio d2/d1 of the mixture solvent is
set at 1.5 or 2.0, and three different compositions are tested
for d2/d1 = 1.5. The SFE obtained through the extended MA
is compared with that calculated by the direct application of
the 3D-IET to the protein. The deviations are less than 1.5%.
The computation time required is over four orders of magni-
tude shorter than that in the 3D-IET. The MA does not suffer
the disadvantage of the 3D-IET, namely, a large amount of
computer storage requirements. Further, in the MA the de-
composition of a thermodynamic quantity of solvation into
the four terms provides physical insights into the microscopic
mechanisms of protein folding and unfolding.5, 8, 9, 14, 15

The MA thus developed is expected to be best suited to
analyses concerning the effects of cosolvents on the structural
stability of a protein. A protein can be denatured by the ad-
dition of a denaturant such as urea. However, the mechanism
of urea-induced denaturation is not well understood yet. A
possible interpretation is that urea has high affinity with the
protein surface and the presence of urea in aqueous solution
makes the protein take an unfolded structure with a larger sur-

face area. Another possibility is that urea-induced changes in
the solvophobic effect or in the solvation entropy play essen-
tial roles. A clue to the mechanism is that a protein is de-
natured only when the urea concentration becomes quite high
(as high as ∼8M). We are inclined to think that the weakening
of the solvent-entropy effect is an important cause of the de-
naturation. On the other hand, it is known that the addition of
sucrose can stabilize the native structure of a protein. As dis-
cussed in Sec. III D, the second component acts as either a sta-
bilizer or a destabilizer of the native structure by complicated
interplay of the solvent diameter of the second component and
the total packing fraction of the mixture solvent. In any case,
we believe that as in the case of pressure denaturation of a
protein,14, 15, 39, 40 the stabilization/destabilization mechanism
can be elucidated not by considering small molecules41–43 but
by directly treating a protein with a variety of structures, i.e.,
with a variety set of geometric measures.
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